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Abstract:: This paper presents a complete and practical 
methodology to comprehensively solve the X problem in RTL 
design. It begins by reviewing common sources of Xs, and describes 
how they cause functional bugs as well as unwarranted debug that 
prolong verification cycles. Solving the X problem helps minimize 
simulation and synthesis iterations and enables various design 
analyses (e.g. power analysis), normally performed on netlists, to 
begin sooner. The pros and cons of various point solutions to this 
problem are described. The technologies discussed include 
structural analysis, formal analysis, coding for X-accuracy, and 
simulation techniques such as random seeding of state initial 
values. It is essential that a complete solution address both X-
optimism and X-pessimism woes as well as be applicable to all 
sources of Xs, facilitate debug, provide coverage analysis, and 
enable automation, high performance, and usability.  The 
requirements of a complete and practical solution. based on 
feedback from users who deal with X issues are provided. The 
summary of our interaction with users is that the X problem is 
multi-dimensional and needs a holistic solution that brings to bear 
the combination of strucural analysis, simulation and formal 
analysis to solve effectively. We describe our user experiences and a 
case study based on our proposed solution. 
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I.  INTRODUCTION 
SOC integration levels approaching a billion transistors per 
chip, tremendous pressure to shrink the verification cycle, and 
the power minimization imperative have compounded an 
existing issue where Xs in simulation can mask functional 
bugs and cause unnecessary Xs in netlists.  
 
This paper begins with an introduction to the issues caused by 
X-propagation, including defining the X state, common 
sources of Xs, and a description of the issues of X-optimism 
and X-pessimism. We then discuss the pros and cons of 
available solutions for preventing the masking of bugs by X-
optimism in RTL and the unnecessary debug caused by X-
pessimism on netlists. Feedback from customer interactions is 
discussed and a complete and practical solution is proposed.  
 
The SystemVerilog standard defines an X as an “unknown” 
value which is used to represent when simulation cannot 
definitely resolve a signal to a “1”, a “0”, or a “Z”.  Synthesis, 
on the other hand, defines an X as a “don’t care”, enabling 
greater flexibility and optimization.  Unfortunately, Verilog 
RTL simulation semantics often mask propagation of an 
unknown value by converting the unknown to a known, while 

gate-level simulations show additional Xs that will not exist in 
real hardware. The result is that bugs get masked in RTL 
simulation, and while they show up at the gate level, time 
consuming iterations between simulation and synthesis are 
required to debug and resolve them.  Resolving differences 
between gate and RTL simulation results is painful because 
synthesized logic is less familiar to the user, and Xs make 
correlation between the two harder.  Unwarranted X-
propagation thus proves costly, causes painful debug, and 
sometimes allows functional bugs to slip through to silicon. 
 
Continued increases in SOC integration and the interaction of 
blocks in various states of power management are 
exacerbating the X problem.  In simulation, the X value is 
assigned to all memory elements by default.  While hardware 
resets can be used to initialize registers to known values, 
resetting every flop or latch is not practical because of routing 
overhead. For synchronous resets, synthesis tools typically 
club these with data-path signals, thereby losing the distinction 
between X-free logic and X-prone logic. This in turn causes 
unwarranted X-propagation during the reset simulation phase. 
State-of-the-art low power designs have additional sources of 
Xs with the additional complexity that they manifest 
dynamically rather than only during chip power up. 

II. UNDERSTANDING THE ISSUES 
In this section, we review the current understanding of the X-
optimism and X-pessimism issues that result from the 
presence of Xs in a design. Note that the same issues can 
occur with Z values, but Z’s tend to be limited in scope and 
very intentional. First, we review what Xs are and where they 
come from. 

A. Definition of an X 
Xs do not exist in real hardware. X is an abstract value 
introduced for the sake of algebraic semantics, and different 
tools interpret them differently. 
 
Simulation semantics of an X are defined by the IEEE 1800 
SystemVerilog standard[1]. Simulators interpret an X as a value 
in 4-state logic (0, 1, X, Z) that represents an “unknown” 
logic value.  There are four data types defined in the standard 
that use 4-state logic: logic, reg, integer, and time. 
All of these data types have a default value of X. 
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Synthesis tools treat Xs differently. They interpret the X value 
as a “don’t care” instead of an “unknown”, allowing for 
greater synthesis optimizations.  

