
You Are In a Maze of Twisty Little Sequences, All Alike – or
Layering Sequences for Stimulus Abstraction

Rich Edelman
Mentor Graphics

rich_edelman@mentor.com

Raghu Ardeishar
Mentor Graphics

raghu_ardeishar@mentor.com

Adam Rose
Mentor Graphics

adam_rose@mentor.com

Jason Polychronopoulos
Mentor Graphics

jason_polychronopoulos@mentor.com

Andreas Meyer
Mentor Graphics

andy_meyer@mentor.com

ABSTRACT
This paper will demonstrate building layered stimulus using OVM
sequences and sequencers. Virtual sequences and virtual sequencers
will be demonstrated by building a small collection of examples that
can be used in layered stimulus verification environments. The main
contribution of this paper is a new layering component that performs
the standard layering task while minimizing user programming
without requiring exotic connectivity, extended components or the
use of the factory.

Categories and Subject Descriptors
[Hardware Verification]: Functional Simulation and Verification –
class based SystemVerilog, OVM library, sequences, sequencers,
drivers.

General Terms
Verification, Simulation, Layered Sequences.

Keywords
Sequences, sequencers, layering, register based verification, MVC,
VIP, Verification IP.

1. INTRODUCTION
Complex verification environments and modern communication
protocols often have many parallel operations active at a time, and
are difficult to model with a linear series of programming statements.

Sequences can be used to parallelize behavior, but bring along
certain complexities that are difficult to manage for new users. This
paper will discuss ways to hide the gory details of layering
sequences, and the “hardness” about sequences, while enabling the
productivity and infinite flexibility afforded by them.

Many kinds of systems fall into the area where sequences and
layering are appropriate, including a system where the DUT
examines multiple layers of a protocol or any system where higher
level “instructions” need to be broken down into their lower level
constituents.

Using sequences in these environments can make life easier, since
sequences and sequencers are natively parallel and have arbitration
and other “communicating process” hooks already built in.

A user of such a verification environment typically uses an OVM
verification component (OVC) which has a library of sequences and
a sequencer. This OVC is usually combined with other OVC types to
build up a system. Each OVC is operating independently, and can be
coordinated with a higher “layer”. This is the simplest aspect of
layering discussed in this paper.

Layering stimulus is a common practice to achieve reuse and to raise
abstraction levels. Protocols can be layered, functional
decomposition can be expressed through layering – any higher to
lower level abstraction is a possible layering target.

Layering allows a high level programming abstraction to be used for
stimulus writing. Then the higher level programming abstraction is
broken down into a lower level programming abstraction. The lower
level programming abstraction is what comes with the OVC building
block – it is the verification library that is built-in to the OVC. It can
be used stand-alone, but most verification teams will prefer to use a
higher level abstraction. This is the motivation for a layered stimulus
approach – breaking the desired higher level abstraction into the
available lower level abstraction.

For example, consider a register layer running on a low level bus
transport layer. The high level register write() is implemented in
terms of lower level bus transactions specific to a particular bus
protocol, such as OCP bus transactions. This is a more complex
aspect of layering. For a register layering situation, the higher level
uses READS and WRITES. The lower level is specific to a bus
protocol. For example a lower level AHB implementation knows
how to wiggle the pins on an AHB bus, while a lower level OCP
implementation knows how to wiggle the pins on an OCP bus. Each
of these lower levels is very different, but the higher level reads and
writes can run on either one, with the proper translation in place.

Layering will be discussed in this paper as applicable to packet or
protocol layering, OVC layered stimulus and register stimulus
generation over an OVC layer. This layering will be achieved with
“virtual connections” or with layered abstractions or both.

Layered verification and layered software is not a new concept. A
simple function call is a layer. The lower level function implements
some basic behavior. The upper level function calls the lower level
function to perform activities. For example, a lower level function
could implement the multiply command using shifts and adds. The
upper level function then could implement a higher level function
like an (x, y) coordinate system. The (x, y) function could then be
used at an ever higher level in an image processing function. Using
layers in software design is now taken for granted to reduce
complexity and promote reuse.

