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ABSTRACT  
This paper will demonstrate building layered stimulus using OVM 
sequences and sequencers. Virtual sequences and virtual sequencers 
will be demonstrated by building a small collection of examples that 
can be used in layered stimulus verification environments. The main 
contribution of this paper is a new layering component that performs 
the standard layering task while minimizing user programming 
without requiring exotic connectivity, extended components or the 
use of the factory.    
 
Categories and Subject Descriptors  
[Hardware Verification]: Functional Simulation and Verification – 
class based SystemVerilog, OVM library, sequences, sequencers, 
drivers. 
 
General Terms  
Verification, Simulation, Layered Sequences.  
 
Keywords  
Sequences, sequencers, layering, register based verification, MVC, 
VIP, Verification IP. 

1. INTRODUCTION  
Complex verification environments and modern communication 
protocols often have many parallel operations active at a time, and 
are difficult to model with a linear series of programming statements. 
 
Sequences can be used to parallelize behavior, but bring along 
certain complexities that are difficult to manage for new users. This 
paper will discuss ways to hide the gory details of layering 
sequences, and the “hardness” about sequences, while enabling the 
productivity and infinite flexibility afforded by them. 
 
Many kinds of systems fall into the area where sequences and 
layering are appropriate, including a system where the DUT 
examines multiple layers of a protocol or any system where higher 
level “instructions” need to be broken down into their lower level 
constituents. 
 
Using sequences in these environments can make life easier, since 
sequences and sequencers are natively parallel and have arbitration 
and other “communicating process” hooks already built in.  
 
A user of such a verification environment typically uses an OVM 
verification component (OVC) which has a library of sequences and 
a sequencer. This OVC is usually combined with other OVC types to 
build up a system. Each OVC is operating independently, and can be 
coordinated with a higher “layer”. This is the simplest aspect of 
layering discussed in this paper.  

Layering stimulus is a common practice to achieve reuse and to raise 
abstraction levels. Protocols can be layered, functional 
decomposition can be expressed through layering – any higher to 
lower level abstraction is a possible layering target.  
 
Layering allows a high level programming abstraction to be used for 
stimulus writing. Then the higher level programming abstraction is 
broken down into a lower level programming abstraction. The lower 
level programming abstraction is what comes with the OVC building 
block – it is the verification library that is built-in to the OVC. It can 
be used stand-alone, but most verification teams will prefer to use a 
higher level abstraction. This is the motivation for a layered stimulus 
approach – breaking the desired higher level abstraction into the 
available lower level abstraction. 
 
For example, consider a register layer running on a low level bus 
transport layer. The high level register write() is implemented in 
terms of lower level bus transactions specific to a particular bus 
protocol, such as OCP bus transactions. This is a more complex 
aspect of layering. For a register layering situation, the higher level 
uses READS and WRITES. The lower level is specific to a bus 
protocol. For example a lower level AHB implementation knows 
how to wiggle the pins on an AHB bus, while a lower level OCP 
implementation knows how to wiggle the pins on an OCP bus. Each 
of these lower levels is very different, but the higher level reads and 
writes can run on either one, with the proper translation in place. 
 
Layering will be discussed in this paper as applicable to packet or 
protocol layering, OVC layered stimulus and register stimulus 
generation over an OVC layer. This layering will be achieved with 
“virtual connections” or with layered abstractions or both. 
 
Layered verification and layered software is not a new concept. A 
simple function call is a layer. The lower level function implements 
some basic behavior. The upper level function calls the lower level 
function to perform activities. For example, a lower level function 
could implement the multiply command using shifts and adds. The 
upper level function then could implement a higher level function 
like an (x, y) coordinate system. The (x, y) function could then be 
used at an ever higher level in an image processing function. Using 
layers in software design is now taken for granted to reduce 
complexity and promote reuse. 
 
