
X-Propagation Woes: Masking Bugs at RTL and
Unnecessary Debug at the Netlist

Lisa Piper, Vishnu Vimjam
Real Intent, Inc.

Sunnyvale, CA USA
lisa@realintent.com, vishnu@realintent.com

Abstract:: This paper presents a complete and practical
methodology to comprehensively solve the X problem in RTL
design. It begins by reviewing common sources of Xs, and describes
how they cause functional bugs as well as unwarranted debug that
prolong verification cycles. Solving the X problem helps minimize
simulation and synthesis iterations and enables various design
analyses (e.g. power analysis), normally performed on netlists, to
begin sooner. The pros and cons of various point solutions to this
problem are described. The technologies discussed include
structural analysis, formal analysis, coding for X-accuracy, and
simulation techniques such as random seeding of state initial
values. It is essential that a complete solution address both X-
optimism and X-pessimism woes as well as be applicable to all
sources of Xs, facilitate debug, provide coverage analysis, and
enable automation, high performance, and usability. The
requirements of a complete and practical solution. based on
feedback from users who deal with X issues are provided. The
summary of our interaction with users is that the X problem is
multi-dimensional and needs a holistic solution that brings to bear
the combination of strucural analysis, simulation and formal
analysis to solve effectively. We describe our user experiences and a
case study based on our proposed solution.

Keywords-component; X-propagation, X-optimism, X-pessimism

I. INTRODUCTION
SOC integration levels approaching a billion transistors per
chip, tremendous pressure to shrink the verification cycle, and
the power minimization imperative have compounded an
existing issue where Xs in simulation can mask functional
bugs and cause unnecessary Xs in netlists.

This paper begins with an introduction to the issues caused by
X-propagation, including defining the X state, common
sources of Xs, and a description of the issues of X-optimism
and X-pessimism. We then discuss the pros and cons of
available solutions for preventing the masking of bugs by X-
optimism in RTL and the unnecessary debug caused by X-
pessimism on netlists. Feedback from customer interactions is
discussed and a complete and practical solution is proposed.

The SystemVerilog standard defines an X as an “unknown”
value which is used to represent when simulation cannot
definitely resolve a signal to a “1”, a “0”, or a “Z”. Synthesis,
on the other hand, defines an X as a “don’t care”, enabling
greater flexibility and optimization. Unfortunately, Verilog
RTL simulation semantics often mask propagation of an
unknown value by converting the unknown to a known, while

gate-level simulations show additional Xs that will not exist in
real hardware. The result is that bugs get masked in RTL
simulation, and while they show up at the gate level, time
consuming iterations between simulation and synthesis are
required to debug and resolve them. Resolving differences
between gate and RTL simulation results is painful because
synthesized logic is less familiar to the user, and Xs make
correlation between the two harder. Unwarranted X-
propagation thus proves costly, causes painful debug, and
sometimes allows functional bugs to slip through to silicon.

Continued increases in SOC integration and the interaction of
blocks in various states of power management are
exacerbating the X problem. In simulation, the X value is
assigned to all memory elements by default. While hardware
resets can be used to initialize registers to known values,
resetting every flop or latch is not practical because of routing
overhead. For synchronous resets, synthesis tools typically
club these with data-path signals, thereby losing the distinction
between X-free logic and X-prone logic. This in turn causes
unwarranted X-propagation during the reset simulation phase.
State-of-the-art low power designs have additional sources of
Xs with the additional complexity that they manifest
dynamically rather than only during chip power up.

II. UNDERSTANDING THE ISSUES
In this section, we review the current understanding of the X-
optimism and X-pessimism issues that result from the
presence of Xs in a design. Note that the same issues can
occur with Z values, but Z’s tend to be limited in scope and
very intentional. First, we review what Xs are and where they
come from.

A. Definition of an X
Xs do not exist in real hardware. X is an abstract value
introduced for the sake of algebraic semantics, and different
tools interpret them differently.

Simulation semantics of an X are defined by the IEEE 1800
SystemVerilog standard[1]. Simulators interpret an X as a value
in 4-state logic (0, 1, X, Z) that represents an “unknown”
logic value. There are four data types defined in the standard
that use 4-state logic: logic, reg, integer, and time.
All of these data types have a default value of X.

mailto:lisa@realintent.com�
mailto:vishnu@realintent.com�

Synthesis tools treat Xs differently. They interpret the X value
as a “don’t care” instead of an “unknown”, allowing for
greater synthesis optimizations.