Function calls in software are layers. In the OVM [1] function calls
can also be layers. Additionally, OVM sequences [2] can also be
layered. Sequences are really just function calls [3] on steroids. A
sequence is a special kind of function call – it is a “functor”. The
implementation of the function is generally in the “body()” function
of the sequence, but there are also other useful hooks like the
pre_body(), pre_do(), post_do() and post_body() to name a few.
Using the flexible sequence API allows for creating powerful and

interesting tests and layers of tests which reduce complexity and
promote reuse.

2. OVERVIEW AND BACKGROUND
Sequences work together with sequencers and drivers to manage
tests on an interface. Details of this system is beyond the scope of
this paper, but a brief summary of certain functionality and API will
be discussed here [4] [5], as related to the layering concept – Figure
1.

Figure 1 - Sequencer / Driver interface

3. LIONS AND TIGERS AND BEARS! OH,
MY!
The collection of APIs associated with a sequence class is used to
implement a function call, and to provide other interfaces for
synchronization and arbitration of other sequences. A basic sequence
exists to generate a "transaction". The transaction may be
randomized, may be the "next" transaction in a sequence or may be
related to some state of the system.

Another role of the sequence is to manage other sequences instead of
generating a transaction. In the OVM, such a "virtual sequence" is
really just a collection of SystemVerilog code that starts other
sequences. It's a sequence coordinator. The sequence is really just a
function call which does "something" that is important for stimulus
generation or monitoring.

A driver in the OVM is SystemVerilog code which manages an
interface; perhaps a bus or some other communication to another
block. Usually a driver is managing a bus and knows how to wiggle
the pins of that bus, causing bus traffic. It may also know how to
monitor the bus and create transactions from bus activity.

A driver normally "gets" a transaction from elsewhere and then
causes that transaction to be realized as pin wiggles. Bus traffic
whether AHB or AXI or OCP, is being driven by the driver in
response to the transaction.

A driver needs a transaction and a sequence generates a transaction.

We could just hook up a sequence to a driver. But most interesting
test scenarios aren't just one sequence. There may be many
prioritized sequences which compete for the opportunity to send a
transaction. For example, two sequences which are generating bus
traffic transactions are running in parallel to simulate two different
transfers interleaved on the same bus.

A sequencer is used to arbitrate these competing prioritized
sequences. A sequencer manages "who goes next" – among other

things. The sequencer manages the relationship between sequence
and driver, and is usually a vanilla first-in-first-out arbitrator. It can
be programmed for many different behaviors, all beyond the scope of
this paper [4].

A monitor can be created separately from the driver which interacts
with the bus. It interacts with the same interface as the driver, but is
passive. It samples pin wiggles, or other low level communication
(just as the driver drives that low level communication). The monitor
recognizes a series of pin wiggles as a transaction (for example a
READ), and then creates a transaction and publishes it.

3.1 Sequencer API
The sequencer has complex behavior, but can be interacted with in
simple ways. For this paper we’re only concerned with the driver
connection and interface, and the way a sequence provides a
transaction to a driver. We won’t consider any of the more complex
sequencer behavior.

The sequence creates an item and starts it. Starting an item causes the
sequencer to interact with the driver and perform arbitration. A
sequencer has a REQ/RSP export, and expects to be connected to a
corresponding REQ/RSP port. Usually that corresponding port is on
the driver. The sequencer expects to be connected to a “driver
interface”.