B. Common Sources of Xs in a Design 
There are many sources of an “unknown” (X-source) in 
simulation. Some are by design, some are a result of errors, and 
some are the result of X’s driving the inputs to the design. 

The most common X source are uninitialized flops and latches, 
many of which come from memories in the design.  While 
some designers use the practice of initializing everything, many 
applications don’t have that luxury due to real estate and 
routing constraints of a reset signal. 

Blocks that support low power can also have X-sources when 
power is off or being restored. When a block comes out of a 
low power mode, depending on the wake-up mechanism, 
initialization is generally effected more by retention flops and 
isolation cell strategies added to gate implementations rather 
than via the traditional reset signals. Low power brings with it a 
separate type of initialization analysis. 

Another common source of Xs is explicit assignment.  Explicit 
assignments are used to flag illegal or unexpected conditions. 
Other common error conditions that cause an X value in 
simulation include bus contention, range violations, a memory-
read before initialization, and signals that are not driven. 

All of these can result in “unknown” values that will be either a 
logic-1 or a logic-0 in real hardware, but cannot be determined 
at simulation time. 

C. X-optimism Masks Functional Bugs 
X-optimism is an RTL phenomenon where what should be an 
unknown value becomes a known value in simulation. X-
optimism is common in RTL if and case constructs. A 
value of Z can also cause optimism to occur, but Zs in a design 
are relatively uncommon. 
 
To understand how an unknown value can suddenly become a 
known value, let’s analyze what happens with the simple  
if-else statement that is shown below in Figure 1. 

 
Figure 1.  X-optimistic If-Else Statement 

 
When sel is a 1’b1, the output is the value of a and when 
sel is 1’b0, the output is the value of b. But notice what 
happens when sel is an X.  Here, the X value is interpreted 
as though sel is 1’b0 and the output is the value of b. 
The “unknown X” is now masquerading as a known value. In 

real hardware the sel signal might in fact have been a 1’b1, 
which means that the correct value could have been the value 
of a. Similarly, as shown in Figure 2, a case statement can 
also be prone to X-optimism. When sel is 1’b1, the output is 
a, when sel is 1’b0, the output is b, and when sel is an 
unknown X, simulation semantics define that the output 
retains its previous value.  In real hardware, it may or may not 
change value depending on the actual value of the sel. 

 
Figure 2.  X-optimistic Case Statement 

 
X-optimism is a serious issue because it can mask functional 
bugs. On the other hand, it can occur frequently to ill effect 
since it only becomes a problem when the output is being 
used. An example might be Xs on a shared address bus that is 
not driven until a device acquires the bus. These Xs are only 
an issue when the data is being sampled.  
 
In summary, a situation is said to be X-optimistic when an 
unknown value incorrectly becomes a known value, thereby 
potentially masking functional bugs in RTL. X-optimism 
issues will be revealed in gate level simulations, however gate 
level simulation is slow, iterations back to RTL to fix the bug 
are costly, and debug is painful. The biggest challenge with X-
optimism is identifying when it causes observable functional 
differences, instead of simply identifying when it occurs. 

D. X-pessimism Causes Unnecessary Xs 
X-pessimism is the situation when a deterministic value in 
hardware becomes an unknown value in simulation. It is an 
issue primarily observed at the netlist level, though it can be 
sometimes visible in RTL simulations as well. It occurs when 
there is reconvergence and loss of correlation between 
converging X values. It is common in multiplexors and 
decoders.  
 
Let’s look at a simple multiplexor. In real hardware, we know 
that when both inputs are the same value, the output value 
matches that value, independent of the value of the selector.  
But look what happens in gate level simulation when both 
inputs are a 1’b1 and the selector is an X value. 
 
In general, a two input multiplexor with a selector is 
implemented as (a && selector) || (b && 
~selector).  Figure 3 shows the gate level implementation 
of a multiplexor.  When the selector is 1’bx and a and b are 
both 1’b1, the logic reduces to “1’bx || ~1’bx”, which 
simulators resolve to an X value per the standard. 

