Yikest Why isMy SystemVerilog Testbench So Slooooow?

By Frank Kampf, IBM
Justin Sprague, Cadence Design Systems, Inc.
Adam Sherer, Cadence Design Systems, Inc.

Abstract

It turns out that SystemVerilog != Verilog. OK, wad figured that out a few years ago as we staided
build verification environments using IEEE 1800 t8ysVerilog. While it did add design features like
new ways to interface code, it also had verificatfeatures like classes, dynamic data types, and
randomization that have no analog (pardon the puthe IEEE 1364 Verilog language. But the syntax
was a reasonable extension, many more designs cheshianced verification, and we had the Open
Verification Methodology (OVM) followed by the stdardized Accellera Systems Initiative Universal
Verification Methodology (UVM) so thousands of emggrs got trained on object-oriented programming.
Architectures were created, templates were followaa the verification IP components were built.
Then they were integrated and the simulation speslda nose dive. Yikes, why did that happen?

Keywords

SystemVerilog, OVM, UVM, object-oriented, perfornean scalability
1. SystemVerilog != Verilog

While SystemVerilog and Verilog share much of thme syntax they can’t be coded using the same rule
sets, especially the testbench aspect of SystetogeriMost engineers working with SystemVerilog
today were trained on Verilog and learned to camtetfe static, hardware environments targeted ay th
language. SystemVerilog testbenches, such as toasa to the UVM standard, are dynamic in terms of
both code and data. Furthermore, the testbendhes tb manipulate large amounts of data calculated
and driven into the design and then process anghamnthe data retrieved from it.

All of this processing is done with dynamic dataypclasses, flow-control, and other language featu
that have no Verilog equivalent. The result cam bestbench that has both more code than the dasdn
accesses more memory. These large SystemVerilogoaments present verification engineers and
former hardware engineers with numerous innocuarding opportunities that can result in either
reasonable or very poor performance.

2. Performance Programming for Hardwar e Engineers

For any engineer transitioning to SystemVerilogingdthe most important question to ask is “wilkih
fast when it scales?” This is the guiding prineighat will lead to efficient initial coding and toe rapid
debug of performance issues identified during perémce profiling.

2.1 Loop Invariants

Loop invariants are values that don't change withimloop but are executed every time throughdbp.|
The potential gain from removing loop invariantpeeds on the complexity of the invariant calculatio

the body of the loop, and the number of cycleshalbop. For example, if the loop has two reldyive
simple calculations inside, one of which is invatjebut the loop count is low the gain from movihg
invariant outside of the loop will be minimal. Hewer, if the loop executes millions of times, thang
can become material.

A less obvious example of an invariant is the lead value. In the two code examples below, thergkc
for loop executes much more quickly because thal fimlue for the loop is pre-calculated into the
variablel_end . Certainly, in this small example the performadiféerence is insignificant, but consider
the scaling. If this loop calculated the secueitgryption for millions of packets in a monitordompare
that to the data coming through a packet procesberperformance gain could be very large. This
example also applies when you use a built in amrathod like.size() on a dynamic array. If the loop
check ismyqueue.size() then the simulator has to dereferemogqueue and calculate the size
every time through the loop. Setting a local Malgao the size of the queue, assuming that the itself
doesn’t change the size of the queue, will saveilsition time provided that the queue is large antlife
loop is long.

inti, a[256], b[256];

int length=4, count=6, |_end;

for (i=0; i < length*count; i++)
ali] = bfi];

|_end = length * count;
for (i=0; i < |_end; i++)
a[i] = b[i]

A more subtle form of loop invariant is the derefezing mentioned in the previous paragraph. In the
hardware world, a hierarchical reference can becpleulated because the references are staticnat ru
time. In a SystemVerilog testbench, the referencesally traverse both class instance hierarchigs an
dynamic types all of which can change during tmeusation run. Therefore, the simulator has to walk
through all of the references to get to the ddtathe code below, a single data value in one d&ss
accessed every time through the loop and assignad tirray in another class. The second loop shows
the same functionality written more efficiently.

