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Abstract— the increasing demand in "smart power" mobile 

applications has led many SOC (system on chip) designs towards 

advanced methods such as power gating, voltage changing and 

frequency scaling. A power management unit (PMU) is a mixed 

signal IC that controls and monitors the power consumption of 

peripherals in the SOC.  However, the task of verifying this unit 

faces a challenge when trying to approach it with real number 

modeling (RNM) methodologies; which are up to X100,000 times 

faster than SPICE models. When using this methodology with 

VerilogAMS/wreal, the approach is to identify the main electrical 

property of an interface (i.e. either the current or the voltage) 

and to create a behavioral representation of it.  

The challenge in PMIC's modeling, using RNM, lies in the fact 

that the boundaries between "inputs" and "outputs" are unclear, 

when discussing powering interfaces. This is created due to the 

impedance mismatch between the load and the driver. This 

impedance mismatch cannot be overlooked when the design in 

question is a PMIC, since most of the simulations are performed 

using loads that stress the boundaries of the design. 

Our new contribution to this field is to use the UVM 

configuration database to transfer information between the load 

and the driver. This eliminates the need of defined boundaries 

between the load and the driver, since the driver has all of the 

information. This method allows project to project reuse 

regarding tests and models. Only by having a totally independent 

set of driver/load API, can we have completely reusable 

verification components. 

Our proposed methodology is to preconfigure the model with 

the load parameters in a reusable and scalable way that 

integrates well into the newest trends in AMS (Analog Mixed 

Signal) verification platforms (UVM-MS). The analog portion of 

the design is replaced with behavioral models, and instead of 

SPICE natives, the loads should be VerilogAMS blocks with local 

variables as their properties (resistance, capacitance etc). The 

loads are connected to the driver in such a way, that changing 

variables inside the loads would trigger the same change in the 

driver's variables. This provides the required separation between 

the load and the driver that allows the use of RNM. 

Keywords – UVM_MS; RNM; PMIC; Load UVC 

I. INTRODUCTION TO REAL NUMBER MODELING 

When dealing with mixed signal power controllers the 

greatest challenge is simulating and verifying digital to analog 

interaction. For the past decade we have been developing ICs 

for POE power suppliers and dealing with this challenge. A 

single power management unit may include thousands of 

control bits and complex digital to analog handshake 

mechanisms. The AMS verification task was always a daunting 

one. The simulations took forever and critical bugs were 

always found near the Tapeout. The vast majority of bugs were 

integration related errors, such as control bits being hooked up 

incorrectly or driven the wrong way. 

The simplest approach to AMS simulations is to try for the 

top level simulations ‘as is’ with SPICE models and RTL code. 

This approach is of course unrealistic in our industry, as these 

sorts of simulations may take weeks to complete depending on 

the device count. Until recently, we have been using the 

‘Capture and Replay' approach [1]. This method involves 

recording digital stimuli using a digital simulator at certain 

time points of interest, and then driving them back to the 

analog design using a mixed signal simulator. This method 

proved to be effective in finding connectivity issues but was 

still very slow to simulate. It could only be done near the end 

of the design cycle, since both of the designs had to be finished 

in order to start these sorts of simulations. This method is good 

at detecting connectivity mistakes but doesn’t excel in 

verifying complex digital and analog loop back mechanisms. 

Another option was to try behavioral analog modeling with 

VerilogAMS. This method showed some improvement in 

performance, but the modeling effort was not cost effective.  

Therefore, a new methodology had to be adopted to overcome 

our increasingly difficult verification challenge – the challenge 

of integration. 

Analog simulations are based on the iterative SPICE solver. 

This analog solver is very accurate but too slow to cover all of 

the different scenarios required for sign off in a reasonable 

time, since a single top level simulation may take days or 

weeks to complete. A suggested way to approach this 

performance gap between the analog and digital simulator is to 

use behavioral models with real values at discrete time steps. 

These models were evaluated up to X100,000 times faster than 

SPICE models in the benchmarks we performed. 

The basic concept behind real number modeling is that the 

analog values are calculated based on events or in discrete time 

steps. This allows the use of solely the digital simulator. This 

method of behavioral modeling may not replace traditional 
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analog simulations, but it will in fact speed up mixed signal 

simulations up to the level of purely digital verification. 

Real number modeling is already a well-established 

concept used by verification teams worldwide. However, for 

this modelling method to be applied, several assumptions must 

be taken [4]: 

1. The concept behind the electrical signal can be described 

as data flow between components. 

2. The output impedance should be zero and accordingly the 

input impedance should be infinite (ideal impedance 

relation). 

