e — g
2073 | February 25-28, 2013 a@: l'

DoubleTree, San JOSE svsrews mmame

-
Design & Verification Conference & Exhibitio

e —

Who’s Watching the Watchmen?

The Time has Come to Objectively
Measure the Quality of Your Verification

by
David Brownell
Design Verification

Analog Devices Inc.

Verification is Hard g
 Am | checking everything?
e Are my tests covering all the scenarios?

e Am | done?

e What did | forget?

 Where Is the spec??

2 of (26)

DCont®
Verification Complexity T

INncreas | N g svsrens mmamE
Peripheral Block ~9K ~14K
Processor Control Block ~15K ~22K
Memory Controller ~18K ~42K
Small SOC ~90K ~17K
Large SOC >250K

Bugs very likely in Testbench code as well as RTL!
Bugs in Testbench can mask bugs in RTL!

3 of (26) <
D \ ”

—
\ DvCon™

O i
Sponsored By:

Effective Verification

SYSTEMS INITIATIVE

For any bug that can exist in RTL the DV Environment must be able to:

e » s » [

Design Under Test

Stimulus - Checker

4 of (26)

Sponsored By:

Current Verification Metrics 3@

SYSTEMS INITIATIVE

e Code Coverage
e Functional Coverage
e Verification Plans

e Good but not good enough \
— Focused on Activation
— No Information about Propagation or Detection
— Ignore Testbench completely

5 of (26)

Sponsored By:

Functional Qualification is sccelerd)
the Answer == T

e Systematically insert artificial bugs into the RTL
e Run tests to see If fault Is detected

e Provides metrics for every fault as to whether:
— Fault is activated
— Fault is propagated
— Fault is detected

6 of (26)

Spon B

Functional Qualification is ()
the Answer = e

e |dentifies Holes/Weaknesses in DV Environment
— Inadequate Tests
— Bad or Missing Checkers

e Objective measure of overall DV quality

e Results and Experiences presented today based
Springsoft/Synopsys Certitude

7 of (26) <
D \ ”

Example of Faults Inserted

Port Faults Input : Stuck at 0, Stuck at 1, Negated
Output : Stuck at 0, Stuck at 1, Negated
Condition Faults Condition True, Condition False, Negated
Dead Faults Dead Assign, Dead Else
Bus Faults Flip First Bit, Flip Last Bit, Negate Bus,
Operator faults Swap operators
Buigi fsifjaiEnBpkgaigpie: Changed into:
Hesigie = b && SHOD1; Hesbpareird= 3'b000;
c <=d; c <=d;
Else Else
C <=e¢g; C <=e¢g;

8 of (26)

Sponsored By:

SYSTEMS INITIATIVE

J—

| DYCoil”

e
Sponsored By:

Functional Qualification Phases a@

SYSTEMS INITIATIVE

Parse RTL Files to determine faults to insert
*Search for unreachable faults

*Determine cones of influence

«Create Instrumented RTL Files for next 2 phases

*Run every test once
Determine which tests activate each fault
Determine which faults are not activated

sInsert each fault into the RTL

*Simulate tests that activated fault

Determine if any test is capable of propagating
and detecting each fault

9 of (26)

Sponsored By:

Fault Classifications "’@
Category Description
Non-Activated No test capable of activating the fault
Non-Propagated Fault Activated, but not propagated to a checker
Non-Detected Fault propagated to checker, but no fail reported
Detected At least one test reported a failure

10 of (26)

S

4?01
\ DvCon™®

R i
Sponsored By:

Qualification Results

SYSTEMS INITIATIVE

Qualification Status... Fault Classes... Source Files.. Testcases.. Probes.. Waveforms... Helpw

Fault classes for "seq_top’

This report was generated on: 2011-08-05 at 15:44:38

Not Yet
Qualified

Faults Faults
in Design in List

Disabled By Disabled By

Certitude ~ User DrOPPed

Class name

Non-Activated Non-Propagated Detected Non-Detected

ConnectivityOutput 180 180 0 il 0 0 0
ResetConditionTrue |~ 233 233] o i
SynchronousControlFlow 864 847 o @ 15 19 i]
Comnectivitylnpst | 525 521 o ce I i
Synchrunuusneadnssign' EEIII. 218. D- 37 I ﬁ
ComboLogicControlFlow 202 202 06 31 % 0
SynchronousLogic | 811 799, o g 2 i
ComboLogic 3634 ;617 0 B W 25 0
OtherFaults T A o 00 0
MiFault Classes (9) 8296 6621 0 652 342 0
11 of (26)

!