Sequence:
 create_item()
 start_item()
 sqr.wait_for_grant()
 seq.pre_do();
 finish_item()
 seq.mid_do();
 sqr.send_request();
 sqr.wait_for_item_done();
 seq.post_do();

Driver:
 seq_item_port.get()
 sqr.get()
 m_req_fifo.peek();
 item_done();

3.2 Driver API
The driver has a simple behavior. It exists to just be told what to do,
and then do it. The ‘what to do’ is a transaction. The transaction
arrives from a sequencer which has arbitrated possibly competing
sequences. Once a driver receives a transaction it may cause activity
on the interface it is managing. Each driver implementation is
protocol specific, and can vary widely, but the basics are shared
among all drivers. The driver process is a loop which tests the
sequencer to see if a transaction is available. For example, a driver
loop can loop forever, doing a get() to retrieve a transaction from the
sequencer. Aside from get(), there are other ways a driver can
interact with a sequencer, but each results in a transaction being
produced and acted upon by the driver.

When the driver has executed the transaction it supplies a response
back to the sequencer. Those responses can be immediate or take
time, depending on the protocol.

DRIVER SEQUENCER

SEQUENCE

seq_item_export seq_item_port

rsp_portrsp_export

SEQUENCE SEQUENCE

Simple driver design – get and transaction and execute it.

 task run();
 ovc1_sequence_item t;
 ovc1_sequence_item rsp;
 forever begin
 seq_item_port.get(t);
 ovm_report_info("driver", t.convert2string());

 // Send to BUS / Wiggle pins
 ...
 // Construct response
 rsp = new();
 rsp.n = t.n;
 rsp.set_id_info(t);
 rsp_port.write(rsp);
 end
 endtask

4. VIRTUAL SEQUENCES AND
SEQUENCERS
Virtual sequences are just sequences whose job is to start other
sequences. Virtual sequences do not produce a transaction, but rather
cause other sequences to run, which can cause other sequences to
run, until finally there are transactions (or some other work) created.
The job of a sequence is to produce a transaction, or cause some
work. A virtual sequence is a convenient description of sequences
that don’t directly produce transactions – but instead cause other
sequences to produce transactions.

In Figure 2 a virtual sequence ‘seqX’ starts three sub-sequences in
parallel (seqA, seqB and seqC). These three parallel sequences
control the interface 1, 2 and 3, testing some interaction of parallel
traffic.

Figure 2 - Virtual sequence - seqX

In the same way that virtual sequences are sequences that don’t
produce transactions, virtual sequencers are sequencers that are not
connected to a real driver. Instead they interact with other “sub-
sequencers”. Figure 2 could describe a virtual sequencer – the
sequencer that seqX is running on.

5. LAYERED SEQUENCES
A sequence can be written to encapsulate some behavior and produce
a transaction. It is a function call. Just as function calls can call other
function calls, sequences can call other sequences – as seen in the
virtual sequence example above.

Aside from a sequence calling another sequence, another kind of
layering is important. This kind of layering is the layering that occurs
when a sequence generates a transaction, and that transaction causes
a different sequence to generate sub-transactions.

For example, a high level transaction might be generated to move
1024 bytes of data from A to B. This transaction would get
“interpreted” or “translated” into a lower level transaction that was
supported on the particular interface. The 1024 byte transfer from A
to B might get mapped into eight 128 byte transfers. In Figure 3 an
upper level seqX might generate a 1024 byte transfer, which gets
received at the lower level and translated into the eight 128 byte
transfers.

Figure 3 - Layered sequences

Layered sequences are used to reuse lower level sequences. Layered
sequences are built supporting higher level constructs like packet
protocols and register stimulus over an existing OVC.

5.1 Packets
A packet described here is a collection of bytes, possibly formatted
to describe a network protocol or other structured data. A packet can
also just be a collection of bytes. Building layered packets consists of
structuring or un-structuring the bytes to represent a different
abstraction level.

Figure 4 - One packet to one packet with detail added

Figure 4 shows a higher level collection of bytes which are converted
to a lower level by adding a header and a checksum.

Figure 5 shows a higher level collection of bytes which is broken
into 4 equally sized sub-blocks. Each sub-block has a header and
checksum added.

