
Page 1 of 8

With great power comes great responsibility:

A method to verify PMICs using UVM-MS

Dor Spigel

Mixed Signal Methodology Engineer

Microsemi POE Business Unit

1 Hanagar, Hod Hasharon Israel

dspigel@microsemi.com

Moshik Hershcovitch

Senior Verification Leader

Microsemi POE Business Unit

1 Hanagar, Hod Hasharon Israel

mhershcovitch@microsemi.com

Abstract— the increasing demand in "smart power" mobile

applications has led many SOC (system on chip) designs towards

advanced methods such as power gating, voltage changing and

frequency scaling. A power management unit (PMU) is a mixed

signal IC that controls and monitors the power consumption of

peripherals in the SOC. However, the task of verifying this unit

faces a challenge when trying to approach it with real number

modeling (RNM) methodologies; which are up to X100,000 times

faster than SPICE models. When using this methodology with

VerilogAMS/wreal, the approach is to identify the main electrical

property of an interface (i.e. either the current or the voltage)

and to create a behavioral representation of it.

The challenge in PMIC's modeling, using RNM, lies in the fact

that the boundaries between "inputs" and "outputs" are unclear,

when discussing powering interfaces. This is created due to the

impedance mismatch between the load and the driver. This

impedance mismatch cannot be overlooked when the design in

question is a PMIC, since most of the simulations are performed

using loads that stress the boundaries of the design.

Our new contribution to this field is to use the UVM

configuration database to transfer information between the load

and the driver. This eliminates the need of defined boundaries

between the load and the driver, since the driver has all of the

information. This method allows project to project reuse

regarding tests and models. Only by having a totally independent

set of driver/load API, can we have completely reusable

verification components.

Our proposed methodology is to preconfigure the model with

the load parameters in a reusable and scalable way that

integrates well into the newest trends in AMS (Analog Mixed

Signal) verification platforms (UVM-MS). The analog portion of

the design is replaced with behavioral models, and instead of

SPICE natives, the loads should be VerilogAMS blocks with local

variables as their properties (resistance, capacitance etc). The

loads are connected to the driver in such a way, that changing

variables inside the loads would trigger the same change in the

driver's variables. This provides the required separation between

the load and the driver that allows the use of RNM.

Keywords – UVM_MS; RNM; PMIC; Load UVC

I. INTRODUCTION TO REAL NUMBER MODELING

When dealing with mixed signal power controllers the

greatest challenge is simulating and verifying digital to analog

interaction. For the past decade we have been developing ICs

for POE power suppliers and dealing with this challenge. A

single power management unit may include thousands of

control bits and complex digital to analog handshake

mechanisms. The AMS verification task was always a daunting

one. The simulations took forever and critical bugs were

always found near the Tapeout. The vast majority of bugs were

integration related errors, such as control bits being hooked up

incorrectly or driven the wrong way.

The simplest approach to AMS simulations is to try for the

top level simulations ‘as is’ with SPICE models and RTL code.

This approach is of course unrealistic in our industry, as these

sorts of simulations may take weeks to complete depending on

the device count. Until recently, we have been using the

‘Capture and Replay' approach [1]. This method involves

recording digital stimuli using a digital simulator at certain

time points of interest, and then driving them back to the

analog design using a mixed signal simulator. This method

proved to be effective in finding connectivity issues but was

still very slow to simulate. It could only be done near the end

of the design cycle, since both of the designs had to be finished

in order to start these sorts of simulations. This method is good

at detecting connectivity mistakes but doesn’t excel in

verifying complex digital and analog loop back mechanisms.

Another option was to try behavioral analog modeling with

VerilogAMS. This method showed some improvement in

performance, but the modeling effort was not cost effective.

Therefore, a new methodology had to be adopted to overcome

our increasingly difficult verification challenge – the challenge

of integration.

Analog simulations are based on the iterative SPICE solver.

This analog solver is very accurate but too slow to cover all of

the different scenarios required for sign off in a reasonable

time, since a single top level simulation may take days or

weeks to complete. A suggested way to approach this

performance gap between the analog and digital simulator is to

use behavioral models with real values at discrete time steps.