3. The transfer function must be known explicitly. 

 

When the DUT is a powering unit, assumptions 1) and 2) are 

not practical, for the simple reasons that most of the 

simulations are meant to test how the power supplier deals with 

overloads and underloads. The boundaries between inputs and 

outputs are unclear. For instance if the DUT is connected to a 

passive component, the DUT provides power to the load which 

in turn consumes current, all on the same wire. This fact makes 

it difficult to determine a dataflow direction between our 

components and it harms the modeling effort. 

 In this paper we will present a proposed modeling 

methodology for powering devices that will allow the use of 

quality real number models, even when the impedance 

relations are not ideal. This will be achieved by using our 

proposed load_uvc. 

The outline of this paper will be as follows:  

 In section III we will describe how the UVM configuration 

database was used to overcome the non-ideal impedance 

relations. 

 In section IV we will show how analog events on 

powering interfaces can be quantized into UVM data flow 

packets that can be later used as UVM sequence items. 

 In section V we will present a reference UVM 

environment containing load UVCs and modeled power 

amplifiers on a real life POE application 

II. ASSUMPTIONS 

The examples in this paper are based on Accellera's 

Universal verification methodology version 1.1d. This paper 

assumes the reader is familiar with VerilogAMS real number 

modeling [3] as well as the basic UVM constructs and their 

typical usage [3]. Knowledge in Systemverilog 2009 is also 

required [3]. We are aware that Systemverilog 2012 (AKA sv-

dc) is out and will soon be supported by most vendors. Please 

refer to the 'Future Work' section for ideas on what 

modifications should be applied when sv-dc vendor support 

widens. 

 

III. USING THE UVM CONFIGURATION DATABASE TO 

OVERCOME THE MODELLING CHALLENGES  

First we shall address the issue of applying RNM to designs 

with non-ideal input/output impedance. Consider trying to 

model a simple voltage regulator with an output impedance 

'Rs'. See description in figure 1: 

Rs

Vreg
Load

DUT en

 

Figure 1: Simple voltage regulator 

For the simplicity of the example we will assume for now that 

our load is a simple resistor 'Rload'. Assuming the ideal 

conditions of 'Rload' >> 'Rs' the model rather simple: 

 
parameter Tstep = 100; // Depending on Timescale 

// Note That by decreasing Tstep we can  

// tradeoff performance with accuracy 

always #Tstep 

    begin 

        vout_int = Vreg; 

    End 

assign vout = en ? vout_int : `wrealZState; 

However, when the design in question is a power supplier, the 

majority of the simulations performed are done under loads 

that stress the regulator. Our regulator model has no way of 

calculating the output voltage without knowing anything about 

the load that's connected to it. Our suggested methodology 

allows the regulator model to be able to identify the load, 

without making any change to the interfaces defined by the 

analog designer. 

For instance, if the parameters of load were available to the 

driving regulator, then the modelling effort would have boiled 

down to calculating a simple resistor divider. The UVM 

configuration database is a convenient tool used to set 

parameters for verification components in a way that is 

manageable and reusable. By using the configuration database 

we could have the load communicate with the driver model 

mid test without harming the boundaries of the model.  
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Figure 2: Non-ideal voltage regulator modeling 

architecture. This is a block diagram showing a 

proposed way to model the behavior of the circuit 

from Figure , using the UVM configuration 

database to pass parameters between the 

componnents. 

Referring to Figure 2 we will now explain the different 

components and their purpose. Component A is our 

VerilogAMS driver model. It drives the output voltage based 

on the digital configuration and the load parameters obtained 

from the parameters container. Component B is another 

hierarchy that contains all of the load parameters such as 

capacitance, resistance, inductance etc. Here, another hierarchy 

is required in order to separate the VerilogAMS components 

from the Systemverilog parameter container, since these 

modules may use different engines and need to be separated.  

The parameter container module has an interface to the UVM 

configuration database from which the load parameters are 

obtained. Component C is the load UVC. This is simply an 

interface to the configuration database. Note that when the 

driver supplies voltage, that is calculated based on load 

parameters, the load doesn't have to be connected to it. 

