
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Wrapping Verilog Bus Functional Model (BFM) and RTL as Drivers in
Customized UVM VIP Using Abstract Classes

Roman Wang Thomas Bodmer
AMD Shanghai, China AMD Sunnyvale, USA

Roman.Wang@amd.com Thomas.Bodmer@amd.com

Abstract

With the increasing complexity of design and verification
requirements, more and more verification teams adopted the
UVM methodology to build their testbench. UVM could bring a
highly reusable, scalable, extensible and configurable framework
to engineers to shorten the verification schedule and ensure
quality. UVM verification IP (VIP) usually stands for a specific
standard protocol interface UVM verification component (iUVC),
and could be easily reused to different level of UVM verification
testbenches (IP or SoC).
In general, the verification team integrates in-house or 3rd part
UVM VIP to verify the standard bus protocol. However, there may
be no available UVM VIP for a particular bus protocol, and an
engineer has to develop the customized UVM VIP as specific
requirements.
In special cases, the master IP is connected to different slave IP
through a shared bus, where timing is particular and a little bit
complex. This master IP with bus interface had been proved in
past projects at the SoC level. When the IP team wants to verify
a new IP with this type of shared particular bus interface that will
be connected to the same master IP at the SoC level, the
customized UVM VIP is necessary to help verify the new IP at the
UVM stand-alone level at an early stage. With such
requirements, the master IP designer could decouple the RTL
into a clean Verilog BFM model with two bus interfaces: one is to
drive the new slave IP and easy, and another is simply to get
drive from others. The efficient way to create a customized UVM
VIP is to reuse and wrap the Verilog BFM model inside and use
abstract classes to define functions that easily communicate BFM
with the VIP driver. The SystemVerilog (SV) interfaces are bind
between BFM and UVM VIP to make sure that BFM is invisible
from the outside. The user could treat this UVM VIP as the
general UVM VIP. In this way, when the master IP designer
updates the bus timing, the UVM VIP could sync up the
decoupled BFM without any change.
This paper will introduce a proposal to deploy this kind of
customized UVM VIP, and discuss the reuse considerations.
Users could extend this approach to implement other similar
scenarios

Verification Requirements and Challenges

Decouple the Master IP RTL into Verilog BFMs
the master IP designer could decouple the RTL into a clean
Verilog BFM model with two bus interfaces: the one called the
lower bus is there to communicate with the slave IP and the
other called the upper bus is to get drive from high layers. The
designer also makes the upper bus timing simple and easy to
drive. Master IP has slave VIP to verify itself in its standalone.

Proposed Solution

• It reuses and wraps the Verilog BFM model which is invisible for
users.

• We create one internal upper bus interface and one VIP interface
(which is for the user to hookup to DUV). Actually, the internal
lower interface is a copy of the VIP interface. The two internal
interfaces are bind to Verilog BFM and invisible for users. These
interfaces are parameterized and scalable allowing requirements
to change.

• The abstract classes are created in SV interfaces. They assist to
create the parameterized UVM component instances and provide
APIs such as the tasks/functions/events defined in legacy BFM.

• The UVM driver is a UVM component and drives the sequence
item to Verilog BFM through the upper bus interface.

• The adapter is a UVM component, and it acts like a bridge and
passes down the bus data between the VIP interface from DUV
and the lower bus interface to the Verilog BFM model at
run_phase. The implementation can ensure no re-timing or
pipelining. We also support few error injects in the adapter.

• The agent monitor spies the upper bus interface and sends back
the bus data to sequence by uvm_event if necessary, e.g.
sequence needs to get the return data to calculate the CRC to
send the next sequence item.

• The iUVC’s monitor spies the VIP bus interface (Lower bus) and
broadcasts the transaction item to other subscribers, e.g. predictor
or scoreboard.

• There is a bus protocol assertion library and written in assertion
interface which will hookup to DUV by SV binding methodology
and verify the timing of VIP interface.

• It has the built-in sequence library to verify the basic handshake
between VIP and DUV.

• The functional coverage will cover the VIP’s protocol and be
vertical usable.