//if-else example 
logic s; 
always_comb 
   begin 
     if (sel) 
        out = a; 
     else 
        out = b;  
   end 

input 
sel 

output 
out 

1 a 
0 b 
X b 

 

//if-else example 
reg s; 
always_comb 
   begin 
     case (sel)  
       1: out = a; 
       0: out = b;  
     endcase 
   end 

input 
sel 

output 
out 

1 a 
0 b 
X prev 

 



 

 
Figure 3.  Two Input Mux Example of Pessimism 

 
In summary, X-pessimism occurs when an X value appears 
unnecessarily. X pessimism results in differences between 
RTL and gate level simulations that must be resolved.  

III. SURVEY OF APPLICABLE TECHNOLOGIES  
This section reviews known technologies for detecting and 
preventing X-propagation issues. 

A. Simulation Analysis 
Simulation is when input sequences are applied to a model and 
the output is checked.  All simulators provide differentiation 
through features, some of which are associated with X 
propagation issues. 

1) Waveform Tools 
Waveform tools[9] provide various features to help detect and 
debug X-propagation issues in simulation. For example, most 
waveform viewers show an X value as a distinct state that is 
both a 1’b1 and 1’b0 in the color red. This is useful in 
visualizing X values. Most viewers will also allow tracing the 
drivers of an X. 
 
Unfortunately, identifying true X-optimism issues in this 
manner is cumbersome.  Let’s say an X was detected in netlist 
simulation. First, one must determine if this is a legitimate X 
or an artifact of X-pessimism. Then, one must manually 
separate legitimate X propagation from X-optimism. Finally, 
the process is further complicated because there may be much 
logic and many clock cycles between an X-optimism 
occurrence and its manifestation as a failure. 
 

2) RTL X-optimism Detection and Reporting 
Some simulators have a compile time switch for detecting X-
optimism[4]. It will drive the control of X-optimistic constructs 
to a 1’b1 and a 1’b0 when the control is a 1’bx value, and 
flag an error when the output is different in the two cases. 
 
This approach is clearly has an overhead in simulation time 
but does enable detecting X-optimism occurrences as they 
happen. The problem, once again, is that X-optimism often 
exists in designs without affecting functionality. So, the 

additional simulation time could end up being wasted and lead 
to further wasted effort debugging false negatives. 
 

3) Randomization of Initial Values 
Some simulators have a feature that will allow you to set the 
initial state of all reg’s in a design to 1’b1, 1’b0, or a random 
value. You can run multiple times to cover multiple scenarios.  
 
This can be a good solution for addressing X-pessimism 
issues, but not for detecting correct initialization and X-
optimism issues. Even with multiple runs, you are still likely 
to miss a functional bug if the simulator doesn’t happen to 
exercise the combination of values that triggers an issue. It 
also only addresses X’s from uninitialized regs, when, in 
fact, there are many other sources of X in a design. 

B. Structural Analysis 
Structural analysis analyzes the characteristics of the RTL to 
identify potential issues. Lint tools such as Ascent Lint[10] can 
do a structural analysis of the RTL and alert the designer to X-
hazards that might cause X-propagation issues. Specifically 
they might identify explicit X-assignments, signals within the 
block that are used but not driven, or signals that are used 
before being assigned. All such things may cause X-
propagation issues. Unfortunately, a structural analysis tool 
cannot determine if a real issue exists and does not include any 
sequential analysis. 

C. Formal Analysis 
Formal analysis is a systematic and automated way of 
exhaustively testing a design for a specific issue at hand. This 
section discusses the applicability of the three types that come 
up in discussions of X-propagation. 
 

1) Equivalency Checking 
It is a misconception of many that equivalency checkers catch 
X-propagation issues. Equivalency checking deals with 
formally verifying two versions of a design to be functionally 
equivalent. Practical equivalence checkers analyze 
combinational logic cones bordered by state elements, ports, 
or black boxes [5].  Equivalence is based on binary values on 
the bordering and internal signals. 
 