Function calls in software are layers. In the OVM [1] function calls 
can also be layers. Additionally, OVM sequences [2] can also be 
layered. Sequences are really just function calls [3] on steroids. A 
sequence is a special kind of function call – it is a “functor”. The 
implementation of the function is generally in the “body()” function 
of the sequence, but there are also other useful hooks like the 
pre_body(), pre_do(), post_do() and post_body() to name a few. 
Using the flexible sequence API allows for creating powerful and 



interesting tests and layers of tests which reduce complexity and 
promote reuse. 

2. OVERVIEW AND BACKGROUND 
Sequences work together with sequencers and drivers to manage 
tests on an interface. Details of this system is beyond the scope of 
this paper, but a brief summary of certain functionality and API will 
be discussed here [4] [5], as related to the layering concept – Figure 
1. 

 
Figure 1 - Sequencer / Driver interface 

3. LIONS AND TIGERS AND BEARS! OH, 
MY! 
The collection of APIs associated with a sequence class is used to 
implement a function call, and to provide other interfaces for 
synchronization and arbitration of other sequences. A basic sequence 
exists to generate a "transaction". The transaction may be 
randomized, may be the "next" transaction in a sequence or may be 
related to some state of the system. 
 
Another role of the sequence is to manage other sequences instead of 
generating a transaction. In the OVM, such a "virtual sequence" is 
really just a collection of SystemVerilog code that starts other 
sequences. It's a sequence coordinator. The sequence is really just a 
function call which does "something" that is important for stimulus 
generation or monitoring. 
 
A driver in the OVM is SystemVerilog code which manages an 
interface; perhaps a bus or some other communication to another 
block. Usually a driver is managing a bus and knows how to wiggle 
the pins of that bus, causing bus traffic. It may also know how to 
monitor the bus and create transactions from bus activity. 
 
A driver normally "gets" a transaction from elsewhere and then 
causes that transaction to be realized as pin wiggles. Bus traffic 
whether AHB or AXI or OCP, is being driven by the driver in 
response to the transaction. 
 
A driver needs a transaction and a sequence generates a transaction. 
 
We could just hook up a sequence to a driver. But most interesting 
test scenarios aren't just one sequence. There may be many 
prioritized sequences which compete for the opportunity to send a 
transaction. For example, two sequences which are generating bus 
traffic transactions are running in parallel to simulate two different 
transfers interleaved on the same bus. 
 
A sequencer is used to arbitrate these competing prioritized 
sequences. A sequencer manages "who goes next" – among other 

things. The sequencer manages the relationship between sequence 
and driver, and is usually a vanilla first-in-first-out arbitrator. It can 
be programmed for many different behaviors, all beyond the scope of 
this paper [4]. 
 
A monitor can be created separately from the driver which interacts 
with the bus. It interacts with the same interface as the driver, but is 
passive. It samples pin wiggles, or other low level communication 
(just as the driver drives that low level communication). The monitor 
recognizes a series of pin wiggles as a transaction (for example a 
READ), and then creates a transaction and publishes it. 

3.1 Sequencer API 
The sequencer has complex behavior, but can be interacted with in 
simple ways. For this paper we’re only concerned with the driver 
connection and interface, and the way a sequence provides a 
transaction to a driver. We won’t consider any of the more complex 
sequencer behavior. 
 
The sequence creates an item and starts it. Starting an item causes the 
sequencer to interact with the driver and perform arbitration. A 
sequencer has a REQ/RSP export, and expects to be connected to a 
corresponding REQ/RSP port. Usually that corresponding port is on 
the driver. The sequencer expects to be connected to a “driver 
interface”. 
 