These models were evaluated up to X100,000 times faster than

SPICE models in the benchmarks we performed.

The basic concept behind real number modeling is that the

analog values are calculated based on events or in discrete time

steps. This allows the use of solely the digital simulator. This

method of behavioral modeling may not replace traditional

Page 2 of 8

analog simulations, but it will in fact speed up mixed signal

simulations up to the level of purely digital verification.

Real number modeling is already a well-established

concept used by verification teams worldwide. However, for

this modelling method to be applied, several assumptions must

be taken [4]:

1. The concept behind the electrical signal can be described

as data flow between components.

2. The output impedance should be zero and accordingly the

input impedance should be infinite (ideal impedance

relation).

3. The transfer function must be known explicitly.

When the DUT is a powering unit, assumptions 1) and 2) are

not practical, for the simple reasons that most of the

simulations are meant to test how the power supplier deals with

overloads and underloads. The boundaries between inputs and

outputs are unclear. For instance if the DUT is connected to a

passive component, the DUT provides power to the load which

in turn consumes current, all on the same wire. This fact makes

it difficult to determine a dataflow direction between our

components and it harms the modeling effort.

 In this paper we will present a proposed modeling

methodology for powering devices that will allow the use of

quality real number models, even when the impedance

relations are not ideal. This will be achieved by using our

proposed load_uvc.

The outline of this paper will be as follows:

 In section III we will describe how the UVM configuration

database was used to overcome the non-ideal impedance

relations.

 In section IV we will show how analog events on

powering interfaces can be quantized into UVM data flow

packets that can be later used as UVM sequence items.

 In section V we will present a reference UVM

environment containing load UVCs and modeled power

amplifiers on a real life POE application

II. ASSUMPTIONS

The examples in this paper are based on Accellera's

Universal verification methodology version 1.1d. This paper

assumes the reader is familiar with VerilogAMS real number

modeling [3] as well as the basic UVM constructs and their

typical usage [3]. Knowledge in Systemverilog 2009 is also

required [3]. We are aware that Systemverilog 2012 (AKA sv-

dc) is out and will soon be supported by most vendors. Please

refer to the 'Future Work' section for ideas on what

modifications should be applied when sv-dc vendor support

widens.

III. USING THE UVM CONFIGURATION DATABASE TO

OVERCOME THE MODELLING CHALLENGES

First we shall address the issue of applying RNM to designs

with non-ideal input/output impedance. Consider trying to

model a simple voltage regulator with an output impedance

'Rs'. See description in figure 1:

Rs

Vreg
Load

DUT en

Figure 1: Simple voltage regulator

For the simplicity of the example we will assume for now that

our load is a simple resistor 'Rload'. Assuming the ideal

conditions of 'Rload' >> 'Rs' the model rather simple:

parameter Tstep = 100; // Depending on Timescale

// Note That by decreasing Tstep we can

// tradeoff performance with accuracy

always #Tstep

 begin

 vout_int = Vreg;

 End

assign vout = en ? vout_int : `wrealZState;

However, when the design in question is a power supplier, the

majority of the simulations performed are done under loads

that stress the regulator. Our regulator model has no way of

calculating the output voltage without knowing anything about

the load that's connected to it. Our suggested methodology

allows the regulator model to be able to identify the load,

without making any change to the interfaces defined by the

analog designer.

For instance, if the parameters of load were available to the

driving regulator, then the modelling effort would have boiled

down to calculating a simple resistor divider. The UVM

configuration database is a convenient tool used to set

parameters for verification components in a way that is

manageable and reusable. By using the configuration database

we could have the load communicate with the driver model

mid test without harming the boundaries of the model.

Page 3 of 8

Load

UVC

Real Number Model

UVM

Config DB

SystemVerilog

Parameters

Container

VerilogAMS

Model

A

B

C

en

SV

IF

Figure 2: Non-ideal voltage regulator modeling

architecture. This is a block diagram showing a

proposed way to model the behavior of the circuit

from Figure , using the UVM configuration

database to pass parameters between the

componnents.

