
Wiretap your SoC
Why scattering Verification IPs

throughout your design is a smart
thing to do

Avidan Efody,
Verification Architect

Agenda

• Introduction
– Common SoC verification challenges
– How mass VIP deployment can help

• Problems with mass VIP deployment
• Mass VIP deployment solution requirements
• Mass VIP deployment solution overview
• Summary

Common SoC verification challenges

• System level debug
– Follow transactions through the system

• Integration validation
– IP to IP connectivity
– Address map correctness
– Supported protocol options

• Performance analysis
– Validate bandwidth and latency requirements
– Debug bottlenecks

• Introduction

System level debug

• A typical scenario:
– A read-modify-write test from

point A to point B fails
– Where did the data get

corrupted?
• Requires a transaction to be

tracked across
bridges/interconnects
– If done at signal level can be

very time consuming
– VIPs simplify the task by raising

the abstraction level
• The more VIPs placed along the

way the easier

• Introduction

Interconnect GPU CPU

DMA USB

Cache coherent interconnect

DDR
controller

SATA

Interconnect

Timer GPIO Flash

Interconnect

Audio Video

A

B

System level debug

• A typical scenario:
– A read-modify-write test from

point A to point B fails
– Where did the data get

corrupted?
• Requires a transaction to be

tracked across
bridges/interconnects
– If done at signal level can be

very time consuming
– VIPs simplify the task by raising

the abstraction level
• The more VIPs placed along the

way the easier

• Introduction

Interconnect GPU CPU

DMA USB

Cache coherent interconnect

DDR
controller

SATA

Interconnect

Timer GPIO Flash

Interconnect

Audio Video

A

B

VIP

VIP

VIP

VIP

Integration validation

• Make sure all IPs are properly
connected
– Iterate over all possible paths,

address segments, protocol
options

– Failures could happen anywhere
• VIPs are required on almost any

path

• Introduction

Performance analysis

• Make sure SoC meets IPs
bandwidth and latency
requirements
– Bandwidth/latency need to be

measured from various sources
– Bottlenecks along the way need

to be detected
– The more sampling points along

the way, the better
• VIPs could be used to provide

bandwidth/latency information
on standard interfaces

• Introduction

Problems with mass VIP deployment

• Creation effort
– Too much code to write and maintain
– Must be kept aligned with RTL changes

• Integration effort & risk
– Adding VIPs to existing testbench can cause new regression failures
– A VIP added to improve debug can make testbench non-operational

• Performance penalty
– VIPs implement complex state machines, coverage, assertions
– They do have a cost in performance

Creation effort

• Each new VIP added to the testbench requires
– Signal connection code
– Additional instantiations
– Additional configuration

• A repetitive code that needs to be maintained

• Requirement:
– Code to connect VIPs and to configure them should be auto generated
– Best source for generation is RTL itself

• Always exists
• No need to maintain another format

• Problems with mass VIP deployment

Integration effort & risk

• Adding VIPs in might trigger various errors
– Compilation/elaboration errors
– OVM/UVM/VMM/xVM errors
– VIP false alarms firing

• Might make a regression non-operational

• Requirement:
– All code to instantiate VIPs should be external to testbench
– It should be possible to run without any additional VIPs

• User could make the choice at run time

• Problems with mass VIP deployment

Performance penalty

• Performance penalty
– Instantiating VIPs takes a high toll on performance

• But…
– Additional debug information always costs something in performance

• Common examples are RTL signal visibility, or message verbosity

• Requirement
– Allow users to trade off some performance for VIP debug information

• During regression – maximize performance
• During debug – trade off some performance for visibility on interesting interfaces

– => It should be possible to turn VIPs on and off according to the task at hand
• Preferably at run-time and without any re-compilation/elaboration

• Problems with mass VIP deployment

Mass VIP deployment solution requirements

Requirement Reason
1 It should be possible to generate almost all

solution code automatically. Source for
generation should be RTL itself.

Avoid creation and maintenance effort

2 It should be possible to have the solution
code run with any testbench/DUT without
modifications to testbench/DUT code. User
could always choose to switch back to
original version without and VIPs
instantiated.