Sequence: 
  create_item() 
  start_item() 
    sqr.wait_for_grant() 
    seq.pre_do(); 
  finish_item() 
    seq.mid_do(); 
    sqr.send_request(); 
    sqr.wait_for_item_done(); 
    seq.post_do(); 
 
Driver: 
  seq_item_port.get() 
    sqr.get() 
      m_req_fifo.peek(); 
      item_done();  

3.2 Driver API 
The driver has a simple behavior. It exists to just be told what to do, 
and then do it. The ‘what to do’ is a transaction. The transaction 
arrives from a sequencer which has arbitrated possibly competing 
sequences.  Once a driver receives a transaction it may cause activity 
on the interface it is managing. Each driver implementation is 
protocol specific, and can vary widely, but the basics are shared 
among all drivers. The driver process is a loop which tests the 
sequencer to see if a transaction is available. For example, a driver 
loop can loop forever, doing a get() to retrieve a transaction from the 
sequencer. Aside from get(), there are other ways a driver can 
interact with a sequencer, but each results in a transaction being 
produced and acted upon by the driver. 
 
When the driver has executed the transaction it supplies a response 
back to the sequencer. Those responses can be immediate or take 
time, depending on the protocol. 
 

DRIVER SEQUENCER 

SEQUENCE 

seq_item_export seq_item_port

rsp_portrsp_export 

SEQUENCE SEQUENCE 



Simple driver design – get and transaction and execute it. 
 
  task run(); 
    ovc1_sequence_item t; 
    ovc1_sequence_item rsp; 
    forever begin 
      seq_item_port.get(t); 
      ovm_report_info("driver", t.convert2string()); 
 
      // Send to BUS / Wiggle pins 
      ... 
      // Construct response 
      rsp = new(); 
      rsp.n = t.n; 
      rsp.set_id_info(t); 
      rsp_port.write(rsp); 
    end 
  endtask 

4. VIRTUAL SEQUENCES AND 
SEQUENCERS 
Virtual sequences are just sequences whose job is to start other 
sequences. Virtual sequences do not produce a transaction, but rather 
cause other sequences to run, which can cause other sequences to 
run, until finally there are transactions (or some other work) created. 
The job of a sequence is to produce a transaction, or cause some 
work. A virtual sequence is a convenient description of sequences 
that don’t directly produce transactions – but instead cause other 
sequences to produce transactions. 
 
In Figure 2 a virtual sequence ‘seqX’ starts three sub-sequences in 
parallel (seqA, seqB and seqC). These three parallel sequences 
control the interface 1, 2 and 3, testing some interaction of parallel 
traffic. 
 
 

 
Figure 2 - Virtual sequence - seqX 

 
In the same way that virtual sequences are sequences that don’t 
produce transactions, virtual sequencers are sequencers that are not 
connected to a real driver. Instead they interact with other “sub-
sequencers”. Figure 2 could describe a virtual sequencer – the 
sequencer that seqX is running on. 
 

5. LAYERED SEQUENCES 
A sequence can be written to encapsulate some behavior and produce 
a transaction. It is a function call. Just as function calls can call other 
function calls, sequences can call other sequences – as seen in the 
virtual sequence example above. 
 
Aside from a sequence calling another sequence, another kind of 
layering is important. This kind of layering is the layering that occurs 
when a sequence generates a transaction, and that transaction causes 
a different sequence to generate sub-transactions. 
 
For example, a high level transaction might be generated to move 
1024 bytes of data from A to B. This transaction would get 
“interpreted” or “translated” into a lower level transaction that was 
supported on the particular interface. The 1024 byte transfer from A 
to B might get mapped into eight 128 byte transfers. In Figure 3 an 
upper level seqX might generate a 1024 byte transfer, which gets 
received at the lower level and translated into the eight 128 byte 
transfers. 

 
Figure 3 - Layered sequences 

 
Layered sequences are used to reuse lower level sequences. Layered 
sequences are built supporting higher level constructs like packet 
protocols and register stimulus over an existing OVC. 

5.1 Packets 
A packet described here is a collection of bytes, possibly formatted 
to describe a network protocol or other structured data. A packet can 
also just be a collection of bytes. Building layered packets consists of 
structuring or un-structuring the bytes to represent a different 
abstraction level. 
 

 
Figure 4 - One packet to one packet with detail added 

 
Figure 4 shows a higher level collection of bytes which are converted 
to a lower level by adding a header and a checksum.  
 