Referring to Figure 2 we will now explain the different

components and their purpose. Component A is our

VerilogAMS driver model. It drives the output voltage based

on the digital configuration and the load parameters obtained

from the parameters container. Component B is another

hierarchy that contains all of the load parameters such as

capacitance, resistance, inductance etc. Here, another hierarchy

is required in order to separate the VerilogAMS components

from the Systemverilog parameter container, since these

modules may use different engines and need to be separated.

The parameter container module has an interface to the UVM

configuration database from which the load parameters are

obtained. Component C is the load UVC. This is simply an

interface to the configuration database. Note that when the

driver supplies voltage, that is calculated based on load

parameters, the load doesn't have to be connected to it.

However, the load UVC is written in a way that allows the

combination of behavioral modeling as well as SPICE netlists,

and therefore the load is physically connected (see section II.B)

A. Modelling the Driving regulator

This section refers to component A in Figure 2

First we need to understand the operation of our regulator

and to decide which loads to support. For this example we shall

assume that our regulator starts driving voltage when a digital

'en' signal is asserted, and that the loads we want to model

would be resistors and capacitors. Since we have to know the

explicit equation, the output would be:

Now the matching Verilog code would be:

always #Tstep

 begin

 // Get Parameters from Container

 // See A in Figure 2

 R = param_container_inst.rload;

 C = param_container_inst.cload;

 tau = R*C;

 vout_int = v0 + (vreg – v0)*

 (1-exp(-dt/tau));

 dt = dt + time_step;

 end

assign vout = en ? vout_int : `wrealZState;

B. The Parameters Container

This section refers to component B in Figure 2

The parameter container is a Systemverilog module in

charge of accessing the UVM configuration database and

obtaining the load values for the VerilogAMS driver. The

connection between the VerilogAMS driver and the container

is done by OOMR (Out of Model Referencing), but the

connection between the load_uvc and the container is done by

the uvm configuration database. Note that since the container is

a Systemverilog module, the access to the configuration

database is done inside an initial block. Therefore a minimal

delay has to be inserted in order to make sure the 'get(…)'

method is called after the test creates the object.

module load_parameters_container #(parameter

LOAD_INDEX = 0);

// UVM Config Object

load_config_object m_load_config_object;

// Load Variables

real rload;

real cload;

// Get UVM Config Object

initial

 begin

// to avoid null referencing create a dummy object

 m_load_config_object = new();

// Minimal delay makes sure this happens after the top

creates the configuration item

 #1;

 uvm_config_db#(load_config_object)::get (…)

 end

// Update Module Variables from Config Object Vars

always @(m_load_config_object.rload)

 rload = m_load_config_object.rload;

always @(m_load_config_object.cload)

 cload = m_load_config_object.cload;

endmodule

The driving regulator model could then be verified by

comparing its outputs to the ones of the actual design.

Page 4 of 8

C. Creating the Load UVC

This section refers to component C in Figure 2

Please see Figure 3 - the proposed load UVC architecture.

Note that the load UVC only serves as a gasket between the

module based verilogAMS domain and the class based

Systemverilog domain. However, we will show that by using

compiler directives, we can use the load UVC both for analog

simulations with SPICE netlists still using the benefits of

UVM.

Note that the load UVC was designed to allow multiple loads

connected in parallel to the same interface. This is useful when

you have multiple drivers on the same power line and each one

handles different load types.

Load

UVC

UVM

Config DB

SystemVerilog

Parameters

Dispatcher

D

SV

IF

Load Vars

Figure 3: Load UVC Block Architecture

One may ask, if the driver has all of the information on the

load then why do we need to actually connect something on the

other end? The answer is that while the majority of the

simulations would be done using behavioral models, some tests

require more accuracy. For these sorts of tests a mixture of

SPICE netlists would be used instead of some model blocks.