Avoid integration effort and risk

3 It should be possible to disable all or a
subset of the VIPs, preferably at fast turn-
around time

Control performance penalty
introduced by VIPs

4 It should be possible to easily add support
for analysis capabilities such as transaction
linkers or scoreboards

Mass VIP deployment solution assumptions

• The proposed solution makes no assumptions about
language/methodolgy
– Can be any language/methodology

• VHDL, Verilog, SystemVerilog or e
• OVM, UVM, VMM, eRM or proprietery

• The proposed solution assumes standard interface signals stick to some
naming convention
– Required for automatic code generation
– More details in relevant section below

• The proposed solution assumes that a VIP has an API to turn it off
– If that is not the case, a VIP might be turned off by holding it in reset

Example description (1)

• Example code is shown in SV/UVM
• Example code refers to the following SoC

– tb – might contain any existing testbench code in any language/methodology
– top – an RTL hierarchy with two AMBA interconnects

• Mass VIP deployment solution

ss2ss1

axi2ahb_br

AHB-liteAHB-lite

AXI3

ace2axi_br

AXI3

ACE

tb

top

Example description (2)

• Undelaying VIP assumed to have a standard SV/UVM structure
– Made of a uvm_component hierarchy and an SV interface
– SV interface passed to uvm_component hierarchy via UVM’s config_db
– A configuration object controls the VIP’s behavior

• Mass VIP deployment solution

DUTVIP agent

Driver

V
I
F

Testbench

I
F AHB-lite

AXI

Monitor

Coverage

Checker

Analysis port

Sequence

Config.

AHB-lite

Standard interface detection (1)

• Requirement #1:

• How can we find where are the standard interfaces in RTL???
– Standard interfaces always define standard signal names

• (i.e. ARREADY on AXI)
– We assume users keep those names as a base

• Then add postfix/prefix
• Or change upper/lower case
• (i.e. ARREADY_B or c_arready)

– This assumption is correct for all off-the-shelf on chip interconnect IPs
• And probably for most proprietary RTL
• Otherwise, it can be very confusing to figure out which signal is which

• Mass VIP deployment solution

1 It should be possible to generate
almost all solution code automatically.
Source for generation should be RTL
itself.

Avoid creation and maintenance
effort

Standard interfaces detection (2)
• Mass VIP deployment solution

For each of the signals found, extract prefix/postfix/case
parameters. These will be used to search for other interface
signals.

Look for signals called [prefix]ARVALID[postfix] or
[prefix]arvalid[postfix] in the design.

Extract the RTL path for the interface and register it

Check the bus widths for any signals with variable bus width
such as ARADDR and register the information

Check that all obligatory signals exist, and find out which
optional signals exist

• Example flow for detecting AXI interfaces in RTL
– Can be implemented in DPI, PLI or proprietary simulator commands
– RHS shows the information we get for the example design

tb.top.ss1.ace2axi_br.ARVALID_A
tb.top.ss1.ace2axi_br.ARVALID_B
tb.top.ss2.axi2ahb_br.ARVALID

prefix =“”, postfix = “_A”, uppercase
prefix =“”, postfix = “_B”, uppercase
prefix = “”, postfix = “”, lowercase

tb.top.ss1.ace2axi_br
tb.top.ss1.ace2axi_br
tb.top.ss2.axi2ahb_br

For all: address width = 32, data
width = 64

VIP instantiation (1)
• Mass VIP deployment solution

• A VIP should be instantiated per detected interface. This includes:
– A SystemVerilog interface

• To connect to the signals
– An agent uvm_component

• Instance names should:
– Be created automatically
– Not collide with each other
– Be intuitive for users

• The best way is if a VIP instance name is identical to the name of the
interface to which it is connected
– Which can be captured by the following convention

• [rtl_path],[postfix],[prefix],[case] all obtained from auto-detection

[rtl_path].[prefix]_[protocol+case]_[postfix]

VIP instantiation (2)
• Mass VIP deployment solution

User’s original testbench and DUT
tb

top

ss1

ss2

ARADDR_A

ARVALID_A

ARVALID_B

ARADDR_B

…more “ACE_A” signals

…more “AXI_B” signals

“axi” signals

“ahblite” signals

“cfg_ahblite” signals

VIP instantiation hierarchy

tb

top

ss1

ss2

ARVALID

ACE_A

…more ACE signals

axi

ahblite

cfg_ahblite

ARVALID

AXI_B

…more AXI signals

vip_instantiation_top

hierarchy

VIP instantiation (3)

• The separate hierarchy removes the need for integration, hence meeting
requirement #2:

• Sample code for the VIP instantiation hierarchy is shown in paper
– It can be automated based on information extracted from the design

• Mass VIP deployment solution

2 It should be possible to have the
solution code run with any
testbench/DUT without modifications
to testbench/DUT code. User could
always choose to switch back to
original version without and VIPs
instantiated.