inti, size, key;
Dynamic_array_handle dec_arr;
Dynamic_array_handle enc_atrr;
for (i=0; i < comms.proto.pkt.xmt.enc.size(); i++)
commes.proto.pkt.rcv.dec[i] = decrypt(comms.proto .pkt.xmt.enc[i],
commes.proto .pkt.xmt.key);

size = comms.proto.pkt.xmt.enc.size();
key = comms.proto.pkt.xmt.key;
dec_arr = comms.proto.pkt.rcv.dec;
enc_arr = comms.proto.pkt.xmt.enc;
for (i=0; i < size; i++);

dec_arr[i] = decrypt(enc_arr[i], key);

2.2 Short-Circuits For Speed

A common compiler optimization is to execute a bfamvhen the minimum number of terms enables
short-circuiting the branching condition. For exden the firstf statement below will cause the branch
as soon as the first term is true and the secaantthras soon as it is false.

if (term1 || term2 || term3)
if (terml && term2 && term3)

From a performance perspective, there is littleediince in these statements unless the terms taralgc
complex method calls or the statements are insidem If the terms are individually complex, thiwe
term that is most likely to cause the branchingxecute should be the first in the list. For exampie
reader can easily see the performance error ifotteaving code. It is functionally correct, but bviun
more slowly, especially inside a loop.

if (rarely_happens() || sometimes_happens() || near ly_everytime())
code_to_execute

Turning the concept of invariant around is guardingomplex calculation that is not often used.hia t
code example below, the randomize() method is dadlgtside of the condition in which it was used
causing many expensive, but unnecessary calls. tatehis example assumes thet is not a rand
variable.

size = millions_of pkts.size();
for (i= 0; i < size; i++) begin
data = millions_of_pckts[i].randomize();
live = millions_of_pktspli].live
if (live == TRUE)
inject(data);
end

2.3 Respect the Macro

Even as we typed the words, we could hear the shontacros are pure evil! That is simply not tagec
For sure, excessive use can create problems inguttiallenging debug and code expansion (consuming
memory) but judicial use can dramatically speedpieg calculations. In the example below, the
reverse() function was called on all 1,000,000 data poirEach call toreverse() required the
creation of a stack frame that could affect cadte(the simulation executes fastest when loop couk
data working set is all within the cache memory) dramatically slow simulation. The macro versias,
innocent as it looks in capital letters, runs mowre quickly. However, when the drive to use madéoos
performance causes the coder to directly accessimatasses rather than use method APIs, reusbecan
diminished trading a performance improvement itnaukation run for overall project-level productiyit
Other object-oriented languages have the concefttedfline directive that instructs the compiler to
insert the code directly inline instead of in adtion call; unfortunately, this construct is notdable in
SystemVerilog yet so users are at the mercy of densgland macros).

function int reverse(int a) begin
inti, b=0, mask = 1;

for (i=0;i<32;i++)
b |= (a & (mask>>i)) << (32-i);
begin end
endfunction

left_side[x] = right_side(big_endian[x]);

“define REVERSE (b, a) begin \
inti, mask = 1;\
for (i=0;i<32;i++)\
b |= (a & (mask>>i)) << (32-i); \
begin end \
end

"REVERSE(left_side[x], right_side[x]);

2.4 Respect the Static Classes

Static allocation is the object oriented extengimthe general programming concept of macros. Wher
macros replace the hierarchical execution flowrpiining code, the static classes replace the dymam
creation of classes. In situations where the saeteof classes isewed and de-allocated (garbage
collected) repeatedly, the simulator repeatedlflesy¢hrough memory management. |If the classes are
statically defined, the overall memory footprint thie simulation remains consistent, but the spded o
execution will increase.

As with macros, static allocation can be too muich good thing. If there is a need to use andatisf
classes quickly, it may be better to implement bjeat pool of “used” classes that can be parkednwhe
they aren’t being used. The pool would then be kéadirst for available classes that could be reset
before asking for the allocation of a new classtsaving a de-allocation/reallocation cycle.