2) Model Checking 
Model checking allows a user to write properties in 
specification languages such as PSL or SVA [3] so that formal 
engines may exhaustively verify that those properties hold for 
all combinations of input sequences. Formal tools that support 
4-state analysis will typically verify that properties hold for all 
combinations of 1’b1 and 1’b0 on all X sources. While this 
can mitigate the X-optimism and X-pessimism issues, a 
problem with model checking is that the user must develop 
these properties, including properties that constrain the inputs 
to valid sequences. There are also automatic model checkers 
that automatically extract specialized checks like the 
reachability of an X-assignment statement or bus 
float/contention from the RTL and apply sequential formal 
analysis for checking. Unfortunately, they do not solve the X-

X 
X 

X 

1 

1 

X 

X 
X 

assign  out = (X && 1) || (~X && 1) 
assign  out = X || ~X 
assign  out = X 



propagation problem in entirety. Model checking also has 
capacity challenges[7]. 
 

3) Symbolic Simulation 
With symbolic simulation, inputs are parameterized by 
Boolean variables, and outputs are represented as a function of 
those variables[6].. Symbolic simulation can exhaustively 
verify the design by checking that the output remains the same 
regardless of the presence of Xs. It can also provide a counter 
example that shows the sequence of inputs required to trigger 
the error condition. 
 
Unfortunately, there are practical limitations to symbolic 
simulation. Symbolic simulation techniques explode in 
memory consumption rapidly with design size and function. 
Like all formal tools, one can get false negatives in symbolic 
simulation due to inclusion of illegal sequences of inputs. 
Another limitation of both conventional and symbolic 
simulation is that they can only verify over a specified number 
of cycles [7] 

D. X-Accurate Coding 
One approach for managing X-propagation is through strict 
coding guidelines to ensure X-accurate coding. The 
conditional operator (? :)1

 

 is immune to X-optimism and can 
be used in place of if-else and case constructs, but it is not 
as readable and is still prone to X-pessimism. Figure 4 
contrasts a simple example of common coding, which is X-
optimistic, X-pessimistic coding and X-accurate coding.  

The X-optimistic coding is so because when the value of sel 
is unknown, the output is assigned the value of 2’b01, as 
though sel was a 1’b1. In real hardware, it could have been 
either a 1’b1 or a 1’b0, so simulation results could mask 
an issue. 
 
The X-pessimistic coding will use the case equality operator 
(===)2

 

 to first check if the value of the control signal (sel) is 
a 1’bx. If so it will propagate that X value by assigning all 
bits of the output to 1’bx.  This will prevent the optimism, 
however it is pessimistic since the MSB of the output would 
have been a 1’b0 independent of the value of sel. 
Pessimistic coding will cause unnecessary debug. 

Ideally, the coding should be X-accurate, meaning that it 
should correct for X-optimism by propagating the X value, but 
without introducing X-pessimism.  The X-accurate code for 

                                                           
1 The conditional operator returns the value of the first expression 
when the condition is true and the second condition when the 
expression is false. When the condition is ambiguous (x or z), then 
both both expressions are evaluated.  An x value is returned unless 
both expressions return the same 0 or 1 value, in which case that 
value is returned. 
2 With the case equality operator, bits that are x or z shall be included 
in the comparison and shall match for the result to be considered 
equal.  

the example is also shown, where each bit of the output is 
evaluated independently. 

 
Figure 4. X-accurate Coding 

 
The example above makes X-accurate coding look easy, 
however it can become complex very quickly as the number of 
paths in the control-flow graph increases. A more realistic but 
still simple example is shown in Figure 5, where there are 
embedded if and case statements, and the assignment 
values are expressions rather than just constants. It shows how 
it is non-trivial and becomes error prone to manually do X-
accurate coding. Automation is needed. 