Figure 5 shows a higher level collection of bytes which is broken 
into 4 equally sized sub-blocks. Each sub-block has a header and 
checksum added.  
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Figure 5 - One packet split into 4 sub-packets 

 
Figure 6 shows a higher level abstraction which gets its headers and 
checksums striped, and then each payload block – 1, 2, 3, 4 – is 
concatenated into one large transaction. 

 
Figure 6 - Many packets consolidated to one 

5.2 Instructions 
Instructions can be implemented using layers – an instruction is a 
symbolic command at the higher level, for example MOV32 
ADDR1, ADDR2, which is converted into a bus transaction that 
moves 32 bits from ADDR2 to ADDR1. [6] 
 

 
Figure 7 - Machine instructions to microcode 

 
This example of layering demonstrates higher level instructions like 
‘ADD x’ and ‘STORE x’ being broken down into lower level 
instructions like ‘IR[add] -> MAR’, ‘A + MDR -> A’.  

Using this high level layer, a software program could be written as a 
test program. When such a test program executes, it results in 
“commands” running – like ‘Store 20’ and ‘Add 20’. Those 
commands execute at the higher level, and get translated into lower 
level commands by the layering system and the actual hardware 
machine underneath. 

5.3 Registers 
Registers are an example of where layered sequences can be applied 
easily. A register transaction is defined as a READ or a WRITE with 
a register name specified and a data field provided for write, or a data 
returned for a read. 

 
Figure 8 - Register layering 

 
Registers layering is one of the easiest to achieve, since the layering 
translation is easy. In order to do the translation from higher to lower 
level, the register name is looked up in an address map. Given the 
register name, the address map returns the register address. In the 
example above, “regA” gets translated to the address ‘1002’. 

6. USING THE LAYERING COMPONENT 
As seen in Figure 9 to layer sequences requires and implies certain 
recommendations, such as connection by TLM ports, phased build(), 
connect(), etc. These details are quite tedious and error prone. The 
layering component allows for easier integration and use. 

 
Figure 9 - Sequence translation 

 
The layering component is a component that provides for hooks into 
the OVM infrastructure to provide construction, connection, and run 
phasing. It allows for creation of the required ports, the creation of 
the translation sequence itself, and the connection of the translation 
interface (driver interface) to the upper level sequencer. 

6.1 Details 
The layering component implements the connect(), build() and run() 
phases to achieve the layering. See the Appendix 1 for a sample 
implementation. 
 
In build(), the layering component builds the required upper 
sequencer automatically. In the OVM, components must be built 
before the run phase, most typically in the build phase. 
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In connect(), the layering component builds the lower level ports 
required to connect to the upper layering sequencer. The ports are 
constructed in the connect phase since we can guarantee here that the 
build phase has passed, and the lower sequencer has been created. 
These lower level or downstream ports are used as a “way-point” for 
connecting the sequencer and driver. The lower level ports – the so-
called “driver interface” are constructed with a parent pointer that is 
not the traditional “this” pointer. Instead, these ports are constructed 
with a parent pointer of the downstream sequencer. Essentially, the 
ports are built into the downstream sequencer, although they do not 
exist syntactically in any class definition. They are built dynamically. 
Once constructed, these ports are connected to the upper sequencer. 
Now the upper sequencer thinks it is connected to a driver style 
interface – which is really the two ports created here which are 
“hosted” or “parented” in the downstream sequencer. 
 
In run(), the layering component performs its final chore. Once this 
chore is complete the layering component has no other functionality, 
and does nothing else. This final functionality is to start the upper 
and lower level sequences required for this particular layering. For 
example, in register layering, the upper level sequence started is a 
regular register sequence, and the lower level sequence is a special 
translation sequence which knows how to convert between a register 
transaction and a downstream transaction. See Appendix 2 for a 
sample register transaction translator sequence. 
 