During these scenarios an actual load is required. For these

simulations the load uvc acts as a VerilogA model and behaves

like a traditional load as well as remaining an interface to the

UVM configuration database.
module load_uvc #(

 parameter LOAD_INDEX = 0,

 parameter real R_NOMINAL = 25e3,

 parameter real C_NOMINAL = 1e-9

)

 (v_load_p,v_load_n,enable);

input enable;

// Define Electrical Mode When your driving cell

// is a spice netlist or VerilogA

`ifdef LOAD_UVC_ELECTRICAL_MODE

 inout v_load_p;

 inout v_load_n;

 electrical v_load_p;

 electrical v_load_n;

`else //LOAD_UVC_BEHAVIORAL_MODE

 inout v_load_p;

 inout v_load_n;

 wreal v_load_p;

 wreal v_load_n;

`endif

Note that the interface may be used as behavioral real

numbers (wreal) or as VerilogA electrical. The next part

contains the parameter dispatcher module instance; this module

is similar to the parameter container module, but instead of

drawing from the configuration object, it changes the variables

that are inside of it.

// Load Variables

real r_load = R_NOMINAL;

real c_load = C_NOMINAL;

// Parameter Dispatcher into UVM Database

load_parameter_dispatcher

#(.LOAD_INDEX(LOAD_INDEX))

load_parameter_dispatcher_inst();

// Hookup with Dispatcher

always @(r_load)

 load_parameter_dispatcher_inst.rload =

r_load;

always @(c_load)

 load_parameter_dispatcher_inst.cload =

c_load;

The last part of the load UVC contains VerilogA code that

allows the load to behave like an analog device, still

maintaining its connection to the UVM environment.

Page 5 of 8

// Electrical Load Behavior

`ifdef LOAD_UVC_ELECTRICAL_MODE

 // Resistive Value during en == 1'b0

 parameter real ROFF = 10e6; // 10Mohm

 // Declare Branches

 branch (v_load_p,v_load_n) res,cap,load;

 // Analog

 analog begin

 // Res

 I(res) <+ V(res)*transition (enable ?

1/r_load : 1/ROFF , 0 /*Delay*/ , 20p /*Rise

Time*/ , 20p /*Rise Time*/);

 // Cap

 I(cap) <+ ddt(V(cap))*transition

(enable ? c_load : 0 , 0 /*Delay*/ , 20p /*Rise

Time*/ , 20p /*Rise Time*/);

 end

`endif

IV. BREAKING DOWN POWER CONSUMPTION EVENTS INTO

UVM DATA FLOW PACKETS

In the previous part we covered the measures that can be

taken to overcome the challenge in modeling analog

components with non-ideal impedance relations. The second

challenge is to quantize the analog events on a power line, as if

data was flowing from the load to the powering device.

Consider some events that a typical power supplier might

monitor:

 Over Current

 Short Circuit

 Under Current

All of these events start and end at a specific time point, but

their nature is continuous and difficult to capture using

discrete time events. However, today's PMICs use digital

controllers to monitor and react to these events. Therefore,

a good starting point would be to model these events at

time steps that are at least as fast as the fastest clock cycle

in the system. We could even go further with this idea. For

instance, if the digital block monitors the current and the

voltage through an ADC, then one could decide to model a

"short circuit packet" for the duration of a single ADC

measurement. For example, consider the following code

snippet showing the definition of a load UVM sequence

item. This sequence item simply lets the driver configure

the parameters for the load under constraints specific for

that event (short circuit, underload, etc.)

class load_seq_item extends uvm_sequence_item;

 rand LOAD_ERROR_ENUM_TYPE load_error_e;

 rand real load_res;

 rand real load_cap;

 // Constraints

 Constraint load_res_c {

 if (load_error_e == SHORT_CIRCUIT)

 { load_res inside …}

 else if (load_error_e == UNDER_CURRENT)

 { load_res inside …}

 else if (load_error_e == UNDER_CURRENT)

 { load_res inside …}

}

The matching load driver only has to assert the load

properties to the load UVC and the connection to the

behavioral model is done through the dispatcher and the

container.
class load_driver extends uvm_driver

#(load_seq_item);

...

 task main_phase(uvm_phase phase);

 load_seq_item req;

 forever begin:loop

 // Get Item From SQR

 seq_item_port.get_next_item(req);

 // Wait For the Digital monitoring event

wait(m_adc_svif.start_measuring_ev);

 // Assert Load Properties to the load UVC

 m_load_svif.R = req.load_res;

 m_load_svif.C = req.load_cap;

 // Finish

 seq_item_port.item_done();

 end:loop

 endtask

endclass

Page 6 of 8

V. BUILDING THE ENVIRONMENT - APPLICATION TO A REAL

LIFE DESIGN

This reference topology was successfully used to Tapeout

our latest generation of POE PSE's (power supply

equipment).