However, the load UVC is written in a way that allows the 

combination of behavioral modeling as well as SPICE netlists, 

and therefore the load is physically connected (see section II.B) 

A. Modelling the Driving regulator  

This section refers to component A in Figure 2 

First we need to understand the operation of our regulator 

and to decide which loads to support. For this example we shall 

assume that our regulator starts driving voltage when a digital 

'en' signal is asserted, and that the loads we want to model 

would be resistors and capacitors. Since we have to know the 

explicit equation, the output would be:   

 
Now the matching Verilog code would be: 

 

always #Tstep 

    begin 

   // Get Parameters from Container 

   // See A in Figure 2 

   R = param_container_inst.rload; 

   C = param_container_inst.cload; 

        tau = R*C; 

        vout_int = v0 + (vreg – v0)*              

                       (1-exp(-dt/tau));            

        dt = dt + time_step; 

    end 

assign vout = en ? vout_int : `wrealZState;  
 

B. The Parameters Container 

This section refers to component B in Figure 2 

The parameter container is a Systemverilog module in 

charge of accessing the UVM configuration database and 

obtaining the load values for the VerilogAMS driver. The 

connection between the VerilogAMS driver and the container 

is done by OOMR (Out of Model Referencing), but the 

connection between the load_uvc and the container is done by 

the uvm configuration database. Note that since the container is 

a Systemverilog module, the access to the configuration 

database is done inside an initial block. Therefore a minimal 

delay has to be inserted in order to make sure the 'get(…)' 

method is called after the test creates the object. 

    
 

module load_parameters_container #(parameter 

LOAD_INDEX = 0); 

 

// UVM Config Object 

load_config_object m_load_config_object; 

 

// Load Variables 

real rload; 

real cload; 

 

// Get UVM Config Object 

 

initial 

    begin 

// to avoid null referencing create a  dummy object 

    m_load_config_object = new();  

// Minimal delay makes sure this happens after the top 

creates the configuration item 

    #1; 

    uvm_config_db#(load_config_object)::get (…) 

    end 

 

// Update Module Variables from Config Object Vars 

always @(m_load_config_object.rload) 

    rload = m_load_config_object.rload; 

 

always @(m_load_config_object.cload) 

    cload = m_load_config_object.cload; 

 

 

endmodule 

 

 

The driving regulator model could then be verified by 

comparing its outputs to the ones of the actual design. 
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C. Creating the Load UVC 

This section refers to component C in Figure 2 

Please see Figure 3 - the proposed load UVC architecture. 

Note that the load UVC only serves as a gasket between the 

module based verilogAMS domain and the class based 

Systemverilog domain. However, we will show that by using 

compiler directives, we can use the load UVC both for analog 

simulations with SPICE netlists still using the benefits of 

UVM. 

Note that the load UVC was designed to allow multiple loads 

connected in parallel to the same interface. This is useful when 

you have multiple drivers on the same power line and each one 

handles different load types.  

Load

UVC

UVM 

Config DB

SystemVerilog 

Parameters 

Dispatcher

D

SV

IF

Load Vars

 

Figure 3: Load UVC Block Architecture 

One may ask, if the driver has all of the information on the 

load then why do we need to actually connect something on the 

other end? The answer is that while the majority of the 

simulations would be done using behavioral models, some tests 

require more accuracy. For these sorts of tests a mixture of 

SPICE netlists would be used instead of some model blocks. 

During these scenarios an actual load is required. For these 

simulations the load uvc acts as a VerilogA model and behaves 

like a traditional  load as well as remaining an interface to the 

UVM configuration database. 
module load_uvc #(  

                   parameter      LOAD_INDEX = 0, 

                   parameter real R_NOMINAL  = 25e3, 

                   parameter real C_NOMINAL  = 1e-9 

                ) 

                (v_load_p,v_load_n,enable); 

input enable; 

 

// Define Electrical Mode When your driving cell  

// is a spice netlist or VerilogA 

`ifdef LOAD_UVC_ELECTRICAL_MODE 

    inout      v_load_p; 

    inout      v_load_n; 

    electrical v_load_p; 

    electrical v_load_n; 

`else //LOAD_UVC_BEHAVIORAL_MODE 

    inout v_load_p; 

    inout v_load_n; 

    wreal v_load_p; 

    wreal v_load_n; 

`endif 

 

Note that the interface may be used as behavioral real 

numbers (wreal) or as VerilogA electrical. The next part 

contains the parameter dispatcher module instance; this module 

is similar to the parameter container module, but instead of 

drawing from the configuration object, it changes the variables 

that are inside of it. 

 
// Load Variables 

real r_load = R_NOMINAL; 

real c_load = C_NOMINAL; 

// Parameter Dispatcher into UVM Database 

load_parameter_dispatcher 

#(.LOAD_INDEX(LOAD_INDEX)) 

load_parameter_dispatcher_inst(); 

// Hookup with Dispatcher 

always @(r_load) 

    load_parameter_dispatcher_inst.rload = 

r_load;  

always @(c_load) 

    load_parameter_dispatcher_inst.cload = 

c_load;  

     

 
The last part of the load UVC contains VerilogA code that 

allows the load to behave like an analog device, still 

maintaining its connection to the UVM environment. 
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// Electrical Load Behavior 

`ifdef LOAD_UVC_ELECTRICAL_MODE 

    // Resistive Value during en == 1'b0 

    parameter real ROFF = 10e6; // 10Mohm 

    // Declare Branches 

    branch (v_load_p,v_load_n) res,cap,load; 

    // Analog  

    analog begin 

        // Res  

        I(res) <+ V(res)*transition (enable ? 