B. Common Sources of Xs in a Design
There are many sources of an “unknown” (X-source) in
simulation. Some are by design, some are a result of errors, and
some are the result of X’s driving the inputs to the design.

The most common X source are uninitialized flops and latches,
many of which come from memories in the design. While
some designers use the practice of initializing everything, many
applications don’t have that luxury due to real estate and
routing constraints of a reset signal.

Blocks that support low power can also have X-sources when
power is off or being restored. When a block comes out of a
low power mode, depending on the wake-up mechanism,
initialization is generally effected more by retention flops and
isolation cell strategies added to gate implementations rather
than via the traditional reset signals. Low power brings with it a
separate type of initialization analysis.

Another common source of Xs is explicit assignment. Explicit
assignments are used to flag illegal or unexpected conditions.
Other common error conditions that cause an X value in
simulation include bus contention, range violations, a memory-
read before initialization, and signals that are not driven.

All of these can result in “unknown” values that will be either a
logic-1 or a logic-0 in real hardware, but cannot be determined
at simulation time.

C. X-optimism Masks Functional Bugs
X-optimism is an RTL phenomenon where what should be an
unknown value becomes a known value in simulation. X-
optimism is common in RTL if and case constructs. A
value of Z can also cause optimism to occur, but Zs in a design
are relatively uncommon.

To understand how an unknown value can suddenly become a
known value, let’s analyze what happens with the simple
if-else statement that is shown below in Figure 1.

Figure 1. X-optimistic If-Else Statement

When sel is a 1’b1, the output is the value of a and when
sel is 1’b0, the output is the value of b. But notice what
happens when sel is an X. Here, the X value is interpreted
as though sel is 1’b0 and the output is the value of b.
The “unknown X” is now masquerading as a known value. In

real hardware the sel signal might in fact have been a 1’b1,
which means that the correct value could have been the value
of a. Similarly, as shown in Figure 2, a case statement can
also be prone to X-optimism. When sel is 1’b1, the output is
a, when sel is 1’b0, the output is b, and when sel is an
unknown X, simulation semantics define that the output
retains its previous value. In real hardware, it may or may not
change value depending on the actual value of the sel.

Figure 2. X-optimistic Case Statement

X-optimism is a serious issue because it can mask functional
bugs. On the other hand, it can occur frequently to ill effect
since it only becomes a problem when the output is being
used. An example might be Xs on a shared address bus that is
not driven until a device acquires the bus. These Xs are only
an issue when the data is being sampled.

In summary, a situation is said to be X-optimistic when an
unknown value incorrectly becomes a known value, thereby
potentially masking functional bugs in RTL. X-optimism
issues will be revealed in gate level simulations, however gate
level simulation is slow, iterations back to RTL to fix the bug
are costly, and debug is painful. The biggest challenge with X-
optimism is identifying when it causes observable functional
differences, instead of simply identifying when it occurs.

D. X-pessimism Causes Unnecessary Xs
X-pessimism is the situation when a deterministic value in
hardware becomes an unknown value in simulation. It is an
issue primarily observed at the netlist level, though it can be
sometimes visible in RTL simulations as well. It occurs when
there is reconvergence and loss of correlation between
converging X values. It is common in multiplexors and
decoders.

Let’s look at a simple multiplexor. In real hardware, we know
that when both inputs are the same value, the output value
matches that value, independent of the value of the selector.
But look what happens in gate level simulation when both
inputs are a 1’b1 and the selector is an X value.

In general, a two input multiplexor with a selector is
implemented as (a && selector) || (b &&
~selector). Figure 3 shows the gate level implementation
of a multiplexor. When the selector is 1’bx and a and b are
both 1’b1, the logic reduces to “1’bx || ~1’bx”, which
simulators resolve to an X value per the standard.

