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Agenda
• Theory

– Memory Management Introduction
– YAMM Overview: Features, Algorithm, Datatypes, API

• Comparison with UVM_MAM
– Feature-wise
– Performance-wise

• Examples
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Memory Management – What is it?
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Memory Management Requirements
Real Life Verification

Provide memory buffers to programs Support real life use cases

Prevent memory corruption Provide randomization support

Reduce fragmentation Provide debug support

Not necessarily a memory model
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YAMM Features (1)
• Implementations for SystemVerilog, C++
• Everything is a buffer
• Provides API for retrieval of allocated buffers
• Supports multiple allocation modes
• Supports memory granularity and address alignment
• Provides buffer content management
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YAMM Features (2)
• Buffers represent address spaces themselves
• Memory can be written to file or pretty-printed
• Provides usage and fragmentation statistics
• Can be easily extended for specific use cases
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YAMM Data Types
• yamm_buffer

– Contains all data and functions

• yamm
– Top level instance of the memory manager
– Inherits yamm_buffer

• yamm_access
– Optional usage
– Used to model a basic access (start address, size)
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YAMM Overview - Algorithm
• After initialization the memory map will contain a 

single FREE buffer
• All buffers in a memory map are chained in a double 

linked list
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YAMM Overview – API (1)
• Allocation

– Manual allocation: insertion
– Automatic allocation rules:

• RANDOM_FIT
• FIRST_FIT (and FIRST_FIT_RND)
• BEST_FIT (and BEST_FIT_RND)
• UNIFORM_FIT

• Deallocation
– It can be done on a specific buffer or address
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YAMM Overview – API (2)
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YAMM Overview – API (3)
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• Search functions
– Retrieve buffers by name
– Retrieve buffers by address
– Retrieve buffers in address range
– Retrieve buffers by access

• Debug functions
– Return the memory map allocation as a string
– Dump memory map to file
– Provide usage and fragmentation statistics



YAMM – Use case
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• A typical use case would be a DUT that handles accesses 
to a memory with specific priorities.

• When using constraint random overlapping accesses can 
be generated which increases the difficulty of checking.



YAMM – Use case (2)
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• YAMM can be easily used to generate interesting 
scenarios, by providing the buffers in which the 
accesses are done (address and size)



YAMM – Use case (3)

© Accellera Systems Initiative 14

• Checking is made much easier when YAMM is used 
to control the buffers in which the writes/reads are 
done.



MAM – UVM Solution
• Oriented towards memory modeling
• MAM is used with UVM_MEM to reserve specific 

memory regions
• Supports only “greedy” allocation mode
• Specific regions can be freed or entire memory can 

be wiped
• Memory state can be returned as a string
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MAM vs YAMM – Feature Wise (1)
• Memory

– UVM_MAM is linked to UVM_MEM which provides the memory 
locations used for storing data

– YAMM top level as well as every individual buffer contains a 
memory map composed of multiple buffers that can store 
simple data

• Allocation
– UVM_MAM can only allocate on previously unallocated memory 

(2 allocation modes) 
– YAMM can allocate new buffers in either unallocated memory or 

inside an already allocated buffer (6 allocation modes)
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MAM vs YAMM – Feature Wise (2)
• Finding buffers

– UVM_MAM provides only an iterator; user must 
implement the search functions

– YAMM provides support for finding and modifying buffers 
by different criteria
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MAM vs YAMM – Feature Wise (3)
• Ease of use

– UVM_MAM is complex and rather hard to use and for 
features beyond reserving and freeing regions user has to 
go to objects higher in hierarchy

– YAMM has a more user friendly API, memory map can be 
accessed by calling functions on the top level and also 
specific regions can be accessed by calling same functions 
on the chosen buffers
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Performance test - Parameters
• Memory space of 1G
• Allocation of 5000 buffers of size 100
• Measuring the time taken for allocation every 100 

allocations
• For MAM, request_region() with default policy
• For YAMM, allocate_by_size() with RANDOM_FIT 

allocation mode was used
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Performance test – MAM vs YAMM
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More than 200x the speed



Examples – Initialization Example

yamm new_memory;
yamm_size_width memory_size = 10000;
new_memory = new;
new_memory.build(“memory_name”, memory_size);
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Examples – Sequence Example
class user_sequence extends uvm_sequence;

rand int unsigned access_size;
...
task body();

yamm_buffer buffer = 
p_sequencer.user_memory.allocate_by_size(access_size
);

`uvm_do_with(user_item, {
address == buffer.get_start_addr();
size == buffer.get_size();
data == buffer.get_contents();

})
endtask

endclass
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Examples – Scoreboard example
class user_scoreboard;

yamm user_memory;
...   
//function checks if the current access is done 

to a previously allocated address

function void check_access(user_item item);

if(user_memory.get_buffer(item.addr) == null)

`uvm_error(get_name(), "Access detected to 
a non-allocated memory address!")

endfunction

endclass
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YAMM Availability
• Open Source under Apache 2.0 license
• Available in both SystemVerilog and C++ as well
• Blog: www.amiq.com/consulting/blog
• Github: www.github.com/amiq-consulting/yamm
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http://www.amiq.com/consulting/blog
http://www.github.com/amiq-consulting/yamm


Questions
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