1/r_load : 1/ROFF , 0 /*Delay*/ , 20p /*Rise 

Time*/ , 20p /*Rise Time*/); 

        // Cap 

        I(cap) <+  ddt(V(cap))*transition 

(enable ? c_load : 0 , 0 /*Delay*/ , 20p /*Rise 

Time*/ , 20p /*Rise Time*/); 

    end     

`endif 

 
 

IV. BREAKING DOWN POWER CONSUMPTION EVENTS INTO 

UVM DATA FLOW PACKETS 

In the previous part we covered the measures that can be 

taken to overcome the challenge in modeling analog 

components with non-ideal impedance relations. The second 

challenge is to quantize the analog events on a power line, as if 

data was flowing from the load to the powering device. 

Consider some events that a typical power supplier might 

monitor:  

 Over Current 

 Short Circuit 

 Under Current 

All of these events start and end at a specific time point, but 

their nature is continuous and difficult to capture using 

discrete time events. However, today's PMICs use digital 

controllers to monitor and react to these events. Therefore, 

a good starting point would be to model these events at 

time steps that are at least as fast as the fastest clock cycle 

in the system. We could even go further with this idea. For 

instance, if the digital block monitors the current and the 

voltage through an ADC, then one could decide to model a 

"short circuit packet" for the duration of a single ADC 

measurement. For example, consider the following code 

snippet showing the definition of a load UVM sequence 

item. This sequence item simply lets the driver configure 

the parameters for the load under constraints specific for 

that event (short circuit, underload, etc.) 

class load_seq_item extends uvm_sequence_item;     

    rand LOAD_ERROR_ENUM_TYPE         load_error_e; 

    rand real                         load_res; 

    rand real                         load_cap; 

    // Constraints 

    Constraint load_res_c { 

  if (load_error_e == SHORT_CIRCUIT) 

         { load_res inside …} 

  else if (load_error_e == UNDER_CURRENT)

         { load_res inside …} 

  else if (load_error_e == UNDER_CURRENT)

   { load_res inside …} 

}  

     

The matching load driver only has to assert the load 

properties to the load UVC and the connection to the 

behavioral model is done through the dispatcher and the 

container. 
class load_driver extends uvm_driver 

#(load_seq_item); 

... 

    task main_phase(uvm_phase phase); 

            load_seq_item req; 

            forever begin:loop 

           // Get Item From SQR 

                seq_item_port.get_next_item(req); 

           // Wait For the Digital monitoring event 

                

wait(m_adc_svif.start_measuring_ev);                 

           // Assert Load Properties to the load UVC 

                m_load_svif.R = req.load_res; 

                m_load_svif.C = req.load_cap; 

            // Finish 

                seq_item_port.item_done(); 

            end:loop 

    endtask 

endclass 
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V. BUILDING THE ENVIRONMENT - APPLICATION TO A REAL 

LIFE DESIGN 

This reference topology was successfully used to Tapeout 

our latest generation of POE PSE's (power supply 

equipment). 

A. Background 

Power over Ethernet is a technology that allows network 

devices such as IP telephones, WLAN access points, security 

network cameras and such, to receive power parallel to the data 

over existing CAT-5 Ethernet infrastructure without making 

any modification to it. 

The POE standard [8] specifies that before powering up any 

device, some actions must be taken first. Refer to figure 5 for 

the timing and voltage levels of the required actions before 

operating voltage is applied. 

PSE

Vout = 44 – 57 Vdc

PD

Vout = 37 – 57 Vdc

3/6 or 4/5

1/2 or 7/8 

Vport Positive

Vport Negative

 

Figure 4: PSE and PD Interconnection; the 

numbers indicate the Ethernet pin number 
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15.5 – 20.5
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Figure 5: POE Detection to Power up Waveform 

Detection Period: before power is applied, safety dictates that 

a valid PD connected to the PSE, must first be ensured. This 

process is referred to as 'line detection' and it involves the PSE 

seeking a specific 25KΩ resistor [9].   

Classification Period: after a successful detection, the PSE 

may optionally proceed to classification. During the 

classification period a voltage of 15.5 – 20.5v is applied to the 

PD. The current consumed by the PD indicates its power class 

[9]. 

