
Who’s Watching the Watchmen?

The Time has Come to Objectively
Measure the Quality of Your Verification

by
David Brownell

Design Verification
Analog Devices Inc.

Sponsored By:

2 of (26)

Verification is Hard
• Am I checking everything?
• Are my tests covering all the scenarios?
• Am I done?
• What did I forget?
• Where is the spec?

Sponsored By:

3 of (26)

Verification Complexity
Increasing

Block/Chip Name RTL Line Count Testbench Line Count

Peripheral Block ~9K ~14K

Processor Control Block ~15K ~22K

Memory Controller ~18K ~42K

Small SOC ~90K ~17K

Large SOC >250K

Bugs very likely in Testbench code as well as RTL!
Bugs in Testbench can mask bugs in RTL!

Sponsored By:

4 of (26)

Effective Verification

Activate Propagate Detect

Design Under Test

Stimulus Checker

FAIL!

For any bug that can exist in RTL the DV Environment must be able to:

Sponsored By:

5 of (26)

Current Verification Metrics

• Code Coverage
• Functional Coverage
• Verification Plans

• Good but not good enough
– Focused on Activation
– No Information about Propagation or Detection
– Ignore Testbench completely

Sponsored By:

6 of (26)

Functional Qualification is
the Answer

• Systematically insert artificial bugs into the RTL
• Run tests to see if fault is detected
• Provides metrics for every fault as to whether:

– Fault is activated
– Fault is propagated
– Fault is detected

Sponsored By:

7 of (26)

Functional Qualification is
the Answer

• Identifies Holes/Weaknesses in DV Environment
– Inadequate Tests
– Bad or Missing Checkers

• Objective measure of overall DV quality

• Results and Experiences presented today based
Springsoft/Synopsys Certitude

Sponsored By:

8 of (26)

Example of Faults Inserted

Port Faults Input : Stuck at 0, Stuck at 1, Negated
Output : Stuck at 0, Stuck at 1, Negated

Condition Faults Condition True, Condition False, Negated
Dead Faults Dead Assign, Dead Else
Bus Faults Flip First Bit, Flip Last Bit, Negate Bus,
Operator faults Swap operators

Condition False Example:
if(a || b)

c <= d;
Else

c <= e;

Changed into:
if(1’b0)

c <= d;
Else

c <= e;

Dead Assign Example:
assign a = b && c || d;

Changed into:
//line removed

Bitflip Last Example:
assign a = b == 3’b001;

Changed into:
assign a = b == 3’b000;

Swap Operator Example
a = b || c;

Changed into:
a = b && c;

Sponsored By:

9 of (26)

Functional Qualification Phases

Model

Activate

Detect

•Parse RTL Files to determine faults to insert
•Search for unreachable faults
•Determine cones of influence
•Create Instrumented RTL Files for next 2 phases

•Run every test once
•Determine which tests activate each fault
•Determine which faults are not activated

•Insert each fault into the RTL
•Simulate tests that activated fault
•Determine if any test is capable of propagating
and detecting each fault

Sponsored By:

10 of (26)

Fault Classifications

Category Description
Non-Activated No test capable of activating the fault

Non-Propagated Fault Activated, but not propagated to a checker

Non-Detected Fault propagated to checker, but no fail reported

Detected At least one test reported a failure

Sponsored By:

11 of (26)

Qualification Results

Sponsored By:

12 of (26)

Issues Found During
Functional Qualification

Sponsored By:

13 of (26)

Processor Control Example #1

• Fault number 11757
• Force condition to always evaluate to false
• Only 1 test activated this fault

• Weakness – Checker Error : written to fire “if (A && !A)”

• Impact – Potential Design Bug miss

Sponsored By:

14 of (26)

Sponsored By:

15 of (26)

Processor Control Example #2

• Fault number 6163
• Combo Logic fault – bitflip from a 0/1 to a 1/0
• 5 tests activated this fault

• Weakness – Address outputs driven to “0” when no
instruction in F stage. Testbench not checking address 0
when no active instruction in F stage

• Impact – Potential over design, could save power if bus not
required to be driven to “0”.

Sponsored By:

16 of (26)

Sponsored By:

17 of (26)

Sponsored By:

18 of (26)

Common Issues Found

• Missing checks on top level outputs
– Most often heard phrase during FQ: “I meant to check that”

• Missing reset cases
– No test which asserts reset multiple times
– Almost every TB we check has this problem

• Logic activated but poorly propagated
• Missing Negative checks

– Checkers often written to check when a signal should be asserted
but they do not check that it is de-asserted the rest of the time

• Bad checkers
– Checks written or called incorrectly

Sponsored By:

19 of (26)

I

Functional
Qualification!

Sponsored By:

20 of (26)

Experiences with FQ Setup
(The Bad)

• First time setting up will likely take 1-2 days

– Testbench/scripts must be able to do separate compile and run!
• Must take argument to define unique logname

– Defining pass/fail for FQ is critical and easy to get wrong
• If this is wrong all results are invalid
• Sometimes difficult to tell when this incorrect

– Separate compile/executable for each test can be painful!
• The instrumented code can increase the compile time a lot

– Occasional SV/Verilog syntax issues require minor RTL changes

Sponsored By:

21 of (26)

Experiences with FQ Setup
(The Good)

• Once you have done one, very easy to do the next project
– Typical setup for a new project is a couple of hours
– Process automated within ADI so setup is minutes

• Time to results very quick after setup
– Model phase

• Typically <15minutes
– Activate phase

• Typically <1hr
– Detect phase to first non-detected fault

• Typically <1hr

• Interactive mode so you can debug faults while tool running

Sponsored By:

22 of (26)

Lessons Learned

Sponsored By:

23 of (26)

Lessons Learned
• Expect to be offended

– Every TB has issues.
– Functional Qualification will find them .

• Don’t Run before your environment is complete
– If you know you are missing a check on some pins

Functional Qualification is just going to point that out.

• Have a clear plan before you start:
– 0 non-activated and 0 non-detected
– What faults are critical

Sponsored By:

24 of (26)

Who Should be using FQ?

• You
• Any style testbench
• Block to System Level
• Only requirements

– Self Checking Env/Tests
– Design is RTL

Sponsored By:

25 of (26)

Why Should you use FQ

• Higher quality verification environment
– More likely to catch RTL bugs

• Higher quality designs
– Less chance of discovering bugs late in the process or after

tape-out
• More confidence in RTL sign-off

– Objective, quantifiable criteria
• Earlier identification of problems

– Achieve robust verification environment more quickly
• Difference Between Thinking or Knowing

– That your Environment is working

Sponsored By:

26 of (26)

• Norwood DV and Design Team
• Springsoft/Synopsys Marty Rowe/Myles Glisson

	Who’s Watching the Watchmen? ��The Time has Come to Objectively Measure the Quality of Your Verification
	Slide Number 2
	Verification Complexity Increasing
	Effective Verification
	Current Verification Metrics
	Functional Qualification is the Answer
	Functional Qualification is the Answer
	Example of Faults Inserted
	Functional Qualification Phases
	Fault Classifications
	Qualification Results
	Issues Found During �Functional Qualification
	Processor Control Example #1
	Slide Number 14
	Processor Control Example #2
	Slide Number 16
	Slide Number 17
	Common Issues Found
	Slide Number 19
	Experiences with FQ Setup �(The Bad)
	Experiences with FQ Setup� (The Good)
	�Lessons Learned
	Lessons Learned
	Who Should be using FQ?
	Why Should you use FQ
	Slide Number 26