 
Figure 5. Non-obvious X-Accurate coding 

 

IV. CASE STUDIES DRIVE REQUIREMENTS 
Real Intent has been working to address X-propagation issues 
for several years now. There have been several customer 
studies to help refine the requirements of a complete and 
practical solution. We have worked with both designers and 

X-optimistic 
Coding 

always @(*) 
    if (sel==1’b0) 
         g = 2’b00; 
   else 
         g = 2’b01; 
 

X-pessimistic 
Coding 

always @(*) 
    if (sel==1’b0) 
         g = 2’b00; 
    else if (sel===1’bx) 
         g = 2’bxx; 
   else 
         g = 2’b01; 

X-accurate 
Coding 

always @(*) 
    if (sel==1’b0) 
         g = 2’b00; 
    else if (sel===1’bx) 
         g = 2’b0x; 
   else 
         g = 2’b01; 



verification engineers mired in X’s to propose a practical and 
complete flow that combines methodology and technology as 
appropriate. 

A. Customer Profile #1 
This interaction was with a verification engineer to be able to 
detect real X-optimism issues in RTL, before synthesis. It was 
not a goal to eliminate all X’s in the design, or even all X-
optimism occurrences. They only want to detect and correct 
the ones likely to cause functional differences. In addition, 
they want to use their existing infrastructure without having to 
develop additional code or assertions. 
 
X-optimism issues will show up at the netlist level, but it is 
not practical to debug them there. Netlist issues are more 
difficult to debug because the design is less familiar after 
synthesis, there are more X’s due to X-pessimism, and 
simulations are significantly slower. This customer was keen 
to find X-optimism issues in RTL. 
 
Once a functional issue is detected, the solution needs to 
provide the information necessary to help isolate the root 
cause of the problem Debug is a challenge, even at RTL, 
because the functional anomaly is generally detected at the 
outputs of a block or chip, which can be many clock cycles 
after the problem originates. And there can be many X’s in the 
design, most of which are innocuous.  Finding the X causing 
the problem can be like finding a needle in a haystack. 

B. Customer Profile #2 
This customer was a design engineer.  X’s were viewed as 
common in the design. This design engineer wanted to 
understand where the X-sources are in the design, and whether 
they might propagate to X-sensitive constructs. They did not 
want any automatic recoding. They wanted the solution to 
provide information to enable effective manual decisions. 

For this customer the requirement was to identify all X-
sources. The challenge is precision because noisy reports will 
cause unnecessary analysis.  For example, the list of X-sources 
should not include X-assignments that cannot be reached.  
Also, the tool should not identify X-sensitive constructs that 
were already coded for X-accuracy. 

C. Customer Profile 3 
The third customer we interacted with was primarily 
concerned about X’s originating from powered down blocks. 
Their chips consist of many power domains. At any time, a 
block can be in one of full power, reduced power, and 
powered down states. Testing all the combinations can be a 
nightmare. Also, low power features are incorporated at the 
netlist level, where simulations are difficult to debug and very 
slow. 
 
Powered down block must be restored to full operation very 
quickly for the power management scheme to be effective.  

This is done by using retention cells to hold states and 
isolation cells to ensure constant known values on inputs and 
outputs of the power domain. Retention cells and isolation 
cells enable bringing up a block after dynamic power down to 
be much faster than when power is first applied.  These 
specialized cells are expensive and also consume additional 
power. Minimizing their count is essential to these power 
management schemes. This was a primary motivation of this 
customer for incorporating an X-analysis solution. 
  
From the perspective of X-propagation analysis, the complete 
solution must be able to consider X’s that result when bringing 
up a block that is powered down. The analysis is similar to 
determining uninitialized flops after the reset sequence, but 
requires understanding retention cells and isolation cells that 
are specified, not in RTL, but in UPF or CPF side files. 
Another requirement is that you do not want to flag issues 
during the low power state.  

D. Customer Profile #4 
A fourth customer was another verification engineer that was 
more concerned with X-pessimism than X-optimism. X-
pessimism causes unnecessary X’s in gate level logic. Getting 
the simulations running often requires analyzing where the 
pessimism is occurring and fixing each case, being careful not 
to overlook what might have been X-optimism. They stated 
that they did not like randomization of initial values because it 
is arbitrary and might not exercise a problem area. The goal 
was to be able to automatically identify when and where X-
pessimism was occurring. Automatically correcting X-
pessimism would be even better. This would allow other 
downstream processes, like power analysis to begin earlier. 
 