//if-else example
logic s;
always_comb
 begin
 if (sel)
 out = a;
 else
 out = b;
 end

input
sel

output
out

1 a
0 b
X b

//if-else example
reg s;
always_comb
 begin
 case (sel)
 1: out = a;
 0: out = b;
 endcase
 end

input
sel

output
out

1 a
0 b
X prev

Figure 3. Two Input Mux Example of Pessimism

In summary, X-pessimism occurs when an X value appears
unnecessarily. X pessimism results in differences between
RTL and gate level simulations that must be resolved.

III. SURVEY OF APPLICABLE TECHNOLOGIES
This section reviews known technologies for detecting and
preventing X-propagation issues.

A. Simulation Analysis
Simulation is when input sequences are applied to a model and
the output is checked. All simulators provide differentiation
through features, some of which are associated with X
propagation issues.

1) Waveform Tools
Waveform tools[9] provide various features to help detect and
debug X-propagation issues in simulation. For example, most
waveform viewers show an X value as a distinct state that is
both a 1’b1 and 1’b0 in the color red. This is useful in
visualizing X values. Most viewers will also allow tracing the
drivers of an X.

Unfortunately, identifying true X-optimism issues in this
manner is cumbersome. Let’s say an X was detected in netlist
simulation. First, one must determine if this is a legitimate X
or an artifact of X-pessimism. Then, one must manually
separate legitimate X propagation from X-optimism. Finally,
the process is further complicated because there may be much
logic and many clock cycles between an X-optimism
occurrence and its manifestation as a failure.

2) RTL X-optimism Detection and Reporting
Some simulators have a compile time switch for detecting X-
optimism[4]. It will drive the control of X-optimistic constructs
to a 1’b1 and a 1’b0 when the control is a 1’bx value, and
flag an error when the output is different in the two cases.

This approach is clearly has an overhead in simulation time
but does enable detecting X-optimism occurrences as they
happen. The problem, once again, is that X-optimism often
exists in designs without affecting functionality. So, the

additional simulation time could end up being wasted and lead
to further wasted effort debugging false negatives.

3) Randomization of Initial Values
Some simulators have a feature that will allow you to set the
initial state of all reg’s in a design to 1’b1, 1’b0, or a random
value. You can run multiple times to cover multiple scenarios.

This can be a good solution for addressing X-pessimism
issues, but not for detecting correct initialization and X-
optimism issues. Even with multiple runs, you are still likely
to miss a functional bug if the simulator doesn’t happen to
exercise the combination of values that triggers an issue. It
also only addresses X’s from uninitialized regs, when, in
fact, there are many other sources of X in a design.

B. Structural Analysis
Structural analysis analyzes the characteristics of the RTL to
identify potential issues. Lint tools such as Ascent Lint[10] can
do a structural analysis of the RTL and alert the designer to X-
hazards that might cause X-propagation issues. Specifically
they might identify explicit X-assignments, signals within the
block that are used but not driven, or signals that are used
before being assigned. All such things may cause X-
propagation issues. Unfortunately, a structural analysis tool
cannot determine if a real issue exists and does not include any
sequential analysis.

C. Formal Analysis
Formal analysis is a systematic and automated way of
exhaustively testing a design for a specific issue at hand. This
section discusses the applicability of the three types that come
up in discussions of X-propagation.

1) Equivalency Checking
It is a misconception of many that equivalency checkers catch
X-propagation issues. Equivalency checking deals with
formally verifying two versions of a design to be functionally
equivalent. Practical equivalence checkers analyze
combinational logic cones bordered by state elements, ports,
or black boxes [5]. Equivalence is based on binary values on
the bordering and internal signals.

2) Model Checking
Model checking allows a user to write properties in
specification languages such as PSL or SVA [3] so that formal
engines may exhaustively verify that those properties hold for
all combinations of input sequences. Formal tools that support
4-state analysis will typically verify that properties hold for all
combinations of 1’b1 and 1’b0 on all X sources. While this
can mitigate the X-optimism and X-pessimism issues, a
problem with model checking is that the user must develop
these properties, including properties that constrain the inputs
to valid sequences. There are also automatic model checkers
that automatically extract specialized checks like the
reachability of an X-assignment statement or bus
float/contention from the RTL and apply sequential formal
analysis for checking. Unfortunately, they do not solve the X-

X
X

X

1

1

X

X
X

assign out = (X && 1) || (~X && 1)
assign out = X || ~X
assign out = X

propagation problem in entirety. Model checking also has
capacity challenges[7].