4 x 1024 Bytes

HDR CHKSUM 4 x 1024 Bytes Lower
Level

Upper
Level

fork
 seqA.start(sqr1);
 seqB.start(sqr2);
 seqC.start(sqr3);
join

D
R
V
R

s
q
r
1

seqA
seqA

seqX

D
R
V
R

s
q
r
2

seqA
seqB

D
R
V
R

s
q
r
3

seqA
seqC

1

2

3

D
R
V
R

S
Q
R

seqA
seqA

S
Q
R

seqY
seqX

Upper Level Lower Level

Figure 5 - One packet split into 4 sub-packets

Figure 6 shows a higher level abstraction which gets its headers and
checksums striped, and then each payload block – 1, 2, 3, 4 – is
concatenated into one large transaction.

Figure 6 - Many packets consolidated to one

5.2 Instructions
Instructions can be implemented using layers – an instruction is a
symbolic command at the higher level, for example MOV32
ADDR1, ADDR2, which is converted into a bus transaction that
moves 32 bits from ADDR2 to ADDR1. [6]

Figure 7 - Machine instructions to microcode

This example of layering demonstrates higher level instructions like
‘ADD x’ and ‘STORE x’ being broken down into lower level
instructions like ‘IR[add] -> MAR’, ‘A + MDR -> A’.

Using this high level layer, a software program could be written as a
test program. When such a test program executes, it results in
“commands” running – like ‘Store 20’ and ‘Add 20’. Those
commands execute at the higher level, and get translated into lower
level commands by the layering system and the actual hardware
machine underneath.

5.3 Registers
Registers are an example of where layered sequences can be applied
easily. A register transaction is defined as a READ or a WRITE with
a register name specified and a data field provided for write, or a data
returned for a read.

Figure 8 - Register layering

Registers layering is one of the easiest to achieve, since the layering
translation is easy. In order to do the translation from higher to lower
level, the register name is looked up in an address map. Given the
register name, the address map returns the register address. In the
example above, “regA” gets translated to the address ‘1002’.

6. USING THE LAYERING COMPONENT
As seen in Figure 9 to layer sequences requires and implies certain
recommendations, such as connection by TLM ports, phased build(),
connect(), etc. These details are quite tedious and error prone. The
layering component allows for easier integration and use.

Figure 9 - Sequence translation

The layering component is a component that provides for hooks into
the OVM infrastructure to provide construction, connection, and run
phasing. It allows for creation of the required ports, the creation of
the translation sequence itself, and the connection of the translation
interface (driver interface) to the upper level sequencer.

6.1 Details
The layering component implements the connect(), build() and run()
phases to achieve the layering. See the Appendix 1 for a sample
implementation.

In build(), the layering component builds the required upper
sequencer automatically. In the OVM, components must be built
before the run phase, most typically in the build phase.

D
R
V
R

S
Q
R

seqA
seqA

S
Q
R

seqY
seqX

Upper Level Lower Level

xlate
seq

HDR CHKSUM 1

2 CHKSUM HDR

3 CHKSUM HDR

4 CHKSUM HDR

1 2 3 4

Lower
Level

Upper
Level

Lower
Level

Upper
Level

Input
Store 20
Input
Add 20
Output

ADD x
 IR[add] -> MAR
 A + MDR -> A
STORE x
 IR[add] -> MAR
 A -> MDR

HDR CHKSUM 1

2 CHKSUM HDR

3 CHKSUM HDR

4 CHKSUM HDR

1 2 3 4 Lower
Level

Upper
Level

READ(“regA”, data)

READ(1002, data)

In connect(), the layering component builds the lower level ports
required to connect to the upper layering sequencer. The ports are
constructed in the connect phase since we can guarantee here that the
build phase has passed, and the lower sequencer has been created.
These lower level or downstream ports are used as a “way-point” for
connecting the sequencer and driver. The lower level ports – the so-
called “driver interface” are constructed with a parent pointer that is
not the traditional “this” pointer. Instead, these ports are constructed
with a parent pointer of the downstream sequencer. Essentially, the
ports are built into the downstream sequencer, although they do not
exist syntactically in any class definition. They are built dynamically.
Once constructed, these ports are connected to the upper sequencer.
Now the upper sequencer thinks it is connected to a driver style
interface – which is really the two ports created here which are
“hosted” or “parented” in the downstream sequencer.