In summary, a complete solution must address X-optimism, X-
pessimism, X-source analysis, information reporting and 
debug. Designers typically want to know where issues might 
be through early static analysis. Verification engineers want to 
build on the infrastructure they already have to detect and 
isolate real issues. As much as possible should be done at RTL 
where debug is easier and simulations are faster. 

V. A PRACTICAL X-VERIFICATION SOLUTION 
The solution to the X-propagation problem is part technology  
and part methodology. The proposed solution brings together 
structural analysis, formal analysis, and simulation in a way 
that addresses all the problems and can be scaled.  Figure 6 
shows the use model for the design engineer and the 
verification engineer. 
 
The solution is static analysis centered for the design engineer 
and is primarily simulation-based for the verification engineer. 
Also, the designer centric flow is preventative in nature while 
the verification flow is intended to identify and debug issues.  
We will use the I2C testcase from OpenCores to demonstrate 
the flow. 
 



 
 

Figure 6. X-Verification Flow 
 

A. Design Centric Flow 
It was clear from our customer feedback that designers want to 
understand where in the design X’s might originate and what 
X-sensitive constructs they might propagate to. So automation 
is needed to determine all the X-sources in the design, trace 
their propagation through X-sensitive constructs, and present 
the results in the form of a hazard report. 
 
A precise determination of X-sources is key because an over 
determination of X-sources would lead to an unnecessary 
analysis of many X-sensitive constructs, an overly long hazard 
report, and an overly complicated debug. A combination of 
simulation, structural analysis, and prudent use of formal 
techniques can be utilized to determine a precise list of X-
sources in the design, and a simple structural analysis can 
identify the X-sensitive constructs in their paths.  
 
Let’s analyze a code snippet from the I2C design, shown in 
Figure 7. Based on the code, and the assumption that all inputs 
except the clocks and asynchronous resets may have X’s, the 
designer should be informed  that signals wb_rst_i and 
wb_addr_i are X-sources because they are inputs to the 
block, and the signal cr[7:0] is sensitive to X’s on those 
signals. In addition, if an X-source can propagate to other 
signals in that construct, such as wb_acc or i2c_al, the 
designer should be informed that the cr[7:0] is also 
sensitive to X’s on those signals.  This information should be 
provided in conjunction with a source code browser for tracing 
paths from X-sources as well as to and from X-sensitive 
constructs.  For each signal that might cause X-optimism to 
occur, the tool should show how an X-source could propagate 
to the X-sensitive construct. 
 

 
Figure 7. I2C Code Snippet 

 
For netlists, the report is similar but the tool reports signals 
that are sensitive to X-pessimism. Ideally a product should 
predict where pessimism is likely to exist from the RTL, 
though it will be somewhat dependent on the synthesizer. 

B. Verification Centric Flow 
The verification engineer typically wants to determine if X-
optimism is causing functional bugs to be overlooked in RTL 
simulations, and wants to eliminate X-pessimism in netlist 
simulations.  X-accurate modeling will accomplish both, and 
the existing simulation checkers can be used to detect 
functional issues. This can be done in a way that does not 
touch the user’s code and is easily integrated.  Using the I2C 
design with an X-accurate model reveals that an error was 
being masked by X-optimism.  Figure 8 shows the simulation 
output. 
 
RTL simulation is preferred over netlist simulation because it 
is faster. It is imperative the performance overhead of X-
accurate simulation be controlled. The precise determination 
of X-sources and the resulting minimization of the number of 
X-sensitive constructs that must be modeled in RTL 
simulation is, therefore, an essential part of our solution. 
 