3) Symbolic Simulation
With symbolic simulation, inputs are parameterized by
Boolean variables, and outputs are represented as a function of
those variables[6].. Symbolic simulation can exhaustively
verify the design by checking that the output remains the same
regardless of the presence of Xs. It can also provide a counter
example that shows the sequence of inputs required to trigger
the error condition.

Unfortunately, there are practical limitations to symbolic
simulation. Symbolic simulation techniques explode in
memory consumption rapidly with design size and function.
Like all formal tools, one can get false negatives in symbolic
simulation due to inclusion of illegal sequences of inputs.
Another limitation of both conventional and symbolic
simulation is that they can only verify over a specified number
of cycles [7]

D. X-Accurate Coding
One approach for managing X-propagation is through strict
coding guidelines to ensure X-accurate coding. The
conditional operator (? :)1

 is immune to X-optimism and can
be used in place of if-else and case constructs, but it is not
as readable and is still prone to X-pessimism. Figure 4
contrasts a simple example of common coding, which is X-
optimistic, X-pessimistic coding and X-accurate coding.

The X-optimistic coding is so because when the value of sel
is unknown, the output is assigned the value of 2’b01, as
though sel was a 1’b1. In real hardware, it could have been
either a 1’b1 or a 1’b0, so simulation results could mask
an issue.

The X-pessimistic coding will use the case equality operator
(===)2

 to first check if the value of the control signal (sel) is
a 1’bx. If so it will propagate that X value by assigning all
bits of the output to 1’bx. This will prevent the optimism,
however it is pessimistic since the MSB of the output would
have been a 1’b0 independent of the value of sel.
Pessimistic coding will cause unnecessary debug.

Ideally, the coding should be X-accurate, meaning that it
should correct for X-optimism by propagating the X value, but
without introducing X-pessimism. The X-accurate code for

1 The conditional operator returns the value of the first expression
when the condition is true and the second condition when the
expression is false. When the condition is ambiguous (x or z), then
both both expressions are evaluated. An x value is returned unless
both expressions return the same 0 or 1 value, in which case that
value is returned.
2 With the case equality operator, bits that are x or z shall be included
in the comparison and shall match for the result to be considered
equal.

the example is also shown, where each bit of the output is
evaluated independently.

Figure 4. X-accurate Coding

The example above makes X-accurate coding look easy,
however it can become complex very quickly as the number of
paths in the control-flow graph increases. A more realistic but
still simple example is shown in Figure 5, where there are
embedded if and case statements, and the assignment
values are expressions rather than just constants. It shows how
it is non-trivial and becomes error prone to manually do X-
accurate coding. Automation is needed.

Figure 5. Non-obvious X-Accurate coding

IV. CASE STUDIES DRIVE REQUIREMENTS
Real Intent has been working to address X-propagation issues
for several years now. There have been several customer
studies to help refine the requirements of a complete and
practical solution. We have worked with both designers and

X-optimistic
Coding

always @(*)
 if (sel==1’b0)
 g = 2’b00;
 else
 g = 2’b01;

X-pessimistic
Coding

always @(*)
 if (sel==1’b0)
 g = 2’b00;
 else if (sel===1’bx)
 g = 2’bxx;
 else
 g = 2’b01;

X-accurate
Coding

always @(*)
 if (sel==1’b0)
 g = 2’b00;
 else if (sel===1’bx)
 g = 2’b0x;
 else
 g = 2’b01;

verification engineers mired in X’s to propose a practical and
complete flow that combines methodology and technology as
appropriate.

A. Customer Profile #1
This interaction was with a verification engineer to be able to
detect real X-optimism issues in RTL, before synthesis. It was
not a goal to eliminate all X’s in the design, or even all X-
optimism occurrences. They only want to detect and correct
the ones likely to cause functional differences. In addition,
they want to use their existing infrastructure without having to
develop additional code or assertions.

X-optimism issues will show up at the netlist level, but it is
not practical to debug them there. Netlist issues are more
difficult to debug because the design is less familiar after
synthesis, there are more X’s due to X-pessimism, and
simulations are significantly slower. This customer was keen
to find X-optimism issues in RTL.