In run(), the layering component performs its final chore. Once this
chore is complete the layering component has no other functionality,
and does nothing else. This final functionality is to start the upper
and lower level sequences required for this particular layering. For
example, in register layering, the upper level sequence started is a
regular register sequence, and the lower level sequence is a special
translation sequence which knows how to convert between a register
transaction and a downstream transaction. See Appendix 2 for a
sample register transaction translator sequence.

The translator sequence is running on the lower level sequencer. It
“knows” how to create lower level transactions. In the example the
lower level sequence has helper functions, read() and write() which
work with the sequence API to cause lower level transactions to be
created. The job of the translator sequence is to call these lower level
helper functions with the correct arguments. Before the helper
functions can be called the translator sequence must “get” a
transaction – just like a driver would. This is the driver interface that
has been built. The upper level sequencer thinks it is sending a
transaction to an upper level driver. Really the transaction is being
sent to a correctly typed port which is operated on like a driver
would operate on it. The translator sequence uses the driver API –
calling port.get() and rsp_port.write(), etc. As far as the upper level
sequencer is concerned, the translator sequence is a driver.

6.2 Avoiding the Details
Building the connections, constructing the components and starting
the sequences is a tedious task. These details can be easily avoided
by using the layering component. The layering component is
programmed using a simple 4-tuple. One of the hidden benefits of
this approach is that no extended sequencer is required. Layering can
be added to any existing sequencer/driver combination by
instantiating an appropriate layering component, and registering the
sequences to be run. Adding the layering component required less
then 10 additional lines of code changed in an existing testbench.

A layering component needs to be constructed:

 register_layer reg_layer = new("reg_layer", null);

Once constructed, the specific layering must be registered:

 reg_layer.add_register_db(
 "simple_e1.sequencer", // An existing sequencer.
 "translation_seq", // The built-in
 // translation sequence.

 "layered_reg_sqr", // A sequencer type
 // to create.
 "layered_reg_seq" // The register sequence
 // to start.
);

The behavior of the layering component is guided by a data structure
containing the names of the sequencers and sequences. An alternate
implementation can be used which uses types instead of strings for
better error checking.

The data structure contains the following fields, ‘lower_sequencer’ –
the name of the lower level sequencer, ‘translation_seq’ – the name
of the sequence which will run on the lower level sequencer,
‘upper_sequencer’ – the name of the upper level sequencer that will
be instantiated and started automatically, and ‘upper_sequence’ – the
name of the sequence that will be started on the upper level
sequencer (upper_sequencer).

 typedef struct {
 string lower_sequencer;
 string translation_seq;
 string upper_sequencer;
 string upper_sequence;
 ...
 } layer_db_t;

7. CONCLUSION
The layering component is a relatively unobtrusive way to manage
the complexities of sequences, sequencers and drivers when the goal
of the layering is to add a new set of stimulus or monitoring to an
already existing infrastructure. For example, an existing bus level
infrastructure might benefit from register based coverage using a
register layering component with the OVM Register Package.
Another example might be register based tests layered on top of the
existing bus tests.

The layering component is not limited to register testing and
monitoring. It can be used in any situation where an upper level
transaction must be converted back and forth to a lower level
transaction.

