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Abstract 

Many times, the functional verification of a System-on-Chip or of its parts requires some kind of memory 

management in order to assure memory accesses are verifiable, to avoid memory conflicts and to ease debug.  In the 

real system, memory management is provided by a software component. However, this is not suitable for a functional 

verification environment for various reasons: it has a dramatic impact on the simulation/emulation speed, it cannot 

be integrated in the verification environment, it is not available until later stages of the project etc. In this case, the 

role of the software memory manager has to be taken by a verification component suitable for simulation/emulation 

environments. 

This paper presents an implementation of a memory manager (MM) component suitable for functional 

verification environments. 

 

I. INTRODUCTION 

Any System-on-Chip contains at least a CPU core, a communication bridge and a memory block that allows 

them to run software applications. The memory is the central piece: it is used by the communication bridge as a 

buffer zone between the application and the external world, while the CPU uses it to retrieve or save application 

data (including the OS) and user data. More than a single process might be underway at any given time in a 

SoC, which means there will be lots of interactions (i.e. memory accesses) between the three components during 

the lifetime of an application. These interactions must be, most of the time, non-overlapping in order to avoid 

memory access conflicts. 

Memory access conflicts can be avoided by using a MM which will allocate or free memory buffers at the 

request of application processes. The MM allocates space statically or dynamically by considering both the 

allocated space and the free space, mitigating memory fragmentation and leaks.  

The MM is a core component of the OS’s kernel and it can be used seamlessly in a system-level verification 

environment that runs the OS (e.g. by using the final product in the lab or an emulation engine). In the case of 

simulated functional verification environments, the OS might not be present due to simulation capacity or 

verification partitioning reasons and in that case a dedicated memory manager should be used. For example, top-

, subsystem- or block-level verification environments that do not run the software stack will have to use a 

verification component (e.g. yamm) that takes on the role of a MM.  

YAMM stands for Yet Another Memory Manager. This paper presents the YAMM library, which 

implements a MM verification component with the following requirements: 

 Easy to allocate, de-allocate and search user defined buffers  

 Assure address space consistency (i.e. allocated buffers do not overlap) 

 Fine grained control of address space allocation (support address alignment, different size resolution) 

 Provide control over the memory buffers’ contents (custom buffer contents generation) 
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 Easy to integrate with the existing verification environments  

 Easy to debug memory allocation / de-allocation 

 Implement a fast allocation / de-allocation algorithm 

 Provide different allocation modes in order to allow different address space fragmentation 

 Implement using a standard methodology (UVM) and hardware verification language (SystemVerilog) 

 A solution to a specific problem that can be understood by any verification engineer 

 An open source implementation that can be reused across companies and projects 

 

II. MEMORY MANAGEMENT CONCEPTS 

A. Memory Space, Access Resolution and Buffers 

 Memory space is defined as the continuous sequence of addresses within limits [start address : end 

address]. The start address and end address relation is given by formula: 

end_address – start_address + 1 = 2N, where N is the address bus bit width. 

All memory locations have the same width expressed as a Bit width (e.g. 32 bit) or Byte width (e.g. 4 bytes), 

so all accesses will have a constant granularity (e.g. 4 bytes). Having this in mind, a memory is a collection of 

memory spaces which can be occupied by different applications. Allocating space to an application means 

reserving a specific region in memory represented by its starting address and size. Such regions are often 

referred to as memory buffers, big enough regions in which the application can store its data. However the 

memory itself only understands the term of memory location, as regions that are composed of multiple memory 

locations are defined by the memory manager. 

The byte size of a memory is given by the formula: 

memory_byte_size = 2N * location_byte_width where N is the address bus bit width. 

A buffer is a continuous memory space defined by a start address, an end address and the inferred size which 

does not overlap other areas. This means that buffers are not allowed to overlap one another, but they are still 

allowed to contain other buffers inside them. This feature can be interpreted as changing the reference point: if a 

buffer is considered an area in the memory then the enclosed (sub-)buffers will consider it as the whole memory. 

This is useful to define specific sub-memory areas in the memory space. Similarly to the memory space, the 

start address and end address relation is given by formula: 

end_address – start_address + 1 = 2N, where N is the address bus bit width. 

As you can see there are similarities between a memory and a buffer. A memory is composed of multiple 

memory locations which can be accessed independently; also a group of continuous memory locations 

belonging to an application represent a buffer. Basically the memory can also be seen as a buffer or a collection 

of buffers linked together. 

The following figure shows a possible snapshot of the memory space.  
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Figure 1. Memory map snapshot during simulation 

Two types of buffers could be identified: 

 The free buffers which contain all the continuous free spaces in memory, areas that hold the memory 

space useful for further allocations.  

 The occupied buffers defined by the user and allocated in the memory. 

Furthermore, the user defined buffers can be static or dynamic, as dictated by the nature of their allocation. 