Once an issue is discovered, the verification engineer needs 
further information to isolate the cause. For this, it is useful to 
know which signals were sensitive to optimism and which 
control signals had X’s. The suggested methodology is to use 
the simulator’s built in assertion counters to track statistics for 
these signals. We also configure our monitors to print a 
message the first time a signal is sensitive to X-optimism. This 
is useful for determining the root cause. Figure 9 shows the 
statistics for this run and Figure 10 shows the simulation 
output with messages. How many messages and the types of 
messages need to be configurable for debug. 
 

always@(posedge wb_clk_i or negedge rst_i) 
  if (!rst_i) 
    cr <= 8'h0; 
  else if (wb_rst_i) 
    cr <= 8'h0; 
  else if (wb_wacc) 
    begin 
    if (core_en &(wb_adr_i==3'b100) ) 
       cr <= wb_dat_i; 
    end 
  else begin 
    if (done | i2c_al)  
      cr[7:4] <=  4'h0;   //command bits 
    cr[2:1] <= #1 2'b0;  // reserved bits 
    cr[0] <= #1 1'b0;    // clear IRQ_ACK 
  end 



 
 

Figure 8 - Simulation Output with X-Model 
 

 
Figure 9. Statistics on X-optimism signals 

 
It is important to acknowledge that all X’s are not bad, and 
that it is not practical to eliminate all X’s, so you must be able 
to detect and isolate real issues. Monitoring is critical for 
debug, however you can’t simply print messages every time it 
occurs because this type of output will slow the simulator to a 
crawl (e.g. if it had printed that address and data were X 38490 
times, the simulation would take a very long time to run).  It is 

also important to turn monitors off during initialization and 
when blocks are not fully powered. 
 

 
Figure 10. Simulation with Monitors Identifies X-optimism 

 
Looking at the messages printed, the first X-optimism occurs 
at time 106049000 on signals cr[7:0], which is the 
command register – a likely culprit.  From this I know to look 
at the waveforms at this point in time.  Figure 11 shows the 
waveform of the relevant signals without the X-accurate 
model. Figure 12 shows the same with the X-accurate model. 
Recall that the source code snippet is shown in Figure 7. 
wb_wacc is 1’b0, so the statement being executed at the 
specified time is: 
 
        if (done | i2c_al)  
           cr[7:4] <=  4'h0;    
 

/****Running simulation with Real Intent Ascent 
XV generated X-Optimism monitors ********/  
XV Info: X_OPT:out and X_OPT:in monitors are 
disabled at time 0 for instance `i2c_TOP  
INFO: WISHBONE MASTER MODEL INSTANTIATED  
status: 99500 done reset  
XV Info: X_OPT:out and X_OPT:in monitors are 
enabled at time 100000 for instance `i2c_TOP  
status: 109600 programmed registers  
status: 113600 verified registers  
status: 121600 generate 'start', write cmd 20   
status: 11445600 write slave memory address 01  
status: 21543600 write data a5  
. 
. 
XV Warn: X_OPT:out signal `i2c_TOP.cr[7:4] was 
sensitive to X-Optimism at time 106049000  
XV Warn: X_OPT:out signal 
`i2c_TOP.byte_ctrl.core_cmd[3:0] was sensitive to 
X-Optimism at time 106049000  
XV Warn: X_OPT:out signal 
`i2c_TOP.byte_ctrl.c_state[4:0] was sensitive to 
X-Optimism at time 106049000  
XV Warn: X_OPT:out signal 
`i2c_TOP.byte_ctrl.bit_ctrl.c_state[17:0] was 
sensitive to X-Optimism at time 106049000  
XV Warn: X_OPT:out signal 
`i2c_TOP.byte_ctrl.bit_ctrl.cmd_ack was sensitive 
to X-Optimism at time 106448000  
XV Warn: X_OPT:out signal 
`i2c_TOP.byte_ctrl.bit_ctrl.scl_oen was sensitive 
to X-Optimism at time 106448000  
XV Warn: X_OPT:out signal 
`i2c_TOP.byte_ctrl.shift was sensitive to X-
Optimism at time 106449000  
XV Warn: X_OPT:out signal 
`i2c_TOP.byte_ctrl.core_txd was sensitive to X-
Optimism at time 108293000  
status: 115432600 received xx from 3rd read  
status: 115435600 read + nack  
status: 125530600 received xx from 4th read  
status: 125535600 generate 'start', write cmd 20 
(  
status: 136955600 write slave memory address 10  
status: 147050600 Check for nack  
status: 147053600 generate 'stop'  
status: 172053600 Abbreviated Testbench done 
 