Avoid integration effort and risk

Signals connection (1)

• Given the proposed VIP instantiation hierarchy, connecting the VIP signals
can be done using the code below

• Mass VIP deployment solution

module signal_connections();

// derived from [additional_signals] specified explicitly by the user

assign vip_instantiation_top.hierarchy.tb.top.ss2.axi2ahb_br.axi.ACLK = tb.top.ss2.axi2ahb_br.sys_clk;

assign vip_instantiation_top.hierarchy.tb.top.ss2.axi2ahb_br.axi.ARESETn = ~tb.top.ss2.axi2ahb_br.sys_reset;

// both LHS and RHS are derived from [rtl_path]

assign vip_instantiation_top.hierarchy.tb.top.ss2.axi2ahb_br.axi.AWVALID = tb.top.ss2.axi2ahb_br.awvalid;

assign vip_instantiation_top.hierarchy.tb.top.ss2.axi2ahb_br.axi.AWADDR = tb.top.ss2.axi2ahb_br.awaddr;

assign vip_instantiation_top.hierarchy.tb.top.ss2.axi2ahb_br.axi.AWLEN = tb.top.ss2.axi2ahb_br.awlen;

assign vip_instantiation_top.hierarchy.tb.top.ss2.axi2ahb_br.axi.AWSIZE = tb.top.ss2.axi2ahb_br.awsize;

assign vip_instantiation_top.hierarchy.tb.top.ss2.axi2ahb_br.axi.AWBURST = tb.top.ss2.axi2ahb_br.awburst;

// more signal assignments...

endmodule

Signals connection (2)
• Mass VIP deployment solution

User’s original testbench and DUT
tb

top

ss1

ss2

ARADDR_A

ARVALID_A

ARVALID_B

ARADDR_B

…more “ACE_A” signals

…more “AXI_B” signals

“axi” signals

“ahblite” signals

“cfg_ahblite” signals

VIP instantiation hierarchy

tb

top

ss1

ss2

ARVALID

ACE_A

…more ACE signals

axi

ahblite

cfg_ahblite

ARVALID

AXI_B

…more AXI signals

vip_instantiation_top

hierarchy

VIP configuration (1)

• Requirement #3:

• VIP agent uvm_components are instantiated in a hierarchy that replicates
RTL structure
– Just like the SystemVerilog interfaces

• It is possible to configure them from the command line or from a test
using their full names
– Which follow the same convention as the SystemVerilog interfaces

• Mass VIP instantiation solution

3 It should be possible to disable all or a
subset of the VIPs, preferably at fast
turn-around time

Control performance penalty
introduced by VIPs

VIP configuration (2)

• Configuration fields are placed in the component that instantiates the VIP
agent

• Mass VIP instantiation solution

class container_component_5 extends uvm_component;
`uvm_component_utils(container_component_5)

on_off_t cfg_ahblite_on_off = Off;
ahblite_agent cfg_ahblite_agent;

function void build_phase(uvm_phase phase);
super.build_phase(phase);

begin
reg signed [4095:0] tmp;

uvm_config_db #(reg signed [4095:0])::get(this, "", "cfg_ahblite_on_off", tmp);
cfg_ahblite_on_off = on_off_t'(tmp);

// create the agent and configure it
end

endfunction

//code for more interfaces skipped here…
Endclass

VIP configuration (3)

• And are then configured from a command line
– (Or from a test)

• Mass VIP instantiation solution

+uvm_set_config_int=uvm_test_top.vip_instantiation_test.hierarchy.tb.top.ss
2.axi2ahb_br,cfg_ahblite_on_off,1

Summary

• VIPs are a very useful tool during SoC verification
– They improve debug
– They provide checking & coverage
– And data that could be used for performance analysis

• But deploying them in large scale is often costly
– Creation and maintenance effort
– Integration effort and risk
– Performance penalty

• We tried:
– To raise awareness to the benefits of VIP mass deployment
– And, to provide a simple methodology that would address the problems above

• Hope we did well 

	Wiretap your SoC�
	Agenda
	Common SoC verification challenges
	System level debug
	System level debug
	Integration validation
	Performance analysis
	Problems with mass VIP deployment
	Creation effort
	Integration effort & risk
	Performance penalty
	Mass VIP deployment solution requirements
	Mass VIP deployment solution assumptions
	Example description (1)
	Example description (2)
	Standard interface detection (1)
	Standard interfaces detection (2)
	VIP instantiation (1)
	VIP instantiation (2)
	VIP instantiation (3)
	Signals connection (1)
	Signals connection (2)
	VIP configuration (1)
	VIP configuration (2)
	VIP configuration (3)
	Summary