Dol
Issues Found During (éeled

IIIIIIIIIIIIIIIII

Functional Qualification

%S)%jf

12 of (26)

N 2073

Processor Control Example #1 a@

SYSTEMS INITIATIVE

- Fault number 11757
- Force condition to always evaluate to false
- Only 1 test activated this fault

- Weakness — Checker Error : written to fire “if (A && 'A)”

Impact — Potential Design Bug miss

13 of (26)

Certitude fault detail

Fault detail

File name: /projisnapperiusersi/brownell/block sidagirtlidag_mibreg_reg.v

Action |Fault ID Fault Type Status Detected By|Distance to Qutput

S| it | Conanonraise I T

Disable| 11758 | ConditionTrue Detected stall_test
Dizable| 11759 |MegatedCondition| Detected stall_test

With the fault 11757 of type "ConditionFalse’, the code:

81 assign rout[31:0] = wr_imm_elf [imm_imlbdata_e1f[31:0] :

Is changed into:

81 assign rout[31:0] ? imm_imlbdata_elf[31:0] :
Testcases that activate and propagate the fault:

Testcase Runtime Fault propagated to Debug
REGMY _only_basic_test | 00:00:33.280 | work.dag_top.dag_xfer_f1f Dump Waveforms

| Update Comment

Sponsored By:

Processor Control Example #2 a@

SYSTEMS INITIATIVE

Fault number 6163
Combo Logic fault — bitflip froma 0/1 toa 1/0
5 tests activated this fault

Weakness — Address outputs driven to “0” when no
instruction in F stage. Testbench not checking address O
when no active instruction in F stage

Impact — Potential over design, could save power if bus not
required to be driven to “0”.

15 of (26) 0”
D \

Certitude fault detail

File name: [projisnapperiusers/brownelliblock sidagirtlidag_adrd_dp.v

Fault detail
Action |Fault ID|Fault Type Status Reason|Distance to Output
Di=sable| Bl1B1 BitFlip [Dropped by fault| 6163
Disable| 6162 | FlipFirst |Dropped by fault| 6163
=» [Disablc| 6163 | Fliplast 1|
With the fault 6163 of type 'FlipLast', the code:
271 3'b000 : addr0_e1f[31:0] = EZHL;
Is changed into:
271 3'b000 : addr0_elf[31:0] =

Testcases that activate and propagate the fault:

Testcase Ta

DSPLDET only_basic_test 000038540
MULTL_only_basic_test O0:00:54.970
PROGCTL only_basic_test 000030690

OO 0041580

basic_test

debug_basic_test

Runtime “a

00:00:43.610

32'h00000000000000000000000000000001F

Fault propagated to Debug
waork.dag_top.dag0_adr_f1f Dump Waveforms
waork.dag_top.dag0_adr_f1f Dump Waveforms
waork.dag_top.dag0_adr_f1f = Dump Waveforms
work.dag_top.dag0_adr_f1f Dump Waveforms
work.dag_top.dag0_adr_f1f = Dump Waveforms

[proj/snapper/users/brownell/blocks/dag/rtl/dag_adr0_dp.v

a(‘l - '!;sj Find...] [Go to Fault...] lRegenerate the F-‘age] [Regenerate the Repun]

Qualification Status... FaultClasses... Source Files... Tesicases... Probes... Waveforms... Helpw — ﬂ n D |

P 1~ T A
256 // resD_elf MUX

257

258 assign resD_elf[31:0] = sel_resO_rev_elf @ brsum_elf[31:0] : premod_add_elf[31:0];
259

EED f’f'**!'********************!'*******!'********************!'************************

261 // Input address mux
262 // Select between 10_elf and p0_elf
263
264 assign byteop_clr_elf[0] = byteops_elf && (!dag0_16bit_b_elf || 'dag0_32bit_b_elf);
265 assign byteop_clr_elf[1] § byteops elf B8 [Idag0_32bit_b_elf;
266
267 always @(sel_addrO_pmod_elf or sel addr0_iadd_elf or sel_addrO_iind_elf or
268 p0_elf or 10_elf or premod_add_elf or byteop_clr_elf)
269 begin
270 case({sel addr0_pmod_elf, sel_addr0_iadd_elf, sel addr0_iind_eif})
-3 271 3'b000 : addrO_eif[31:0] = EFRLIL;
272 3'b001 : addr0_elf[31:0] = p0_elf[31:0];]
273 3'b010 : addr0_elf[31:0] = {i0_elf[31:2], (10_elf[1:0] B Ebyteop_clr_elf[1:0])};
274 3'b100 : addr0_elf[31:0] = premod_add_elf[31:0];
275 default : addr0_elf[31:0] = 32'bx;
276 endcase

277 end

278

2?9 f’f’***
280 // Page Only for premodify constant ... optimise???