The translator sequence is running on the lower level sequencer. It 
“knows” how to create lower level transactions. In the example the 
lower level sequence has helper functions, read() and write() which 
work with the sequence API to cause lower level transactions to be 
created. The job of the translator sequence is to call these lower level 
helper functions with the correct arguments. Before the helper 
functions can be called the translator sequence must “get” a 
transaction – just like a driver would. This is the driver interface that 
has been built. The upper level sequencer thinks it is sending a 
transaction to an upper level driver. Really the transaction is being 
sent to a correctly typed port which is operated on like a driver 
would operate on it. The translator sequence uses the driver API – 
calling port.get() and rsp_port.write(), etc. As far as the upper level 
sequencer is concerned, the translator sequence is a driver. 

6.2 Avoiding the Details 
Building the connections, constructing the components and starting 
the sequences is a tedious task. These details can be easily avoided 
by using the layering component. The layering component is 
programmed using a simple 4-tuple. One of the hidden benefits of 
this approach is that no extended sequencer is required. Layering can 
be added to any existing sequencer/driver combination by 
instantiating an appropriate layering component, and registering the 
sequences to be run. Adding the layering component required less 
then 10 additional lines of code changed in an existing testbench. 
 
A layering component needs to be constructed: 
 
  register_layer reg_layer = new("reg_layer", null); 
 

Once constructed, the specific layering must be registered: 
 
  reg_layer.add_register_db( 
    "simple_e1.sequencer", // An existing sequencer. 
    "translation_seq",     // The built-in  
                           //  translation sequence. 
      
    "layered_reg_sqr",     // A sequencer type  
                           //  to create. 
    "layered_reg_seq"      // The register sequence 
                           //  to start. 
    ); 
 
The behavior of the layering component is guided by a data structure 
containing the names of the sequencers and sequences. An alternate 
implementation can be used which uses types instead of strings for 
better error checking. 
 
The data structure contains the following fields, ‘lower_sequencer’ – 
the name of the lower level sequencer, ‘translation_seq’ – the name 
of the sequence which will run on the lower level sequencer, 
‘upper_sequencer’ – the name of the upper level sequencer that will 
be instantiated and started automatically, and ‘upper_sequence’ – the 
name of the sequence that will be started on the upper level 
sequencer (upper_sequencer). 
 
  typedef struct { 
    string lower_sequencer; 
    string translation_seq;  
    string upper_sequencer;    
    string upper_sequence;     
    ... 
  } layer_db_t; 

7. CONCLUSION 
The layering component is a relatively unobtrusive way to manage 
the complexities of sequences, sequencers and drivers when the goal 
of the layering is to add a new set of stimulus or monitoring to an 
already existing infrastructure. For example, an existing bus level 
infrastructure might benefit from register based coverage using a 
register layering component with the OVM Register Package. 
Another example might be register based tests layered on top of the 
existing bus tests. 
 
The layering component is not limited to register testing and 
monitoring. It can be used in any situation where an upper level 
transaction must be converted back and forth to a lower level 
transaction. 
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APPENDIX 1 – REGISTER LAYERING LIBRARY EXAMPLE 
 
package register_layer_pkg; 
  import ovm_pkg::*; 
  `include "ovm_macros.svh" 
 
  import ovm_register_pkg::*; 
 
  class layered_register_sequencer  
    extends ovm_register_sequencer#( 
      ovm_register_transaction,  
      ovm_register_transaction); 
 
    `ovm_sequencer_utils( 
       layered_register_sequencer) 
 
    function new(string name,  
        ovm_component p); 
      super.new(name, p); 
      `ovm_update_sequence_lib_and_item( 
        ovm_register_transaction) 
      count = 0; // No automatic start 
    endfunction 
  endclass : layered_register_sequencer 
 
 
  class layered_register_sequence 
    extends register_sequence_all_registers  
      #(ovm_register_transaction,  
         ovm_register_transaction); 
 