Once a functional issue is detected, the solution needs to
provide the information necessary to help isolate the root
cause of the problem Debug is a challenge, even at RTL,
because the functional anomaly is generally detected at the
outputs of a block or chip, which can be many clock cycles
after the problem originates. And there can be many X’s in the
design, most of which are innocuous. Finding the X causing
the problem can be like finding a needle in a haystack.

B. Customer Profile #2
This customer was a design engineer. X’s were viewed as
common in the design. This design engineer wanted to
understand where the X-sources are in the design, and whether
they might propagate to X-sensitive constructs. They did not
want any automatic recoding. They wanted the solution to
provide information to enable effective manual decisions.

For this customer the requirement was to identify all X-
sources. The challenge is precision because noisy reports will
cause unnecessary analysis. For example, the list of X-sources
should not include X-assignments that cannot be reached.
Also, the tool should not identify X-sensitive constructs that
were already coded for X-accuracy.

C. Customer Profile 3
The third customer we interacted with was primarily
concerned about X’s originating from powered down blocks.
Their chips consist of many power domains. At any time, a
block can be in one of full power, reduced power, and
powered down states. Testing all the combinations can be a
nightmare. Also, low power features are incorporated at the
netlist level, where simulations are difficult to debug and very
slow.

Powered down block must be restored to full operation very
quickly for the power management scheme to be effective.

This is done by using retention cells to hold states and
isolation cells to ensure constant known values on inputs and
outputs of the power domain. Retention cells and isolation
cells enable bringing up a block after dynamic power down to
be much faster than when power is first applied. These
specialized cells are expensive and also consume additional
power. Minimizing their count is essential to these power
management schemes. This was a primary motivation of this
customer for incorporating an X-analysis solution.

From the perspective of X-propagation analysis, the complete
solution must be able to consider X’s that result when bringing
up a block that is powered down. The analysis is similar to
determining uninitialized flops after the reset sequence, but
requires understanding retention cells and isolation cells that
are specified, not in RTL, but in UPF or CPF side files.
Another requirement is that you do not want to flag issues
during the low power state.

D. Customer Profile #4
A fourth customer was another verification engineer that was
more concerned with X-pessimism than X-optimism. X-
pessimism causes unnecessary X’s in gate level logic. Getting
the simulations running often requires analyzing where the
pessimism is occurring and fixing each case, being careful not
to overlook what might have been X-optimism. They stated
that they did not like randomization of initial values because it
is arbitrary and might not exercise a problem area. The goal
was to be able to automatically identify when and where X-
pessimism was occurring. Automatically correcting X-
pessimism would be even better. This would allow other
downstream processes, like power analysis to begin earlier.

In summary, a complete solution must address X-optimism, X-
pessimism, X-source analysis, information reporting and
debug. Designers typically want to know where issues might
be through early static analysis. Verification engineers want to
build on the infrastructure they already have to detect and
isolate real issues. As much as possible should be done at RTL
where debug is easier and simulations are faster.

V. A PRACTICAL X-VERIFICATION SOLUTION
The solution to the X-propagation problem is part technology
and part methodology. The proposed solution brings together
structural analysis, formal analysis, and simulation in a way
that addresses all the problems and can be scaled. Figure 6
shows the use model for the design engineer and the
verification engineer.

The solution is static analysis centered for the design engineer
and is primarily simulation-based for the verification engineer.
Also, the designer centric flow is preventative in nature while
the verification flow is intended to identify and debug issues.
We will use the I2C testcase from OpenCores to demonstrate
the flow.

Figure 6. X-Verification Flow

A. Design Centric Flow
It was clear from our customer feedback that designers want to
understand where in the design X’s might originate and what
X-sensitive constructs they might propagate to. So automation
is needed to determine all the X-sources in the design, trace
their propagation through X-sensitive constructs, and present
the results in the form of a hazard report.

A precise determination of X-sources is key because an over
determination of X-sources would lead to an unnecessary
analysis of many X-sensitive constructs, an overly long hazard
report, and an overly complicated debug. A combination of
simulation, structural analysis, and prudent use of formal
techniques can be utilized to determine a precise list of X-
sources in the design, and a simple structural analysis can
identify the X-sensitive constructs in their paths.