8. REFERENCES
[1] OVM World Download, www.ovmworld.org
[2] OVM User Guide.
[3] Edelman, Rich, “Sequences in SystemVerilog”, DVCON 2008
[4] OVM Reference Guide.
[5] Meyer, Andreas, “Overview of Sequence Based Stimulus Generation in
OVM 2.1”. [unpublished]
[6] Crews, Thad “LMMS: An 8-bit Microcode Simulation of the Little Man
Computer”, http://www.citidel.org/bitstream/10117/117/6/LMMS.pdf

APPENDIX 1 – REGISTER LAYERING LIBRARY EXAMPLE

package register_layer_pkg;
 import ovm_pkg::*;
 `include "ovm_macros.svh"

 import ovm_register_pkg::*;

 class layered_register_sequencer
 extends ovm_register_sequencer#(
 ovm_register_transaction,
 ovm_register_transaction);

 `ovm_sequencer_utils(
 layered_register_sequencer)

 function new(string name,
 ovm_component p);
 super.new(name, p);
 `ovm_update_sequence_lib_and_item(
 ovm_register_transaction)
 count = 0; // No automatic start
 endfunction
 endclass : layered_register_sequencer

 class layered_register_sequence
 extends register_sequence_all_registers
 #(ovm_register_transaction,
 ovm_register_transaction);

 `ovm_sequence_utils(
 layered_register_sequence,
 layered_register_sequencer)

 function new(string name =
 "layered_register_sequence");
 super.new(name);
 endfunction
 endclass : layered_register_sequence

 typedef struct {
 string lower_sqr;
 string translation_seq;
 // Runs on the lower_sqr

 string upper_sqr;
 string upper_seq;
 // Runs on the upper_sqr

 ovm_register_sequencer
 #(ovm_register_transaction,
 ovm_register_transaction)
 register_sqr;
 ovm_sequencer_base lower_sqr;

 } layer_db_t;

 class register_layer
 extends ovm_component;
 // Database of the layering
 layer_db_t layer_db[string];

 function new(string name,
 ovm_component p);
 super.new(name, p);
 endfunction

 local function ovm_sequencer_base
 m_build_sequencer(
 string sequencer_name);

 ovm_sequencer_base sqr;
 string sequencer_instance_name;
 static int count = 0;

 // Create an instance name.
 $sformat(sequencer_instance_name,
 "%s%0d", sequencer_name, count++);

 $cast(sqr,
 factory.create_component_by_name(
 sequencer_name, get_full_name(),
 sequencer_instance_name, this));
 return sqr;
 endfunction

 local function ovm_sequencer_base
 m_find_sequencer(
 string sequencer_name);

 ovm_sequencer_base sqr;
 $cast(sqr, ovm_top.find(
 sequencer_name));
 return sqr;
 endfunction

 function void build();
 super.build();
 // Build all the register sequencers.
 foreach (layer_db[s])
 $cast(layer_db[s].register_sqr,
 m_build_sequencer(
 layer_db[s].upper_sqr));
 endfunction

 local function void m_connect(
 ovm_register_sequencer
 #(ovm_register_transaction,
 ovm_register_transaction)
 register_sqr,
 ovm_sequencer_base lower_sqr);

 ovm_seq_item_pull_port
 #(ovm_register_transaction,
 ovm_register_transaction)
 lower_sqr_register_seq_item_port;

 ovm_analysis_port
 #(ovm_register_transaction)
 lower_sqr_register_rsp_port;

 // Create some appropriate 'upstream'
 // ports, and slip them into
 // lower_sqr. Bus_sqr is none the
 // wiser. Notice: the parent pointer
 // is lower_sqr.
 lower_sqr_register_seq_item_port
 = new("register_seq_item_port",
 lower_sqr);
 lower_sqr_register_rsp_port
 = new("register_rsp_port",
 lower_sqr);

 // Pay attenion here! We're calling
 // connect on the ports we just
 // slipped into the 'lower_sqr'. And
 // we're connecting to the upstream
 // register sequencer that we
 // magically created behind the
 // scenes in the build() phase above.
 lower_sqr_register_seq_item_port.connect(
 register_sqr.seq_item_export);
 lower_sqr_register_rsp_port.connect(
 register_sqr.rsp_export);
 endfunction

 function void connect();
 super.connect();
 // Find the bus sequencers as named.
 // We can find them in connect(),
 // since we are guaranteed that they
 // exist.
 foreach (layer_db[s])
 $cast(layer_db[s].lower_sqr,
 m_find_sequencer(
 layer_db[s].lower_sqr));