Startup and Operation: after the detection and optional 

classification, the PSE switches to its full voltage capacity and 

precedes to monitors the current consumption for power 

management and responding to overloads [9]. 

B. Verification Environment Architecture 

In this example there are three different analog drivers that 

are operating on the same line. For this reason, three different 

load UVCs will be used (actually we could do with one, 

however it was decided to separate to 3 in order to increase 

project to project reuse).  

The top level of the testbench should contain the digital 

portion of the design, the analog portion (SPICE netlist or any 

other behavioral model) and the load UVCs. Refer to figure 5 

for the block level diagram of the testbench. 

Digital Block Analog Block
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Figure 6: Top level testbench overview 

Now that we have this setup, we can simply use the 

interfaces connected to each load UVC, and control the 

behavior of our loads during the runtime of our tests. The next 

steps would be to create UVM agents for the different 

functionalities of the system, add passive monitors to cover 

digital to analog interfaces, and create the register abstraction 

layer. 
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Figure 7: UVM Enviornement Block Diagram. Note 

that the symbols A,B,C are connected to matching 

interfaces in Figure 6. 

Attached below is a snapshot from our tests simulating the 

POE detection to Power UP flow using our methodology. 
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Figure 8: Simulation Snapshot of POE Power Up 

Cycle with UVM sequences 

When enough of the Vplan is covered, we will proceed to 

perform simulations with actual SPICE models. The 

motivations behind this, is to make sure nothing was missed in 

the modeling process and to verify that no analog bugs were 

created by digital to analog transient events. For instance, 

checking the full data path from the load to the analog front 

end through the ADC and finally to the digital controller. 

Running full top level AMS simulations may not be completed 

in reasonable times. Several actions may be taken to reduce 

simulation times even with SPICE models. Since the load UVC 

could be compiled as verilogA with electrical nets, it could be 

set to electrical mode and use actual analog designs to drive 

our configurable load. This will allow us to reuse all of our 

automatic checkers and coverage collectors, thus allowing the 

simulation to run in batch mode. However most of the times 

this won't be enough to bring the simulation up to speed. For 

that reason what could be done is to decide on data paths that 

are critical for the verification process and only have those 

blocks modeled. 
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Figure 9: Block diagram of a mixed signal design. 

Marked in red are the blocks that are in the 

datapath that needs to be verified ,and in blue the 

blocks that were replaced by their SPICE netlists. 

Marked in gray are the other analog blocks in our 

design. 

Attached below is our benchmark for the same simulation 

shown in Figure 8 for a fully modeled design up to a full 

SPICE netlisted top level simulation 

Actual Schematics in the DUT 

(from a total of 15 blocks) 

Runtime 

Fully Modeled 8 seconds 

Fully Modeled Design with 1 Cell 

(small) as schematic 

20 minutes 

Fully Modeled Design with 1 Cell 

(Large) as schematic 

5 hours 

Fully Modeled Design with 3 

Cells as schematic 

24 hours 

Full Chip 1.5 weeks 

 

VI. SUMMARY 

This paper introduces ideas for mixed signal power supply 

ICs simulations using digital verification methodologies. This 

is the first time an idea for a UVM configurable load is 

presented, to our knowledge. Our new contribution eliminates 

the need to separate the load from the driver by including load 

values inside the driver model. This method allows project to 

project reuse regarding tests and models. 

 We are aware that the Universal Verification Methodology 

has a stiff learning curve; however we believe that the overall 

cost could be minimized by using the load UVCs, since it may 

be easily reused for different kinds of projects. 

This methodology was implemented by us on our latest 

generation of POE controllers. We are glad to say that this 

project was a success. Mo bugs were traced post silicon at the 

system level.  

One of our conclusions is that the incorporation of UVM 

constructs in analog models implies that the models preferably 

be written by verification engineers rather than analog 

designers. Our recommendation is to include the verification 

engineers during the analog planning phase, in order to 

increase the model writer's understanding of the analog blocks. 

To summarize, we believe that this methodology along with 

the load UVC could be used to help power supplier design 

teams overcome their upcoming verification challenges.   

VII. FUTURE WORK 

We are aware of the fact that when Systemverilog DC 

(2012) is more widely accepted by vendors, the issue of 

impedance mismatching could be solved using the new user 

defined resolution functions. Our suggested UVM environment 

architecture should remain identical even if you choose to 

migrate to SVDC, this is because our methodology states that 

the UVM components interact only with the load component. 
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Meaning that by adopting our suggested methodology only the 

modelling concept should be modified if you choose to migrate 

to SV-DC. All of the other UVM components may remain 

unchanged. 
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