A. Background

Power over Ethernet is a technology that allows network

devices such as IP telephones, WLAN access points, security

network cameras and such, to receive power parallel to the data

over existing CAT-5 Ethernet infrastructure without making

any modification to it.

The POE standard [8] specifies that before powering up any

device, some actions must be taken first. Refer to figure 5 for

the timing and voltage levels of the required actions before

operating voltage is applied.

PSE

Vout = 44 – 57 Vdc

PD

Vout = 37 – 57 Vdc

3/6 or 4/5

1/2 or 7/8

Vport Positive

Vport Negative

Figure 4: PSE and PD Interconnection; the

numbers indicate the Ethernet pin number

10 >

2.8 <

15.5 – 20.5

44-57

VDC

t

Detection Period Operating PeriodClassification Period

Figure 5: POE Detection to Power up Waveform

Detection Period: before power is applied, safety dictates that

a valid PD connected to the PSE, must first be ensured. This

process is referred to as 'line detection' and it involves the PSE

seeking a specific 25KΩ resistor [9].

Classification Period: after a successful detection, the PSE

may optionally proceed to classification. During the

classification period a voltage of 15.5 – 20.5v is applied to the

PD. The current consumed by the PD indicates its power class

[9].

Startup and Operation: after the detection and optional

classification, the PSE switches to its full voltage capacity and

precedes to monitors the current consumption for power

management and responding to overloads [9].

B. Verification Environment Architecture

In this example there are three different analog drivers that

are operating on the same line. For this reason, three different

load UVCs will be used (actually we could do with one,

however it was decided to separate to 3 in order to increase

project to project reuse).

The top level of the testbench should contain the digital

portion of the design, the analog portion (SPICE netlist or any

other behavioral model) and the load UVCs. Refer to figure 5

for the block level diagram of the testbench.

Digital Block Analog Block

SV

IF

SV

IF

Load UVC

DET

Load UVC

CLS

Load UVC

ONGOING

SV

IF

SV

IF

SV IF

A

B

C

Figure 6: Top level testbench overview

Now that we have this setup, we can simply use the

interfaces connected to each load UVC, and control the

behavior of our loads during the runtime of our tests. The next

steps would be to create UVM agents for the different

functionalities of the system, add passive monitors to cover

digital to analog interfaces, and create the register abstraction

layer.

Detection

Agent

Classification

Agent

Ongoing

 Agent

SV

IF

C

Passive D/A

Monitors
Passive D/A

Monitors
Passive D/A

Monitors

B

EXT

Communication

Agent

Adapter

RAL

A

ScoreBoard

And Coverage

Figure 7: UVM Enviornement Block Diagram. Note

that the symbols A,B,C are connected to matching

interfaces in Figure 6.

Attached below is a snapshot from our tests simulating the

POE detection to Power UP flow using our methodology.

Page 7 of 8

Figure 8: Simulation Snapshot of POE Power Up

Cycle with UVM sequences

When enough of the Vplan is covered, we will proceed to

perform simulations with actual SPICE models. The

motivations behind this, is to make sure nothing was missed in

the modeling process and to verify that no analog bugs were

created by digital to analog transient events. For instance,

checking the full data path from the load to the analog front

end through the ADC and finally to the digital controller.

Running full top level AMS simulations may not be completed

in reasonable times. Several actions may be taken to reduce

simulation times even with SPICE models. Since the load UVC

could be compiled as verilogA with electrical nets, it could be

set to electrical mode and use actual analog designs to drive

our configurable load. This will allow us to reuse all of our

automatic checkers and coverage collectors, thus allowing the

simulation to run in batch mode. However most of the times

this won't be enough to bring the simulation up to speed. For

that reason what could be done is to decide on data paths that

are critical for the verification process and only have those

blocks modeled.