It is important to note that, if a pooling stratdgybeing used, the constructor of the object ish&ing
called for each

3. Light and Quick

Memory is probably the biggest source of mysterislasv-downs. In hardware, the biggest memory
issue is modeling physical memory and its footpigttypically quite obvious. However, in the
SystemVerilog testbench it can be hidden. Givendmall space in this paper, the examples in this
section are descriptive scenarios rather blockodé.

3.1 Performance Depends on Knowledge of Complete Inheritance Hierarchy

Undocumented classes can be a performance nightnvdren you derive a subclass you inherit all of
the data and methods in the class hierarchy. Bat g in there? When you create instances of gewr
subclass

Consider this. Your project team has a third gati@n facial algorithm that distributes the compiota
from four pipelined processors to an array of 1parallel processors. The memory bus arbitratigiclo
has been modified to be hierarchical; your taskoiwverify the latency and functionality of the new
arbiter. Upon reviewing the verification IP for thmocessor's memory interface from the previous
generation, you observe that it has an API fooAthe memory access modes. You then derive a new
class for the third generation and add an arrdyotd the transaction history to measure the late¥oy

then create an instance of the verification IP€fegry processor, set the history array size torzRthe
simulation memory explodes. What happened?

What you didn’t know is that the base class hadraay to support the verification of a DMA modettha
was no longer used. That array used your histaiggs class object, but interpreted that integer as
kilobytes of DMA rather than single transactions.

While contrived, this description points to pocasd development and management. Data objectsdshoul
only be accessible through a method API to avomhtinipated access. Interfaces should also betosed
clearly define APIs so that redundant structuresrent added in derived classes. By carefully shulyi
the base classes and planning the derived clgasddems associated with hidden data can be avoided

3.2 Lost Handles M ake Performance Fall

SystemVerilog classes are allocated on demand raed fthrough garbage collection. The allocation
process occurs when a thew() method for a class is called but the garbage aadie occurs under two
conditions: either when the number of referencethéoclass handle falls to zero or a simulationireng
tracing algorithm detects object graphs that atersferencing but lack direct user references.thé
lifecycle of the classes, and other dynamic objestsot managed the heap memory continues to grow.

Consider an intelligent packet processing protothk verification of that protocol may include bah
check that the individual packet was transmittedlemily and that the performance of the outputrfate
adjusts to the type of traffic that passes throitigRor this example, assume that a queue is uséekt

the input, but rather than popping each packet issprocessed the next packet is accessed by gnavin
index pointer. In this case, the protocol verificatIP will execute properly, but the heap memoilf w
grow quickly because the input queue will contitoigrow with references to packet class handles tha
are never garbage collected. Dynamic arrays andciagive arrays are also affected this way with
associative arrays being the most typical caseexpectednemory leakage.

While this bug may seem obvious, lost handles @ims&idious. If an array counter range is imprbper
set, handles may not be cleared properly. Itégsmenended that additional checks be added to ttie co
to detect overflows. Global arrays are especiabidious because multiple threads may operatéem t
with unexpected side effects. Engineers do gerygoidin for the creation of these SystemVerilog otgje
but the testbench development must also plan &r tlestruction.

3.31t Can be Better for Data and Threadsto Live Forever

A corollary to section 3.2 is memory thrashing.efiénis an overhead to creating, destroying, anilaggr
collecting data objects. Aside from the requesthée operating system for each, efficient execoutioes
depend on how easily the OS can find the appragyiaized memory block. Garbage collection caip hel

maintain larger memory blocks, but the more thatdhjects are created and destroyed, the more work
for these overhead routines. An alternative ik mdnjects in a holding (recycling) data structuather
than destroying them. In simulations where millioof packets are created and destroyed while the
working set remains in the low thousands, this ckiey data structure provides significant perforcen
improvement. Of course, the actual improvemeneddp on the number of objects in the working set,
the number that would have been created/destrayebithe intrinsic size of each object.

One more point on this subject is that the discusbiere also applies to parallel threads createlen
testbench environment. Multi-threading in thelieath is an elegant means to tightly bind intedaoe
the data and methods that act on them. Like dgtcts, these threads are created and destroyedydur
the simulation run which does involve performaneerbead. In very large cases, an additional interfa
to manage threads may be needed to manage perfienaandescribed for data objects earlier in this
section.