Let’s analyze a code snippet from the I2C design, shown in
Figure 7. Based on the code, and the assumption that all inputs
except the clocks and asynchronous resets may have X’s, the
designer should be informed that signals wb_rst_i and
wb_addr_i are X-sources because they are inputs to the
block, and the signal cr[7:0] is sensitive to X’s on those
signals. In addition, if an X-source can propagate to other
signals in that construct, such as wb_acc or i2c_al, the
designer should be informed that the cr[7:0] is also
sensitive to X’s on those signals. This information should be
provided in conjunction with a source code browser for tracing
paths from X-sources as well as to and from X-sensitive
constructs. For each signal that might cause X-optimism to
occur, the tool should show how an X-source could propagate
to the X-sensitive construct.

Figure 7. I2C Code Snippet

For netlists, the report is similar but the tool reports signals
that are sensitive to X-pessimism. Ideally a product should
predict where pessimism is likely to exist from the RTL,
though it will be somewhat dependent on the synthesizer.

B. Verification Centric Flow
The verification engineer typically wants to determine if X-
optimism is causing functional bugs to be overlooked in RTL
simulations, and wants to eliminate X-pessimism in netlist
simulations. X-accurate modeling will accomplish both, and
the existing simulation checkers can be used to detect
functional issues. This can be done in a way that does not
touch the user’s code and is easily integrated. Using the I2C
design with an X-accurate model reveals that an error was
being masked by X-optimism. Figure 8 shows the simulation
output.

RTL simulation is preferred over netlist simulation because it
is faster. It is imperative the performance overhead of X-
accurate simulation be controlled. The precise determination
of X-sources and the resulting minimization of the number of
X-sensitive constructs that must be modeled in RTL
simulation is, therefore, an essential part of our solution.

Once an issue is discovered, the verification engineer needs
further information to isolate the cause. For this, it is useful to
know which signals were sensitive to optimism and which
control signals had X’s. The suggested methodology is to use
the simulator’s built in assertion counters to track statistics for
these signals. We also configure our monitors to print a
message the first time a signal is sensitive to X-optimism. This
is useful for determining the root cause. Figure 9 shows the
statistics for this run and Figure 10 shows the simulation
output with messages. How many messages and the types of
messages need to be configurable for debug.

always@(posedge wb_clk_i or negedge rst_i)
 if (!rst_i)
 cr <= 8'h0;
 else if (wb_rst_i)
 cr <= 8'h0;
 else if (wb_wacc)
 begin
 if (core_en &(wb_adr_i==3'b100))
 cr <= wb_dat_i;
 end
 else begin
 if (done | i2c_al)
 cr[7:4] <= 4'h0; //command bits
 cr[2:1] <= #1 2'b0; // reserved bits
 cr[0] <= #1 1'b0; // clear IRQ_ACK
 end

Figure 8 - Simulation Output with X-Model

Figure 9. Statistics on X-optimism signals

It is important to acknowledge that all X’s are not bad, and
that it is not practical to eliminate all X’s, so you must be able
to detect and isolate real issues. Monitoring is critical for
debug, however you can’t simply print messages every time it
occurs because this type of output will slow the simulator to a
crawl (e.g. if it had printed that address and data were X 38490
times, the simulation would take a very long time to run). It is

also important to turn monitors off during initialization and
when blocks are not fully powered.

Figure 10. Simulation with Monitors Identifies X-optimism

Looking at the messages printed, the first X-optimism occurs
at time 106049000 on signals cr[7:0], which is the
command register – a likely culprit. From this I know to look
at the waveforms at this point in time. Figure 11 shows the
waveform of the relevant signals without the X-accurate
model. Figure 12 shows the same with the X-accurate model.
Recall that the source code snippet is shown in Figure 7.
wb_wacc is 1’b0, so the statement being executed at the
specified time is:

 if (done | i2c_al)
 cr[7:4] <= 4'h0;