The static buffer is similar to any other buffer, except that it is allocated only once at the beginning and will not 

be removed dynamically or at memory reset. Static buffers can be reserved memory areas that are allocated for 

special purposes (e.g. circular buffers for sensor data). Dynamic buffers can be allocated and de-allocated on-

the-fly within the memory space or within another buffer space. 

The memory map, as YAMM sees it, is composed of buffers linked together in a list. The user should only 

be aware of the buffers that are allocated, as YAMM manages the memory map on its own. Even though the 

user can do a manual insertion at a specific memory address or allocate buffers using a specific allocation mode 

(this feature will be discussed in more detail further into the paper) YAMM will always keep the memory 

consistency. All the buffers that are successfully allocated in a specific memory map (e.g. the main memory or a 

buffer allocated inside it) are non-overlapping and the starting address of every buffer is the ending address of 

the previous + 1. 



 

4 

 

In Figure 2 you can see a memory map on the left and its corresponding model created by YAMM on the 

right. 

 

Figure 2. Memory space representation 

 

As you can see the memory is represented by a double linked list composed of all the buffers, being either 

free or belonging to a specific application. Also YAMM keeps track of a list composed only of the free buffers, 

this way improving the speed of allocation. 

 

In Figure 3 you can see an example of buffer allocation. 

-

 

Figure 3. Example of buffer allocation 

Each buffer allocation will create a new divide in the memory space, which in turn can increase the memory 

space fragmentation. Depending on the allocation mode (e.g. random fit, best fit) you choose and the allocation-

de-allocation ratio the memory space will be more or less fragmented. The fragmentation can be a form of 

memory leak since in highly fragmented memory space MM might not be able to allocate a buffer, although 

there is free space. 
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Every buffer allocated by the user can also be treated as a separate memory, the API being available to the 

yamm instantiation (main memory) as well as every buffer. 

B.  Allocation Mode 

When doing a pseudo-random allocation of a buffer in the address space there is the option of deciding on 

how it should be allocated. This option is called allocation mode and it has the following schemes: 

 FIRST_FIT - If this scheme is selected then the buffer will be allocated in the first free area where it 

fits. In case the free area is larger than the buffer size, the buffer is allocated as close as possible to the 

start of the free area. 

 FIRST_FIT_RND - This scheme is similar to FIRST_FIT, but after the free area is found the buffer 

will be allocated randomly in it. 

 BEST_FIT - If this scheme is selected the buffer will be allocated in the smallest free area where it fits. 

In case the free area is larger than the buffer size, the buffer is allocated as close as possible to the start 

of the free area. This scheme is useful to create continuous allocated areas in memory (with as least as 

possible of free space between buffers). 

 BEST_FIT_RND - This scheme is similar to BEST_FIT, but after the free area is found the buffer will 

be allocated randomly in it. 

 RANDOM_FIT - As the name suggests, in this case the buffer will be randomly allocated in any of the 

free areas where it can fit. This can lead to a high fragmentation. 

 UNIFORM_FIT - When this scheme is selected the buffer will be placed in the middle of the largest 

free area it can find. Using this scheme assures a uniform spread of buffers across the memory, but it 

will maximize the fragmentation. 

Regardless of the allocation scheme the free areas are searched from lowest address to highest. 

C. Access Descriptor 

An access descriptor is defined by a start address, its size and it is used, mostly, for identification of the 

corresponding buffer within the memory. 

III. YAMM API 

 
Table 1. The public fields and functions of yamm package 

yamm_buffer yamm 

Public Fields Public Functions Public Functions 

Start_addr 

allocate() 

allocate_static_buffer() 

allocate_by_size() 

deallocate() 

deallocate_by_addr() 

Size 

insert() 

insert_access() 

get_static_buffers() 

get_all_buffers_by_type() 

get_buffer() 

Granularity 

get_buffers_by_access() 

get_buffers_in_range() 

check_address_space_consistency() 
reset() 

 set_name() 
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Start_addr_alignment 

end_addr() 

build() 

access_overlaps() 

get_contents() 

set_contents() 

generate_contents() 

Disable_warnings 

compare_contents() 

sprint_buffer() 

write_memory_map_to_file() 

get_fragmentation() 

get_usage_statistics() 

 

Yamm_buffer class represents the base class of the library, containing most of the API functions, useful for 

allocation and insertion of buffers, deallocation, buffer search and retrieval, payload functionality as well as 

debug. Yamm class is the top class that extends the yamm_buffer class and also implements top level 

functionality like memory initialization and static buffer allocation/retrieval. Upon initialization yamm will also 

serve as the main memory. 

There’s also an optional class called yamm_access that acts as a wrapper class, containing start_addr and 

size fields. Some functions from yamm_buffer take yamm_access as an argument like insert_access() or 

get_buffers_by_acess(). 

IV. PRELIMINARY RESULTS 

The concepts and features YAMM provides are silicon proven since they were heavily tested in real-life 

projects, using a different implementation though. YAMM repackages the proven solution to target a larger user 

base. In order to better understand the features of YAMM a side by side comparison is done in this chapter with 

uvm_mam, a well-known memory manager. 