    `ovm_sequence_utils( 
      layered_register_sequence,  
      layered_register_sequencer) 
 
    function new(string name = 
         "layered_register_sequence"); 
      super.new(name); 
    endfunction 
  endclass : layered_register_sequence 
 
 
  typedef struct { 
    string lower_sqr; 
    string translation_seq; 
               // Runs on the lower_sqr 
     
    string upper_sqr; 
    string upper_seq;       
               // Runs on the upper_sqr 
 
    ovm_register_sequencer 
      #(ovm_register_transaction, 
         ovm_register_transaction) 
      register_sqr; 
    ovm_sequencer_base lower_sqr; 
 
  } layer_db_t; 
   

  class register_layer  
      extends ovm_component; 
    // Database of the layering 
    layer_db_t layer_db[string]; 
 
    function new(string name,  
        ovm_component p); 
      super.new(name, p); 
    endfunction 
   
    local function ovm_sequencer_base  
        m_build_sequencer( 
            string sequencer_name); 
 
      ovm_sequencer_base sqr; 
      string sequencer_instance_name; 
      static int count = 0; 
 
      // Create an instance name. 
      $sformat(sequencer_instance_name,  
        "%s%0d", sequencer_name, count++); 
 
      $cast(sqr, 
        factory.create_component_by_name( 
          sequencer_name, get_full_name(),  
          sequencer_instance_name, this)); 
      return sqr; 
    endfunction 
 
    local function ovm_sequencer_base  
       m_find_sequencer( 
          string sequencer_name); 
 
       ovm_sequencer_base sqr; 
       $cast(sqr, ovm_top.find( 
          sequencer_name)); 
       return sqr; 
    endfunction 
 
    function void build(); 
      super.build(); 
      // Build all the register sequencers. 
      foreach (layer_db[s]) 
        $cast(layer_db[s].register_sqr, 
          m_build_sequencer( 
            layer_db[s].upper_sqr)); 
    endfunction 
 
    local function void m_connect( 
        ovm_register_sequencer 
            #(ovm_register_transaction, 
                ovm_register_transaction) 
             register_sqr, 
        ovm_sequencer_base lower_sqr); 
 
      ovm_seq_item_pull_port  
        #(ovm_register_transaction, 
           ovm_register_transaction)  
          lower_sqr_register_seq_item_port; 
       
     ovm_analysis_port  
        #(ovm_register_transaction)  
          lower_sqr_register_rsp_port; 
 
      // Create some appropriate 'upstream' 
      // ports, and slip them into 
      // lower_sqr. Bus_sqr is none the 
      // wiser. Notice: the parent pointer 
      // is lower_sqr. 
      lower_sqr_register_seq_item_port 
        = new("register_seq_item_port",  
             lower_sqr);  
      lower_sqr_register_rsp_port  
        = new("register_rsp_port", 
             lower_sqr); 
 
      // Pay attenion here! We're calling 
      // connect on the ports we just 
      // slipped into the 'lower_sqr'. And 
      // we're connecting to the upstream 
      // register sequencer that we 
      // magically created behind the 
      // scenes in the build() phase above. 
  lower_sqr_register_seq_item_port.connect( 
        register_sqr.seq_item_export); 
      lower_sqr_register_rsp_port.connect( 
        register_sqr.rsp_export); 
    endfunction 

    function void connect(); 
      super.connect(); 
      // Find the bus sequencers as named. 
      // We can find them in connect(), 
      // since we are guaranteed that they 
      // exist. 
      foreach (layer_db[s]) 
        $cast(layer_db[s].lower_sqr, 
          m_find_sequencer( 
            layer_db[s].lower_sqr)); 
 
      // Register all the ports, and do  
      // the connects 
      foreach (layer_db[s]) 
        m_connect( 
          layer_db[s].register_sqr,  
          layer_db[s].lower_sqr); 
    endfunction 
 
