
Whose Fault Is It Formally? 

Formal Techniques for Optimizing 

ISO 26262 Fault Analysis.

Ping Yeung, Doug Smith, Abdelouahab Ayari

Mentor, a Siemens Business



ISO 26262 – Automotive Functional Safety

5.6 HW safety requirements

5.7 HW design

5.8 Eval of the architecture

5.9 Eval of the safety goal

5.10 HW verification
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Formal Safety Analysis

• Safety Analysis

• Fault Management

• Fault Analysis
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ISO 26262 – Classification of Faults

4



Classification of Faults
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Formal Safety Analysis
• Fault Pruning 

– Formal improves efficiency by minimizing the fault set that 

needs to be fault injected

– Minimized fault list can be fault injected across different 

engines depending on the problem

• Fault injection 

– Same engines that are used for functional verification 

enabling better reuse of tests, flows, data

– Fault injection results are combined through a common 

database to provide a single set of fault metrics and 

Diagnostic Coverage (DC)

– Formal provides exhaustive fault injection analysis including 

exhaustive transient fault analysis
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Formal Fault Analysis Flow

7

Counterexamples = errors

Fault pruning

RTL or Gate

representation

Fault Injection 

with

SLEC

Fault 

Modelling

Constraints 

Fault List 

and 

Specification

Safe/Unsafe Fault Report



Diagnostic Coverage Overview
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Fault Analysis: Fault Pruning
Reducing the set of faults that need to be fault injected

• A subset of faults 

– Only a subset of faults in a given design will affect the 

safety requirement. They are in the COIs of the safety 

critical signals

• Safe elements

– Design elements not in the COI of a safety critical signal are 

automatically considered safe

• Configurations and constraints

– The COI can be reduced further by applying top-level 

constraints such as disabling DFT, debug and test, or other 

non-operational modes

Safety Goal

Safety Goal

Safety Goal
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Fault Analysis: Safety Mechanism
Safety Mechanisms reduce Fault Injection Requirements

• Detectable fault

– Design elements in the COI of a safety 

requirement, and 

– overlap with the COI of the associated safety 

mechanism

• Undetectable fault

– Design elements in the COI of a safety 

requirement, and 

– not in the COI of the safety mechanism

– must be considered a dangerous fault
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Results of formal fault pruning

• Case 1: The design is a float point unit, ~530K gates. 

– The goal is to identify the safe faults in the design. 

– These faults are outside the COI or cannot be propagated to functional outputs. 

• Case 2: The design is a memory management unit, ~1.3M gates. 

– The goal is to identify faults that can propagate to internal status registers. 

– These registers are checked by safety mechanisms at a higher level. 

Case Gates Faults
Safety 
Mechanism

Run Time per Fault Safe Faults % Safe Faults

#1 530K 32425 0 3.6 sec 868 2.7%

#2 1300K 1524 71 2.3 sec 720 47%



Fault Injection and Equivalence
Targeted stuck-at and transient fault analysis without a testbench

• Targeted Fault Injection

– Once the design is clean of Structural Faults

– Once the number of design elements have 

been pruned down to a manageable and 

meaningful subset

• Exhaustive Fault Analysis 

– Formal can be used to inject faults and 

compare the outputs of the two designs –

Golden vs Faulted

– Formal tools have the ability to inject both 

stuck-at and transient faults into a design, and 

see if the fault is propagated, masked, or 

detected by a safety mechanism
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Results of formal fault injection (1)

The design is a clock controller block with triple modular redundancy (TMR)

• #1a: faults were allowed to be injected to all the registers in the design

– All the registers are in the COI of the safety mechanisms, there is no surprise. 

• #1b: faults were allowed to be injected to all the nodes (registers, gates, and wires) 

– There are significantly more faults.

• Formal fault injection verifies that all the injected single point faults will be caught by 

the safety mechanisms. 

Case Faults Number of Faults Run Time % Missed by Safety Mechanisms

#1a registers 57 15 min 0
#1b all nodes 2648 265 min 0



Results of formal fault injection (2)

The design is a bridge controller that consists of the clock controller block

• Formal fault injection was able to inject and propagate some faults to the output 

ports of the design.

• Two types of faulty scenarios were observed:

– Single point faults that were not protected by any safety mechanism

– Residual faults that were protected by safety mechanisms; however, the safety 

mechanisms did not detect the error conditions correctly.

Case Faults Number of Faults Run Time % Missed by Safety Mechanisms

#2a registers 267 23 min 12%
#2b all nodes 12963 1332 min 8%



Questa Fault Injection and Equivalence
Dangerous Undetected (DU) Fault
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Formal Fault Analysis: Advantages

 Exhaustive analysis (does not require a testbench or test cases)

– Of the design for faults (safety mechanism)

– Of any faulty condition (diagnostic coverage)

– Of design equivalence (fault injection)

• Determines the diagnostic coverage 

– simply provide a list of safety critical requirements and the safety detection logic, 

– formal automatically prunes the fault set, injects stuck-at and transient faults, and determines the 

diagnostic coverage of the design

• Determine the number of safe faults (lS) by 

– finding the unreachable design elements, those outside of a cone of logic, or 

– those that do not affect the outputs (or gated by a safety mechanism)

• Use the fault set from fault pruning to determine accurate numbers for 

– single-point failures (lSPF), residual faults (lRF), and multi-point failures (lMPF)
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Applications for Formal Fault Analysis

• Derive essential list of potential faults for analysis 

– Simulation, emulation, formal analysis

• Pruning the list of potential faults 

– Based on cone-of-influence (COI) analysis 

– The locations of safety mechanisms

• Safety Mechanism Verification

– Fault detection and recovery

• Compute and calculation the Diagnostic Coverage

– Generation of detection and coverage assertions

• Fault Injection and Equivalence Checking

– Checking of golden and faulty design
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Summary

• ISO 26262 is challenging, but it can be mastered 

• Exhaustive formal verification is key to fault injection and analysis

• Fault analysis requires a comprehensive approach

• Tutorial

– How to Stay Out of the News with ISO26262-Compliant Verification

– Thu March 01, 2:00pm - 5:30pm | Siskiyou

18



Thank You



Classification of Hardware Faults

• lS - Safe Faults

– Do not effect the Safety requirements

• lSPF - Single Point Fault

• Fault violating a safety requirements, not covered by a Safety Mechanism.

Logic

Single Point Fault
Single Point Failure causes divergence 

and has no Safety Mechanism

Logic

Single Point Fault
Single Point Failure causes divergence 

and has no Safety Mechanism in its 

path.

Logic
Safety Mechanism gates, protects, or flags 

the divergence in some of the logicThis leg of logical OR 

would be a Safe Fault
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Classification of Hardware Faults

• lRF - Residual Faults. 

• Faults not detected by an intended Safety Mechanism and lead to a violation of Safety 

requirements. Can be considered an escape.

• For most designs, the Single Point Faults and Residual Fault are not differentiated from a fault 

analysis perspective.

• Residual Faults may matter if the quality of individual Safety Mechanisms matter
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Classification of Hardware Faults

• lMPF - Multiple Point Fault. 

• Combination of independent faults which may lead to a violation of Safety requirements

• Multi-point faults require engineering analysis to determine likelihood and location of latent 

faults in the design.

Logic
Single Point Fault

Logic
Single Point Fault

Fault 1

Fault 2

Not Multi-Point Failure

Logic

Logic

Fault 1

Fault 2

Multi-Point Failure. For example Fault 1 

would create a divergence while Fault 2 

defeats the Safety Mechanism.
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