 // Register all the ports, and do
 // the connects
 foreach (layer_db[s])
 m_connect(
 layer_db[s].register_sqr,
 layer_db[s].lower_sqr);
 endfunction

 // Called by the user to "setup" a
 // layering.
 function void add_layer_db(
 string lower_sqr,
 translation_seq,
 register_sequencer,
 upper_seq
);

 layer_db[lower_sqr].lower_sqr
 = lower_sqr;
 layer_db[lower_sqr].translation_seq
 = translation_seq;
 layer_db[lower_sqr].upper_sqr
 = register_sequencer;
 layer_db[lower_sqr].upper_seq
 = upper_seq;
 endfunction

 local task start_sequence(
 string sequence_name,
 ovm_sequencer_base sqr);
 ovm_sequence_base seq;

 // Get a sequence from the factory.
 $cast(seq,
 factory.create_object_by_name(
 sequence_name, get_full_name(),
 sequence_name));

 fork
 ovm_sequencer_base m_sqr = sqr;
 ovm_sequence_base m_seq = seq;
 m_seq.start(m_sqr);
 join_none
 endtask

 task run();
 // Start all the bus
 // translation sequences.
 // (the downstream side).
 foreach (layer_db[s])
 start_sequence(
 layer_db[s].translation_seq,
 layer_db[s].lower_sqr);

 // Start all the register sequences.
 // (the upstream side).
 foreach (layer_db[s])
 start_sequence(
 layer_db[s].upper_seq,
 layer_db[s].register_sqr);
 endtask
 endclass : register_layer
endpackage

APPENDIX 2 – REGISTER LAYERING TRANSLATOR SEQUENCE EXAMPLE

virtual class translation_sequence_base
 extends simple_sequence_base;
 `ovm_sequence_utils(
 translation_sequence_base,
 simple_sequencer)

 ovm_register_map rm;

 pure virtual task write(
 bit[31:0]addr, bit[31:0]data);
 pure virtual task read (
 bit[31:0]addr, output bit[31:0]data);

 function new(string name);
 super.new(name);
 endfunction

 ovm_seq_item_pull_port
 #(ovm_register_transaction,
 ovm_register_transaction)
 register_seq_item_port;

 ovm_analysis_port
 #(ovm_register_transaction)
 register_rsp_port;

 task body();
 ovm_object o;
 if (m_sequencer.get_config_object(
 "register_map", o))
 $cast(rm, o);
 else
 ovm_report_fatal(
 "translator_sequence",
 "Cannot find 'register_map'");

 register_layer::lookup_ports(
 m_sequencer,
 register_seq_item_port,
 register_rsp_port);

 forever begin
 BV rd_data, addr;
 bit valid_address;
 ovm_register_transaction
 register_req, register_rsp;

 // Get a request from upstream.
 // This is a register transaction.
 register_seq_item_port.get(
 register_req);

 ovm_report_info("translator",
 $psprintf("reg transaction '%s'",
 register_req.convert2string()));

 addr =
 rm.lookup_register_address_by_name(
 register_req.name,
 valid_address);

 // Create the register response
 register_rsp = new();

 if (!valid_address) begin
 ovm_report_error(
 "translator_sequence",
 $psprintf(
 "Register '%s' is not mapped",
 register_req.name));
 end
 else begin
 if (register_req.op ==
 ovm_register_pkg::WRITE)
 write(addr, register_req.data);
 else
 read(addr, rd_data);

 register_rsp.copy_req(
 register_req);
 register_rsp.set_id_info(
 register_req);

 if (register_rsp.op ==
 ovm_register_pkg::READ)
 register_rsp.data = rd_data;
 end

 // Send a response back upstream.
 register_rsp_port.write(
 register_rsp);
 end
 endtask
endclass

