
YAMM
Yet Another Memory Manager

Andrei Vintila, Ionut Tolea
Amiq Consulting

© Accellera Systems Initiative 1

Agenda
• Theory

– Memory Management Introduction
– YAMM Overview: Features, Algorithm, Datatypes, API

• Comparison with UVM_MAM
– Feature-wise
– Performance-wise

• Examples

© Accellera Systems Initiative 2

Memory Management – What is it?

© Accellera Systems Initiative 3

Memory Management Requirements
Real Life Verification

Provide memory buffers to programs Support real life use cases

Prevent memory corruption Provide randomization support

Reduce fragmentation Provide debug support

Not necessarily a memory model

© Accellera Systems Initiative 4

YAMM Features (1)
• Implementations for SystemVerilog, C++
• Everything is a buffer
• Provides API for retrieval of allocated buffers
• Supports multiple allocation modes
• Supports memory granularity and address alignment
• Provides buffer content management

© Accellera Systems Initiative 5

YAMM Features (2)
• Buffers represent address spaces themselves
• Memory can be written to file or pretty-printed
• Provides usage and fragmentation statistics
• Can be easily extended for specific use cases

© Accellera Systems Initiative 6

YAMM Data Types
• yamm_buffer

– Contains all data and functions

• yamm
– Top level instance of the memory manager
– Inherits yamm_buffer

• yamm_access
– Optional usage
– Used to model a basic access (start address, size)

© Accellera Systems Initiative 7

YAMM Overview - Algorithm
• After initialization the memory map will contain a

single FREE buffer
• All buffers in a memory map are chained in a double

linked list

© Accellera Systems Initiative 8

YAMM Overview – API (1)
• Allocation

– Manual allocation: insertion
– Automatic allocation rules:

• RANDOM_FIT
• FIRST_FIT (and FIRST_FIT_RND)
• BEST_FIT (and BEST_FIT_RND)
• UNIFORM_FIT

• Deallocation
– It can be done on a specific buffer or address

© Accellera Systems Initiative 9

YAMM Overview – API (2)

© Accellera Systems Initiative 10

YAMM Overview – API (3)

© Accellera Systems Initiative 11

• Search functions
– Retrieve buffers by name
– Retrieve buffers by address
– Retrieve buffers in address range
– Retrieve buffers by access

• Debug functions
– Return the memory map allocation as a string
– Dump memory map to file
– Provide usage and fragmentation statistics

YAMM – Use case

© Accellera Systems Initiative 12

• A typical use case would be a DUT that handles accesses
to a memory with specific priorities.

• When using constraint random overlapping accesses can
be generated which increases the difficulty of checking.

YAMM – Use case (2)

© Accellera Systems Initiative 13

• YAMM can be easily used to generate interesting
scenarios, by providing the buffers in which the
accesses are done (address and size)

YAMM – Use case (3)

© Accellera Systems Initiative 14

• Checking is made much easier when YAMM is used
to control the buffers in which the writes/reads are
done.

MAM – UVM Solution
• Oriented towards memory modeling
• MAM is used with UVM_MEM to reserve specific

memory regions
• Supports only “greedy” allocation mode
• Specific regions can be freed or entire memory can

be wiped
• Memory state can be returned as a string

© Accellera Systems Initiative 15

MAM vs YAMM – Feature Wise (1)
• Memory

– UVM_MAM is linked to UVM_MEM which provides the memory
locations used for storing data

– YAMM top level as well as every individual buffer contains a
memory map composed of multiple buffers that can store
simple data

• Allocation
– UVM_MAM can only allocate on previously unallocated memory

(2 allocation modes)
– YAMM can allocate new buffers in either unallocated memory or

inside an already allocated buffer (6 allocation modes)

© Accellera Systems Initiative 16

MAM vs YAMM – Feature Wise (2)
• Finding buffers

– UVM_MAM provides only an iterator; user must
implement the search functions

– YAMM provides support for finding and modifying buffers
by different criteria

© Accellera Systems Initiative 17

MAM vs YAMM – Feature Wise (3)
• Ease of use

– UVM_MAM is complex and rather hard to use and for
features beyond reserving and freeing regions user has to
go to objects higher in hierarchy

– YAMM has a more user friendly API, memory map can be
accessed by calling functions on the top level and also
specific regions can be accessed by calling same functions
on the chosen buffers

© Accellera Systems Initiative 18

Performance test - Parameters
• Memory space of 1G
• Allocation of 5000 buffers of size 100
• Measuring the time taken for allocation every 100

allocations
• For MAM, request_region() with default policy
• For YAMM, allocate_by_size() with RANDOM_FIT

allocation mode was used

© Accellera Systems Initiative 19

Performance test – MAM vs YAMM

© Accellera Systems Initiative 20

More than 200x the speed

Examples – Initialization Example

yamm new_memory;
yamm_size_width memory_size = 10000;
new_memory = new;
new_memory.build(“memory_name”, memory_size);

© Accellera Systems Initiative 21

Examples – Sequence Example
class user_sequence extends uvm_sequence;

rand int unsigned access_size;
...
task body();

yamm_buffer buffer =
p_sequencer.user_memory.allocate_by_size(access_size
);

`uvm_do_with(user_item, {
address == buffer.get_start_addr();
size == buffer.get_size();
data == buffer.get_contents();

})
endtask

endclass

© Accellera Systems Initiative 22

Examples – Scoreboard example
class user_scoreboard;

yamm user_memory;
...
//function checks if the current access is done

to a previously allocated address

function void check_access(user_item item);

if(user_memory.get_buffer(item.addr) == null)

`uvm_error(get_name(), "Access detected to
a non-allocated memory address!")

endfunction

endclass

© Accellera Systems Initiative 23

YAMM Availability
• Open Source under Apache 2.0 license
• Available in both SystemVerilog and C++ as well
• Blog: www.amiq.com/consulting/blog
• Github: www.github.com/amiq-consulting/yamm

© Accellera Systems Initiative 24

http://www.amiq.com/consulting/blog
http://www.github.com/amiq-consulting/yamm

Questions

© Accellera Systems Initiative 25

	YAMM�Yet Another Memory Manager
	Agenda
	Memory Management – What is it?
	Memory Management Requirements
	YAMM Features (1)
	YAMM Features (2)
	YAMM Data Types
	YAMM Overview - Algorithm
	YAMM Overview – API (1)
	YAMM Overview – API (2)
	YAMM Overview – API (3)
	YAMM – Use case
	YAMM – Use case (2)
	YAMM – Use case (3)
	MAM – UVM Solution
	MAM vs YAMM – Feature Wise (1)
	MAM vs YAMM – Feature Wise (2)
	MAM vs YAMM – Feature Wise (3)
	Performance test - Parameters
	Performance test – MAM vs YAMM
	Examples – Initialization Example
	Examples – Sequence Example
	Examples – Scoreboard example
	YAMM Availability
	Questions