• Only the UVM driver and adapter are parameterized, the other
UVM components are non-parameterized. That will be easy for
VIP integration.

• To avoid Verilog BFM compile conflict with the same module name
when reused to SoC level, we define the macro to exclude it from
SoC compile.

When our group develops the new slave IP with the same
particular bus interface which will be integrated in the SoC, we
encounter the following challenges in UVM stand-alone
verification.
•No available UVM VIP including both in-house and 3rd party.
•There is no Verilog BFM which has modular functions and tasks
API.
•IP must be fully verified in UVM stand-alone, the SoC level
verification is too late.
•If master IP changes the bus timing, the slave IP UVM
verification environment must sync up without any changes.

Importing Photographs
we create the parameterized upper bus interface and the abstract
class ‘slave_vip_driver_api_base’. In the m_slave_upper_bus
interface, we implement the pure virtual functions in the
vip_driver_api class which extends the base abstract class

Bridge between BFM/RTL and UVM Components

Extending to an SoC
At the early stage of SoC verification, We really want to verify the
slave IP integration and basic function as early as possible. The
master IP design could deliver the dummy stub and make the
output signal as weak driving strength to avoid the multi-driven
case. We reuse the IP level UVM sequences and customized UVM
VIP on the SoC level, replace the master IP RTL with dummy stub
in the Verilog file list, and execute the initial sequence on the VIP as
active mode to the drive slave. When the master IP initial
verification is available for basic integration and functions, it could
do the handshake with slave IPs. Later, the passive mode existing
customized UVM VIP could collect the functional coverage,
checking the bus protocol timing with built-in supports.

Efforts Compare

Few Limitations

Conclusion

Effort to create the proposed customized UVC VIP.
•Decouple the master RTL into upper/lower BFM. It depends on
RTL designer.
• Upper layer UVC. One person in 100% effort within 1 week.
•Lower layer UVC adapter. One person in 100% effort within 2
days.
•Interface BFM tasks. One person in 100% effort within 2 days.
Effort to create the Master UVC VIP.
•It’s totally un-predictable because it depends on the complexity
of bus timing. It will introduce upgrade issue when master RTL
timing changes.

• Irritation/error injection on lower layer interface. Even we
could do few error injections in the adapter, but adding
delayed responses, back pressure on receiving or inserting
errors at lower layer interface are nearly impossible. BFM
model will always drive interface in the same way, based on
its state machine and driver code.

• If the master RTL has minor changes, the possibility of bug
missing should be low and the Verilog BFM deliver time
should be short on the master IP verification point of view.
However, if the master RTL has big changes, the customized
UVC VIP mainly depends on verification quality and the time
from master IP verification team.

To fully address the issues above, verification team should
schedule the resource to create the proper lower layer UVC
and build the protocol layering architecture with existing upper
layer UVC.

With our verification requirements, we use the above approach to
create a customized UVM VIP which reuses the decoupled
Verilog BFM model, abstract classes and SV bind methodology.
When the RTL designer decouples the RTL design into Verilog
BFM, the verification engineer could build the VIP infrastructure
and define the interface. The VIP can sync up with RTL design
bus interface timing updates without any changes. By adopting
the parameterized interface, the VIP can be more scalable. The
base abstract class can be used by different concrete API classes
in the customized VIP. Making use of the existing general iUVC
template and reusing the Verilog BFM model, the creation effort
can be significantly reduced from scratch.

The proposal depicted in this paper can be extended to the other
prototype such as, a PCI, I2C like interface using bi-directional
interface or an AMBA like interface with ORed structure and
separated channels. The key is to decouple the RTL design into a
clean BFM with a simple upper bus interface. The verification
engineer and RTL design engineer should consider the reusable
solution for both design and verification. In general, it only needs
to decouple the specific module, but not the whole design. The
less it impacts the RTL design the better.

Simple Solution to create upper iUVC

The Slave VIP adapter code example.

Interface binding and connection between the BFM/RTL and UVM component

mailto:Roman.Wang@amd.com
mailto:Thomas.Bodmer@amd.com

	Slide Number 1