Uvm_mam is a memory manager which is part of uvm package and is used primarily in conjunction with 

uvm_mem to reserve specific memory regions. 

Being part of the uvm_reg library there are a large number of objects organized hierarchically, which 

generates massive overhead and make many of the features hard to access. As with almost anything in the uvm 

package this solution prioritizes reusability and memory modeling rather than performance or memory 

managing. 

uvm_mam doesn’t provide a rich API apart from reserving and freeing memory regions. A comparison 

feature-wise can be seen in the following table: 

Category MAM YAMM 

Memory Uvm_mam is linked to uvm_mem which 

provides the memory locations used for storing 

data 

The YAMM top level, as well as every individual buffer contains 

a memory map composed of multiple buffers that can store 

simple data 

Allocation Doesn’t support dynamic allocation and has only 

2 allocation modes. 

Permits dynamic allocation, as well as allocation inside an 

already allocated buffer and has 6 allocation modes. 

Deallocation Releases the specific region Releases the specific region and can display a warning if the 

deallocated buffer contains other buffers 

Buffer retrieval Provides an iterator that user has to use for any 

needs 

Provides support for finding and modifying buffers by different 

criteria 

Ease of use It’s complex and rather hard to use and for 

features beyond reserving and freeing regions 

the user has to go to objects higher in hierarchy 

Everything is provided in the same package and can be easily 

accessed. Memory map can be accessed by calling functions on 

the top level. Specific regions can be accessed by calling the 

same functions on the chosen buffers 

 

To analyze the performance, the following benchmark setup is used for both of the 2 memory managers. 
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yamm new_memory; 

yamm_size_width memory_size = 10000; 

// Declaring a size is totally optional, a value can be given as argument 

new_memory = new; 

new_memory.build(“memory_name”, memory_size); 

class user_sequence extends uvm_sequence; 

      rand int unsigned access_size; 

      … 

      task body(); 

 yamm_buffer buffer = p_sequencer.user_memory.allocate_by_size(access_size); 

 `uvm_do_with(user_item, { 

      address == buffer.start_addr; 

      size == buffer.size; // or access_size 

      data == buffer.get_contents();  

      // get_contents() will automatically generate_contents() if they weren’t set already 

 }) 

       endtask 

endclass 

 Memory space of 1G 

 5000 buffer allocations of size 100 

 Measured the time taken for every 100 allocations 

 Used the broad policy for MAM’s request_region() 

 Used the RANDOM_FIT allocation mode for YAMM’s allocate_by_size() 

The result can be seen in the following graphs: 

 

 
 The allocation of 5000 buffers took a little over 500 seconds for MAM while it only took 2 seconds for 

YAMM which is over 200 faster. Also it can be seen that this difference in performance gets bigger with the 

increasing number of buffers, as the complexity of YAMM is linear compared to MAM’s exponential one. 

V. USAGE EXAMPLE 

First step after importing the yamm_pkg it’s to instantiate and initialize a memory, an example can be seen in 

the below code. 

 

At this point YAMM is ready to be used, the memory was created and it consists of a free buffer over the 

entire memory span. Buffers can be allocated now. We will use YAMM to hold a reference to a memory, so by 

allocating buffers it will automatically generate non-overlapping accesses to memory. 
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class user_scoreboard extends uvm_scoreboard; 

      yamm user_memory; 

      … 

      // function checks if the current access is done to a previously allocated address 

      function void check_access(); 

 if(user_memory.get_buffer(item.addr) == null) 

      `uvm_error(get_name(), “Access detected to a non-allocated memory address!”) 

       endfunction 

endclass 

 

As a scoreboard example it’s interesting to check if accesses are done to previously allocated addresses. The 

easiest way to do this is by using get_buffer() function, a valid handle to a buffer will be returned if the address 

given as argument is valid or a null handle otherwise. The following code shows how that can be achieved. 

 

 

VI. CONCLUSION AND FUTURE WORK  

YAMM verification component reduces verification time needed for certain types of designs like multi-port 

memories and communication bridges in comparison with other memory managers. This is possible because of 

its very good performance and its complete API. 

Future improvements focus on a better performance gain when searching through a large number of buffers 

from O(n) to O(log n). API enhancements include better memory modelling and access control. 

 

VII. TERMINOLOGY, ABBREVIATIONS 

 

Abbreviation, Term 

YAMM, Yet Another Memory Manager 

UVM, Universal Verification Methodology 

RAM, Random-access Memory 

ROM, Read-only Memory 

MM, Memory Manager 

VIP, Verification IP 

TLM, Transaction-level Modeling 

LT/AT, Loosely-timed/Approximately-timed 

API, Application Programming Interface 

DUT, Device-under-Test                

VE, Verification Environment 

RW, Read Write 

RO, Read Only 
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