/****Running simulation with Real Intent Ascent
XV generated X-Optimism monitors ********/
XV Info: X_OPT:out and X_OPT:in monitors are
disabled at time 0 for instance `i2c_TOP
INFO: WISHBONE MASTER MODEL INSTANTIATED
status: 99500 done reset
XV Info: X_OPT:out and X_OPT:in monitors are
enabled at time 100000 for instance `i2c_TOP
status: 109600 programmed registers
status: 113600 verified registers
status: 121600 generate 'start', write cmd 20
status: 11445600 write slave memory address 01
status: 21543600 write data a5
.
.
XV Warn: X_OPT:out signal `i2c_TOP.cr[7:4] was
sensitive to X-Optimism at time 106049000
XV Warn: X_OPT:out signal
`i2c_TOP.byte_ctrl.core_cmd[3:0] was sensitive to
X-Optimism at time 106049000
XV Warn: X_OPT:out signal
`i2c_TOP.byte_ctrl.c_state[4:0] was sensitive to
X-Optimism at time 106049000
XV Warn: X_OPT:out signal
`i2c_TOP.byte_ctrl.bit_ctrl.c_state[17:0] was
sensitive to X-Optimism at time 106049000
XV Warn: X_OPT:out signal
`i2c_TOP.byte_ctrl.bit_ctrl.cmd_ack was sensitive
to X-Optimism at time 106448000
XV Warn: X_OPT:out signal
`i2c_TOP.byte_ctrl.bit_ctrl.scl_oen was sensitive
to X-Optimism at time 106448000
XV Warn: X_OPT:out signal
`i2c_TOP.byte_ctrl.shift was sensitive to X-
Optimism at time 106449000
XV Warn: X_OPT:out signal
`i2c_TOP.byte_ctrl.core_txd was sensitive to X-
Optimism at time 108293000
status: 115432600 received xx from 3rd read
status: 115435600 read + nack
status: 125530600 received xx from 4th read
status: 125535600 generate 'start', write cmd 20
(
status: 136955600 write slave memory address 10
status: 147050600 Check for nack
status: 147053600 generate 'stop'
status: 172053600 Abbreviated Testbench done

Coverage Data from VCS Log Files
(Clocks=344108) Control Input Signal Names
Matches Signal Name
-------- ----- ------------
16 byte_ctrl_bit_ctrl_al
16 i2c_al
38492 wb_adr_i_2_0

Coverage Data from VCS Log Files
 (Clocks=344108) Signals Sensitive to optimism
Matches Signal Name
-------- ----- -------------
16 byte_ctrl_bit_ctrl_scl_oen
16 byte_ctrl_bit_ctrl_cmd_ack
16 byte_ctrl_bit_ctrl_c_state_17_0
2 byte_ctrl_c_state_4_0
16 byte_ctrl_shift
10 byte_ctrl_core_txd
2 byte_ctrl_core_cmd_3_0
2 cr_7_4
38490 wb_dat_o_7_0

/** Running simulation with Real Intent Ascent
XV generated X-Optimism models
************************/
XV Info: X_OPT:out models are enabled at time
0 for instance `i2c_TOP

INFO: WISHBONE MASTER MODEL INSTANTIATED
status: 99500 done reset
status: 109600 programmed registers
status: 113600 verified registers
status: 121600 generate 'start', write cmd 20
status: 11443600 write slave memory address 01
status: 21541600 write data a5
.
.
status: 106054600 received 21 from 3rd read
status: 106057600 read + nack
status: 106063600 received 21 from 4th read
status: 106068600 generate 'start', write cmd
20 (Check invalid address
status: 106076600 write slave memory address
10
status: 106079600 Check for nack

ERROR: Expected NACK, received ACK

status: 106082600 generate 'stop'
status: 131082600 Abbreviated Testbench done

Since done is 1’b0 and i2c_al is 1’bx, the control
evaluates to 1’bx, so cr[7:4] retains its previous value of
4’b0010. If i2c_al evaluates to a 1’b1 instead of a 1’b0,
then the assignment would have been 4’b0000. Notice that
bit cr[5] was sensitive to optimism. From here you can trace
the X value of the control signals back to its source with the
waveform analysis tool.

Figure 11. Simulation without X-accurate Model

Figure 12. Simulation with X-accurate Model

The suggested methodology is designed to provide both the
designer and verification engineer with the tools to prevent X-
propagation issues.X-accurate modeling can be used to verify
that X-optimism is not masking bugs, and also corrects X-
pessimism at the netlist level. Monitors can be enabled for
isolation and debug.