VAMS

Module

Digital

Module

Digital

Module
VAMS

Module

VAMS

Module

VAMS

Module

VAMS

Module VAMS

Module

VAMS

Module

VAMS

Module

Digital

Module

Digital

Module
SPICE netlist SPICE netlist

VAMS

Module

VAMS

Module VAMS

Module

VAMS

Module

Figure 9: Block diagram of a mixed signal design.

Marked in red are the blocks that are in the

datapath that needs to be verified ,and in blue the

blocks that were replaced by their SPICE netlists.

Marked in gray are the other analog blocks in our

design.

Attached below is our benchmark for the same simulation

shown in Figure 8 for a fully modeled design up to a full

SPICE netlisted top level simulation

Actual Schematics in the DUT

(from a total of 15 blocks)

Runtime

Fully Modeled 8 seconds

Fully Modeled Design with 1 Cell

(small) as schematic

20 minutes

Fully Modeled Design with 1 Cell

(Large) as schematic

5 hours

Fully Modeled Design with 3

Cells as schematic

24 hours

Full Chip 1.5 weeks

VI. SUMMARY

This paper introduces ideas for mixed signal power supply

ICs simulations using digital verification methodologies. This

is the first time an idea for a UVM configurable load is

presented, to our knowledge. Our new contribution eliminates

the need to separate the load from the driver by including load

values inside the driver model. This method allows project to

project reuse regarding tests and models.

 We are aware that the Universal Verification Methodology

has a stiff learning curve; however we believe that the overall

cost could be minimized by using the load UVCs, since it may

be easily reused for different kinds of projects.

This methodology was implemented by us on our latest

generation of POE controllers. We are glad to say that this

project was a success. Mo bugs were traced post silicon at the

system level.

One of our conclusions is that the incorporation of UVM

constructs in analog models implies that the models preferably

be written by verification engineers rather than analog

designers. Our recommendation is to include the verification

engineers during the analog planning phase, in order to

increase the model writer's understanding of the analog blocks.

To summarize, we believe that this methodology along with

the load UVC could be used to help power supplier design

teams overcome their upcoming verification challenges.

VII. FUTURE WORK

We are aware of the fact that when Systemverilog DC

(2012) is more widely accepted by vendors, the issue of

impedance mismatching could be solved using the new user

defined resolution functions. Our suggested UVM environment

architecture should remain identical even if you choose to

migrate to SVDC, this is because our methodology states that

the UVM components interact only with the load component.

Page 8 of 8

Meaning that by adopting our suggested methodology only the

modelling concept should be modified if you choose to migrate

to SV-DC. All of the other UVM components may remain

unchanged.

ACKNOWLEDGMENT

We would like to acknowledge the insights and ideas provided

by Nadav Barnea to our team effort. We would also like to

thank Tamar Lanir for the time spent proof reading this paper.

REFERENCES

[1] Neyaz Khan and Yaron Kashai " From Spec to Verification

Closure: a case study of applying UVM-MS for first pass

success to a complex Mixed-Signal SoC design", DVCon 2012

[2] Rosenberg, S. and Meade, K., 2010, A Practical Guide to

Adopting the Universal Verification Methodology (UVM),

Cadence Design Systems.

[3] Online Resources from

http://www.accellera.org/downloads/standards

[4] Online Resources from

https://www.semiwiki.com/forum/content/3181-speeding-up-

ams-verification-modeling-real-numbers.html

[5] Jess Chen, Michael Henrie, Monte F. Mar Ph.D. and Mladen

Nizic "Mixed-Signal Methodology Guide Advanced

Methodology for AMS IP and SOC Design, Verification and

Implementation" Cadence Design Systems.

[6] Bishnupriya B., John D., Gary H., Nick H., Yaron K., Neyaz K.,

Zeev K., Efrat S., 2012, Advanced Verification Topics, Cadence

Design Systems,

[7] Kenneth S.Kundert and Olaf Zinke " The Designer's Guide to

Verilog AMS"

[8] IEEE Std 802.3at™-2009

[9] Galit Mendelson "All You Need To Know About Power over

Ethernet (PoE) and the IEEE 802.3af Standard"

http://www.microsemi.com/documents/powerdsine/whitepapers/

PoE_and_IEEE802_3af.pdf