281 // p_eff_elf + m eff_elf == prvaddr0_fif

282

283 wire [31:0] p_eff_elf
284 wire [31:0] m_eff_elf

sel_addr0_iind_elf 2 p0_elf[31:0] : 10_elf[31:0];
sel addrO_pmod_elf ? pimm0_elf : 32'b0;

285
286 //SLOMWER ..more area
287 //wire [33:0] pagesum_elf = p_eff_elf[31:0] + ||

288 // m eff 21FfI31:'07 + LT

DYCor
Common Issues Found

SYSTEMS INITIATIVE

e Missing checks on top level outputs
— Most often heard phrase during FQ: “l meant to check that”
e Missing reset cases
— No test which asserts reset multiple times
— Almost every TB we check has this problem
e Logic activated but poorly propagated
e Missing Negative checks

— Checkers often written to check when a signal should be asserted
but they do not check that it is de-asserted the rest of the time

e Bad checkers
— Checks written or called incorrectly

18 of (26)

19 of (2

6)

Functional
Qualification!

Sponsored By:

IIIIIIIIIIIIIIIII

Experiences with FQ Setup
(The Bad) o

e First time setting up will likely take 1-2 days

— Testbench/scripts must be able to do separate compile and run!
e Must take argument to define unique logname

— Defining pass/fail for FQ is critical and easy to get wrong
 If this is wrong all results are invalid
e Sometimes difficult to tell when this incorrect

— Separate compile/executable for each test can be painful!
e The instrumented code can increase the compile time a lot

— Occasional SV/Verilog syntax issues require minor RTL changes

20 of (26) 0”
D \

Sponsored By:

Experiences with FQ Setup sécelerd)
(The Good)

e Once you have done one, very easy to do the next project
— Typical setup for a new project is a couple of hours
— Process automated within ADI so setup is minutes

e Time to results very quick after setup
— Model phase
e Typically <15minutes
— Activate phase
e Typically <lhr
— Detect phase to first non-detected fault
e Typically <lhr

e Interactive mode so you can debug faults while tool running

21 of (26) 0”
D \

ol -
Spo

oo
arned
Le
ns
SO
Les

22 of (26)

Lessons Learned accellrd)
e EXxpect to be offended

— Every TB has issues.
— Functional Qualification will find them ©.

e Don’t Run before your environment is complete

— If you know you are missing a check on some pins
Functional Qualification is just going to point that out.

e Have a clear plan before you start:
— 0 non-activated and 0 non-detected
— What faults are critical

23 of (26)

Sponsored By:

Who Should be using FQ? a@

SYSTEMS INITIATIVE

e You

e Any style testbench

e Block to System Level

e Only requirements
— Self Checking Env/Tests
— Design is RTL

24 of (26)

Sponsored By:

Why Should you use FQ a@

SYSTEMS INITIATIVE

e Higher quality verification environment
— More likely to catch RTL bugs
e Higher quality designs

— Less chance of discovering bugs late in the process or after
tape-out

e More confidence in RTL sign-off
— Objective, quantifiable criteria

e Earlier identification of problems

— Achieve robust verification environment more quickly
e Difference Between Thinking or Knowing

— That your Environment is working

25 of (26)

DyCon®

Sponsored By:

SYSTEMS INITIATIVE

-—
L\

e Norwood DV and Design Team
e Springsoft/Synopsys Marty Rowe/Myles Glisson

26 of (26)

	Who’s Watching the Watchmen? ��The Time has Come to Objectively Measure the Quality of Your Verification
	Slide Number 2
	Verification Complexity Increasing
	Effective Verification
	Current Verification Metrics
	Functional Qualification is the Answer
	Functional Qualification is the Answer
	Example of Faults Inserted
	Functional Qualification Phases
	Fault Classifications
	Qualification Results
	Issues Found During �Functional Qualification
	Processor Control Example #1
	Slide Number 14
	Processor Control Example #2
	Slide Number 16
	Slide Number 17
	Common Issues Found
	Slide Number 19
	Experiences with FQ Setup �(The Bad)
	Experiences with FQ Setup� (The Good)
	�Lessons Learned
	Lessons Learned
	Who Should be using FQ?
	Why Should you use FQ
	Slide Number 26