VI. SUMMARY
X-propagation issues have always existed but are becoming
more prominent as the levels of integration continue to
increase and power management schemes become more
sophisticated. Higher levels of integration increase the
probability of occurrence of Xs and X-related failures, and
make detection and debug that much more difficult. Complex
power management schemes further increase the potential for
the existence of X’s. It is therefore becoming a necessity to
sign off specifically on X-verification.

This paper has presented a review of the issues caused by X-
propagation and surveyed the various point technologies that
are being studied to address the problems. Verification
objectives gleaned from working with several customers was
presented. Designers want to ensure they understand the
potential X-sources in their design that might propagate to an
X-optimistic construct. The verification engineer wants to be
able to verify that X-optimism is not causing functional issues
at RTL, and they want to mask pessimism at the netlist level –
all of this without significantly impacting RTL simulation
speed.

A practical and complete solution was presented that combines
several available technologies and addresses both X-optimism
and X-pessimism. It provides a static report to the designer
for prevention of X-propagation issues, and enables the
verification engineer to detect and debug real X-optimism
issues and eliminate unnecessary Xs in netlist. The necessary
debug information is provided to help determine where the X
originated. Precise determination of X-sources and affected X-
sensitive constructs is performed with a combination of formal
and structural analyses for effective reporting to designers,
efficient debug of failures and a minimum overhead on RTL
simulation speed. Real Intent’s Ascent XV was utilized to
demonstrate the key aspects of the flow.

REFERENCES
[1] IEEE Standard for SystemVerilog Unified Hardware Design,

Specification, and Verification Language, IEEE 1800-2009.
[2] Mike Turpin, “The Dangers of Living with an X”, SNUG Boston,

2003..
[3] Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari, and Lisa

Piper c. 2010 SystemVerilog Assertions Handbook, 2nd edition for
Dynamic and Formal Verification, ISBN 878-0-9705394-8-7
http://SystemVerilog.us/

[4] Hong-Zu Chou, Kai-Hui Chang, and Sy-Yen Kuo, “Handling Don’t-
Care Conditions in High-Level Synthesis and Applications for Reducing
Initialized Registers, DAC 2009.

[5] Paul Hoxey, Clayton McDonald, and David Guinther. “An introduction
to symbolic simulation” EE Times December 19, 2005.

[6] John Harrison, “Formal Verification Methods 2: Symbolic Simulation”,
Marktoberdorf 2003

[7] Rajeev Ranjan, Yann Antonioli, Alan Hunter, Oleg Petlin. “Formal
verification enables safe X handling”, December 16, 2008.

[8] Edmund M. Clarke, Orna Grumberg and Doron A. Peled. Model
Checking, MIT Press, 1999.

[9] SpringSoft VerdiTM Automated Debug
System http://www.springsoft.com/products/verdi-
lp?gclid=CLr73oGI86wCFRAq7AodlS0hJg

[10] Real Intent Ascent XV. http://www.realintent.com/real-intent-
products/ascent

http://www.springsoft.com/products/verdi-lp?gclid=CLr73oGI86wCFRAq7AodlS0hJg�
http://www.springsoft.com/products/verdi-lp?gclid=CLr73oGI86wCFRAq7AodlS0hJg�
http://www.realintent.com/real-intent-products/ascent�
http://www.realintent.com/real-intent-products/ascent�

	X-Propagation Woes: Masking Bugs at RTL and Unnecessary Debug at the Netlist
	I. Introduction
	II. Understanding the Issues
	A. Definition of an X
	B. Common Sources of Xs in a Design
	C. X-optimism Masks Functional Bugs

	Figure 1. X-optimistic If-Else Statement
	D. X-pessimism Causes Unnecessary Xs

	III. Survey Of Applicable Technologies
	A. Simulation Analysis
	1) Waveform Tools
	2) RTL X-optimism Detection and Reporting
	3) Randomization of Initial Values

	B. Structural Analysis
	C. Formal Analysis
	1) Equivalency Checking
	2) Model Checking
	3) Symbolic Simulation

	D. X-Accurate Coding

	IV. Case Studies Drive Requirements
	A. Customer Profile #1
	B. Customer Profile #2
	C. Customer Profile 3
	D. Customer Profile #4

	V. A Practical X-Verification Solution
	A. Design Centric Flow
	B. Verification Centric Flow

	VI. Summary
	References

