
February 28 – March 1, 2012

Yikes! Why is my SystemVerilog
Testbench So Slooooow?

Presented by
Justin Sprague

Senior Applications Engineer
Cadence Design Systems

SV Performance and Productivity
Follow SW engineering guidelines

• IEEE 1800 SystemVerilog (SV) enables productivity
– Classes, dynamic data types, randomization, etc. simplify

creation of sophisticated verification environments
– Accellera UVM simplifies creation of test and reuse of

VIP speeding verification

• … but can quickly yield large, accurate, and sloooow envs
– SW engineering != HW engineering because the former

involves dynamic code and data
– SV != Verilog meaning new coding concepts needed for

performance
2 of 14Justin Sprague, Cadence

Meh, It’s Just Software
Attitude leads to accurate, slow SV TB
Hardware (Design)
• Static code structure
• Physical data – registers,

memory space

• Physically limited loops
• Deterministic behavior

• Optimize for device
performance

Software (Testbench)
• Dynamic code structure
• Abstract data – multi-

dimensional arrays,
dynamic types with no
simple physical equivalent

• Unlimited loops
• Environment built around

randomization
• Optimize for simulation

performance

3 of 14Justin Sprague, Cadence

Loop Invariants
• Software looping can range into millions of cycles
• Loop limits are often dynamically set
• Loop invariants are executed on each cycle yielding

identical results
• Solution: Move invariants outside of the loop

int i, a[256], b[256];
int length=4, count=6, l_end;

for (i=0; i < length*count; i++)
a[i] = b[i];

l_end = length * count;
for (i=0; i < l_end; i++)

a[i] = b[i]
Note: Red box is low
performance coding
style.

4 of 14Justin Sprague, Cadence

Short-Circuiting Branches
• Simulators optimize code to branch when minimum

conditions are met
• Optimization follows order of operations so if the left-most

operator is the minimum condition then code runs fast
• Solution: Where possible order the branch terms L2R

if (nearly_everytime() || sometimes_happens() || rarely_happens())
code_to_execute

size = millions_of_pkts.size();
for (i = 0; i < size; i++) begin

data = millions_of_pckts[i].randomize();
live = millions_of_pktsp[i].live
if (live == TRUE)

inject(data);
end

5 of 14Justin Sprague, Cadence

Static Versus Dynamic Classes
• Static allocation is the object oriented extension to the

general programming concept of macros
• When classes are created and destroyed repeatedly in large

loops, memory can fragment and OS can become overhead
• Solution: Statically allocate classes in these situations or

define a pool of classes deep enough to support the
maximum working set

6 of 14Justin Sprague, Cadence

Know the Class Hierarchy
• Undocumented classes can be a performance nightmare

– Methods and data in base classes exist in all derived
classes

• Reimplementation in derived classes carries dead-code or
unused/misused data
– Memory grows faster than expected, performance slows

• Solution: Demand documentation! And supply it . Also,
only access information via standard interfaces

7 of 14Justin Sprague, Cadence

Track Class and Data Handles
• Garbage collection in SV works if properly managed

– Number of references to the class handle falls to zero
– Simulation engine tracing algorithm detects object

graphs that are self-referencing but lack direct user
references

• Poor handle control is the leading cause of memory leaks
– Dynamic and associative arrays are most susceptible
– Bugs can be insidiously hard to trace

• Solution: Add checks to code to detect overflows and be
especially wary of global data as multiple threads operating
on a single data structure can create unexpected side-
effects

8 of 14Justin Sprague, Cadence

Thread Pool Vs. Create/Destroy
• Execution threads, like data and classes, can experience

handle issues and memory fragmentation
• Solution: Follow similar techniques when implementing

very high thread-count environments

9 of 14Justin Sprague, Cadence

forever begin
@(posedge clk);
fork
for(int i = 0; i < 32; i++) begin
automatic idx = i;
wait(bus[idx] == 1);

end
join

end

Unforeseen Library Overhead
• Libraries like UVM enable fast creation of verification envs
• Be aware of library implementation when scaling-up env

– Ex. Testbench channel may be clocked so sending many
tiny pieces of data may be much more expensive than
aggregating the data and sending a single, large
structure

• Solution: Always implement functional code first. If
performance issues arise, profile and consider alternate
algorithms that better utilize standard library interfaces

10 of 14Justin Sprague, Cadence

Summary -
• Simulators are built to run legal SystemVerilog

• 2 algorithms can have equivalent functionality and vastly
different performance

• Coding errors and code awareness can lead to unforeseen
and hard to debug performance issues

• Start from a set of best practices
– Think about performance from the beginning
– Understand and apply SW engineering principles
– Use profiling as an algorithm development tool

11 of 14Justin Sprague, Cadence

THANK YOU.

QUESTIONS?

12 of 14Justin Sprague, Cadence

	Yikes! Why is my SystemVerilog�Testbench So Slooooow?
	SV Performance and Productivity�Follow SW engineering guidelines
	Meh, It’s Just Software�Attitude leads to accurate, slow SV TB
	Loop Invariants
	Short-Circuiting Branches
	Static Versus Dynamic Classes
	Know the Class Hierarchy
	Track Class and Data Handles
	Thread Pool Vs. Create/Destroy
	Unforeseen Library Overhead
	Summary -
	Thank You.��Questions?