3.4 Beware of Unforeseen Library Overhead

Libraries like the Accellera Systems Initiative Maisal Verification Methodology (UVM), provide
functionality to create complex verification enviraents quickly. From a performance perspective, on
does need to keep in mind the implications of theled approach recommended by the library. For
example, it may be simply obvious to have a thratdched to the monitor/driver that is triggered on
every clock to transfer data and the upper layeygédred on higher-abstraction events. For datasters
that are essentially complete on each clock trayifis is an efficient and elegant model.

The challenge is in the scaling. For example, & tlata packet is large but only streams through the
interface in small pieces, the threads associatddtie interface have to operate on every clodkile

that may not seem like a lot of code, the issubas the simple thread may pull a much more complex
class hierarchy through inheritance. The altereatvo pull the data in burst or DMA modes in mtiod
same way that a memory subsystem has multiple sosethods using triggers other than the clocket th
driver/monitor level.

So when are these novel uses of the standardilmterfaces needed? That is truly an issue fer th
developer and integrator. Simple approaches arebéist to start with because they are the easiest t
maintain. However, teams with an eye toward perforce will continuously benchmark their
environments looking for bottlenecks associateth witaling and then seek more efficient algorithms.

3.5 Randomization

To this point, the guidelines in this paper areegahobject oriented software engineer practicetwh
explains why neither reference has any System\{erdode. [1][2] The randomization engine in
SystemVerilog introduces a divergence from othdtwsoe languages but requires similar handling for
performance.

The subject of building an efficient constraint setroad, but there are simple coding elements tha
connect to the subject of this paper. All of tigcdssion in section 2 applies here.

For example, pre-calculating range values beforssipg them into the constraints will improve
performance as shown in the example below:

Rand byte data[];
Rand byte data_mode;

constraint valid_data {
data.size() ==

foreach(data[i]) {
datali] inside
{[(data_mode-8)*16:
(data_mode+8)*16]};

}
}

Another potential performance impact is combinatotonstraints that appear sequential. These ean b
faster to solve sequentially, but the SystemVerllBiM requires that the “the random values are setec
to give a uniform value distribution over legal wal combinations” which forces the simulator's
functionality and can result is slower than expe&xecution.

rand enum bit { MEMORY, VIDEO} target;
rand bit [63:0] addr;

constraint valid_address {

if(pkt_type == MEMORY) addr
inside {[0:’hffff_ffff]};

if(pkt_type == VIDEO) addr
inside {['h1_0000_0000:

’h1_0000 _ffff]};
}
The above constraint will bias toward packet types of MEMORY because the address range is much
larger.
4. Summary

Why a given SystemVerilog testbench runs slow cam mystery without the information described in
this paper. In addition to these best practides, recommended that engineers working with anghef
dynamic languages in EDA — IEEE 1800 SystemVeril&dtE 1647¢e, and IEEE 1666 SystemC — also
become familiar with their simulation vendor’s gliofy tools.

A profiler, like the one provided with the Cadeneisive Enterprise Simulators, is an invaluabla for
measuring the performance of the simulation enwiremt. Verification engineers with a hardware
background may view a profiler as a tool to dehinwutator performance issues. While that is one use

verification engineers with a software backgroumderstand that the profiler is a tool to be useshev
few days to tune their algorithms. Simple and ables code is by far the best and all algorithmaukho
start that way. However, every system has physioéts and the profiler is the tool you need tdioypze
the performance of your verification environmenkéep it within those limits.

The examples in this paper will be posted in theMJWorld contributions area so that the whole
community can speed their SystemVerilog simulations

5. Acknowledgements
The authors would like to thank the IBM Cores tdanminput to and use of the suggestions in thisspap
6. References

[1] Coding for Performance and Avoiding Garbage Calbecin Android

[2] Performance Programming Applied to C++

[3] IEEE 1800-2009 SystemVerilog LRM