    // Called by the user to "setup" a 
    // layering. 
    function void add_layer_db( 
     string lower_sqr,  
               translation_seq, 
               register_sequencer, 
               upper_seq 
    ); 
                 
      layer_db[lower_sqr].lower_sqr         
         = lower_sqr; 
      layer_db[lower_sqr].translation_seq  
        = translation_seq; 
      layer_db[lower_sqr].upper_sqr    
        = register_sequencer; 
      layer_db[lower_sqr].upper_seq     
        = upper_seq; 
    endfunction 
 
    local task start_sequence( 
        string sequence_name,  
        ovm_sequencer_base sqr); 
      ovm_sequence_base  seq; 
 
      // Get a sequence from the factory. 
      $cast(seq,  
        factory.create_object_by_name( 
          sequence_name, get_full_name(),  
          sequence_name)); 
 
      fork 
        ovm_sequencer_base m_sqr = sqr; 
        ovm_sequence_base  m_seq = seq; 
        m_seq.start(m_sqr); 
      join_none 
    endtask 
 
    task run(); 
      // Start all the bus  
      // translation sequences. 
      // (the downstream side). 
      foreach (layer_db[s]) 
          start_sequence(  
            layer_db[s].translation_seq,  
            layer_db[s].lower_sqr); 
 
      // Start all the register sequences. 
      // (the upstream side). 
      foreach (layer_db[s]) 
          start_sequence(  
            layer_db[s].upper_seq,  
            layer_db[s].register_sqr); 
    endtask 
  endclass : register_layer 
endpackage 
 



APPENDIX 2 – REGISTER LAYERING TRANSLATOR SEQUENCE EXAMPLE 
 
virtual class translation_sequence_base 
    extends simple_sequence_base; 
    `ovm_sequence_utils( 
      translation_sequence_base,  
      simple_sequencer)     
 
  ovm_register_map rm; 
 
  pure virtual task write( 
    bit[31:0]addr, bit[31:0]data); 
  pure virtual task read ( 
    bit[31:0]addr, output bit[31:0]data); 
 
  function new(string name); 
      super.new(name); 
    endfunction 
 
  ovm_seq_item_pull_port  
    #(ovm_register_transaction, 
      ovm_register_transaction)  
    register_seq_item_port; 
 
  ovm_analysis_port  
    #(ovm_register_transaction)  
    register_rsp_port; 
 
 
 
 
 
 
 
 
 

  task body(); 
    ovm_object o; 
    if (m_sequencer.get_config_object( 
      "register_map", o)) 
      $cast(rm, o); 
    else  
      ovm_report_fatal( 
        "translator_sequence",  
        "Cannot find 'register_map'"); 
     
    register_layer::lookup_ports( 
       m_sequencer,  
       register_seq_item_port,  
       register_rsp_port); 
   
    forever begin 
      BV rd_data, addr; 
      bit valid_address; 
      ovm_register_transaction 
        register_req, register_rsp; 
 
      // Get a request from upstream.  
      // This is a register transaction. 
      register_seq_item_port.get( 
        register_req); 
 
      ovm_report_info("translator",  
         $psprintf("reg transaction '%s'",  
           register_req.convert2string())); 
 
      addr = 
        rm.lookup_register_address_by_name( 
           register_req.name, 
           valid_address); 

 
      // Create the register response 
      register_rsp = new(); 
 
      if (!valid_address) begin     
        ovm_report_error( 
          "translator_sequence",  
          $psprintf( 
          "Register '%s' is not mapped",  
            register_req.name)); 
      end 
      else begin 
        if (register_req.op ==  
             ovm_register_pkg::WRITE) 
          write(addr, register_req.data); 
        else 
          read(addr, rd_data); 
   
        register_rsp.copy_req( 
          register_req);            
        register_rsp.set_id_info( 
          register_req); 
   
        if (register_rsp.op == 
             ovm_register_pkg::READ) 
          register_rsp.data = rd_data; 
       end 
           
     // Send a response back upstream. 
     register_rsp_port.write( 
       register_rsp); 
   end 
  endtask 
endclass 

 
 

 
 

 