Coverage Data from VCS Log Files  
(Clocks=344108) Control Input Signal Names  
Matches   Signal Name  
-------- ----- ------------ 
16        byte_ctrl_bit_ctrl_al  
16        i2c_al  
38492     wb_adr_i_2_0  
 
 
Coverage Data from VCS Log Files  
 (Clocks=344108) Signals Sensitive to optimism 
Matches    Signal Name  
-------- ----- -------------  
16        byte_ctrl_bit_ctrl_scl_oen  
16        byte_ctrl_bit_ctrl_cmd_ack  
16        byte_ctrl_bit_ctrl_c_state_17_0  
2         byte_ctrl_c_state_4_0  
16        byte_ctrl_shift  
10        byte_ctrl_core_txd  
2         byte_ctrl_core_cmd_3_0  
2         cr_7_4  
38490     wb_dat_o_7_0 
 

/** Running simulation with Real Intent Ascent 
XV generated X-Optimism models 
************************/  
XV Info: X_OPT:out models are enabled at time 
0 for instance `i2c_TOP  
 
INFO: WISHBONE MASTER MODEL INSTANTIATED  
status: 99500 done reset  
status: 109600 programmed registers  
status: 113600 verified registers  
status: 121600 generate 'start', write cmd 20  
status: 11443600 write slave memory address 01  
status: 21541600 write data a5  
. 
. 
status: 106054600 received 21 from 3rd read  
status: 106057600 read + nack  
status: 106063600 received 21 from 4th read 
status: 106068600 generate 'start', write cmd 
20 (Check invalid address  
status: 106076600 write slave memory address 
10  
status: 106079600 Check for nack  
 
ERROR: Expected NACK, received ACK  
 
status: 106082600 generate 'stop'  
status: 131082600 Abbreviated Testbench done 
 



Since done is 1’b0 and i2c_al is 1’bx, the control 
evaluates to 1’bx, so cr[7:4] retains its previous value of 
4’b0010. If i2c_al evaluates to a 1’b1 instead of a 1’b0, 
then the assignment would have been 4’b0000.  Notice that 
bit cr[5] was sensitive to optimism. From here you can trace 
the X value of the control signals back to its source with the 
waveform analysis tool. 
 

 
Figure 11. Simulation without X-accurate Model 

 

 
Figure 12. Simulation with X-accurate Model 

 
The suggested methodology is designed to provide both the 
designer and verification engineer with the tools to prevent X-
propagation issues.X-accurate modeling can be used to  verify 
that X-optimism is not masking bugs, and also corrects X-
pessimism at the netlist level. Monitors can be enabled for 
isolation and debug. 

VI. SUMMARY 
X-propagation issues have always existed but are becoming 
more prominent as the levels of integration continue to 
increase and power management schemes become more 
sophisticated. Higher levels of integration increase the 
probability of occurrence of Xs and X-related failures, and 
make detection and debug that much more difficult. Complex 
power management schemes further increase the potential for 
the existence of X’s. It is therefore becoming a necessity to 
sign off specifically on X-verification. 
 

This paper has presented a review of the issues caused by X-
propagation and surveyed the various point technologies that 
are being studied to address the problems. Verification 
objectives gleaned from working with several customers was 
presented. Designers want to ensure they understand the 
potential X-sources in their design that might propagate to an 
X-optimistic construct. The verification engineer wants to be 
able to verify that X-optimism is not causing functional issues 
at RTL, and they want to mask pessimism at the netlist level – 
all of this without significantly impacting RTL simulation 
speed. 
 
A practical and complete solution was presented that combines 
several available technologies and addresses both X-optimism 
and X-pessimism.  It provides a static report to the designer 
for prevention of X-propagation issues, and enables the 
verification engineer to detect and debug real X-optimism 
issues and eliminate unnecessary Xs in netlist. The necessary 
debug information is provided to help determine where the X 
originated. Precise determination of X-sources and affected X-
sensitive constructs is performed with a combination of formal 
and structural analyses for effective reporting to designers, 
efficient debug of failures and a minimum overhead on RTL 
simulation speed. Real Intent’s Ascent XV was utilized to 
demonstrate the key aspects of the flow. 
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