

Who’s Watching the Watchmen?
The Time has Come to Objectively Measure the Quality of Your Verification Environment

David Brownell

Analog Devices, Inc.

Norwood MA

david.brownell@analog.com

Abstract
 With the adoption of SystemVerilog and UVM the size and

complexity of testbench code has increased dramatically over

the years, to the point where the testbench code often dwarfs

the size of the RTL design code to be verified. Along the way

it was recognized that bugs in the testbench code are as

dangerous as bugs in the RTL and that a method to objectively

measure the quality of the entire verification environment was

required.

 The traditional methods of Code and Functional Coverage

were a good start, providing insight into the stimulus

capabilities of testbenches, but these metrics provide no

visibility into whether the scripts, tests, and checkers that

make up the whole verification environment are capable of

detecting bugs if they exist in the RTL. Functional

Qualification tools are intended to fill this gap. This paper

will describe how we have successfully used one such tool,

Synopsys/Springsoft’s Certitude, to fill this void in our

verification signoff process. Topics covered will include

integrating Functional Qualification into different verification

environments, running the tool, analyzing results, and

examples of real issues found in our verification

environments.

Keywords—Functional Qualification, Certitude, Functional

Verification, Verification Quality

I. INTRODUCTION

Verification is hard. Whether the verification environment

consists of a simple Verilog testbench with directed test cases
or a full blown System Verilog constrained-random coverage-
driven environment based on the latest UVM release,
verification engineers all struggle with the same questions. Are
my tests exercising all the important scenarios? Am I checking
everything? What did I forget? Am I done? In the end,
effective verification always comes down to same three words:
Activation, Propagation, and Detection. For every potential
bug in the design the verification environment must have at

least one test capable of activating the bug, propagating the
result of the bug to a checker, and finally the checker must
report a failure. An oversight in any one aspect means
potential bugs remain in the design.

Figure 1. Requirement for Effective Verification

 The traditional method to determine if your verification
effort was effective and to answer the questions posed earlier
has been to collect and analyze code and functional coverage.
There is an inherent problem with relying solely on these
metrics; while they do an excellent job of measuring the
activation capabilities of a verification environment, they
provide no insight into the propagation or detection capabilities
of the testbench. These coverage metrics rely on the
unfounded belief that if the environment is capable of
activating a bug then it is also capable of propagating and
detecting that bug.

Given the size and complexity of modern testbenches and
the fact that coding mistakes are just as likely in the testbench
as the design this is a very risky assumption to make. In order
to truly measure the effectiveness of an environment one must
be able to measure that environments ability to activate,
propagate and detect bugs within a design. This is exactly what
Functional Qualification tools are able to do.

II. FUNCTIONAL QUALIFICATION

A. A Brief History of Functional Qualification

Functional Qualification for design verification was

inspired by mutation analysis in the software development
domain where research has been ongoing since the 1970s. The
foundation of mutation analysis is the idea that one can identify
weaknesses in the testing of a software program by
systematically introducing small behavioral changes, called
“mutations”, into the program and checking that the mutation is
observed by the validation suite. If there is a difference in the
output of a test between the mutated code and the original code
then the mutation is considered “killed”. However, if no
difference is observed then the mutation is considered “live”
and indicates a potential weakness in the testing of the software
program. The next principal of mutation analysis is that by
improving the testing of the program to kill the mutants one
can potentially identify real bugs that are not capable of being
detected in the current environment. Table 1 below shows
example mutations that could be inserted into a program.

TABLE I. MUTATION EXAMPLES

Original Code Mutated Code

A = B + C; A = B - C;

If (A || B) If (A && B)

The major limitation of mutation analysis is that it can be
extremely computationally expensive; all mutations are
considered in isolation and the entire test suite must be run for
each mutation to determine if it is killed or live. In large
software systems the amount of time required to consider all
possible mutations can exceed available resources.

In today’s Functional Qualification software for
semiconductor verification the term “mutation” has been
replaced with “fault”, but the underlying principle is the same.
The software systematically introduces faults into the design
code and runs the verification test suite to see if the faults are
detected by the testbench. A fault is considered detected if a
passing test fails when the fault is in place, and any fault that is
not detected highlights a potential weakness in the verification
environment. Fixing these weaknesses by adding new tests or
improving the testbench checkers, increases the chances of
exposing any real bugs that remain in the design. Today’s
software also employs algorithms for test ordering, duplicate
fault analysis, and fault dropping to improve the computational
efficiency of the analysis.

B. Faults

 A common argument raised against functional qualification

is that it is not possible to model every coding mistake that

users will make, and therefore there can still be bugs in your

design after completing the effort. Both of these statements

are true, however, they are also not claims made by users of

functional qualification tools.

 It is important to remember that the faults introduced during

functional qualification are not intended to replicate bugs that

a user might make in the code; they are only intended to

introduce a change of functionality into the design. If the

verification suite is not capable of detecting this change, the

claim of functional qualification users is that there is a

potential weakness in the verification environment.

Furthermore, improving the testbench to detect this change the

likelihood will increase of exposing real bugs that may still

exist in the design.

 Since the purpose of functional qualification is to find

weaknesses in the verification environment and that this

process can be very computationally expensive; faults are

organized into classes based on how large of an impact they

are likely to have on the design. A fault in a “higher” class is

more likely to fundamentally change design behavior when

compared to a fault in a “lower” class, and therefore higher

class faults should be easier to detect by the verification

environment. The higher the class of a non-detected fault, the

higher the likelihood of a major weakness in the verification

environment.

 For example, a stuck-at fault placed on a module output is

much more likely to create a detectable change in behavior

during a test run, than a fault changing a conditional operator

from “||” to “&&” inside of the same module. If the testbench

cannot detect a stuck-at fault on a module output, there is

potentially a major weakness in the environment checkers, and

it is unlikely that the testbench would be capable of detecting a

more subtle conditional change inside module. Higher class

faults are submitted for analysis, before lower class faults and

non-detectable faults in higher classes should always be

analyzed before lower class faults. Below are 4 classes of

faults we typically consider during functional qualification,

from highest to lowest.

1) Connectivity Faults : This class of faults consists of

stuck-at-0, stuck-at-1, or negation faults on the module inputs

and outputs throughout the design hierarchy. These faults tend

to enable/disable functionality throughout the design and

should be easily detectable by a verification environment. A

non-detected connectivity fault can indicate a major issue in

the verification environment such as completely missing

checkers or tests. All non-detectable connectivity faults must

be resolved before proceeding with functional qualification of

lower class faults, as these faults gate the propagation of faults

inside the module and it will be a waste of resources to

continue.

2) Reset Faults : The reset fault class consists of a single

fault targetting a common weakness found in verification

environments related to reset. Often, reset is asserted once at

the beginning of tests and held steady for the remaining

duration of the tests. Therefore, none of the conditional logic

associated with reset is fully exercised or verified. The fault in

this class forces the first conditional statement inside an

always @(reset) block to evaluate to true, which will quickly

highlight if the verification environment is fully checking the

reset states of the DUT.

3) Synchronous Control Faults : There are a large

number of specific fault types inside the Synchronous Control

fault class that are intended to change functionality of control

statements such as if/then/else, or case within always blocks

inside the design. Examples of these faults include faults

forcing conditional statements to evaluate to always true,

always false, or negate the entire conditional statement. These

faults can also completely remove cases items from case

statement trees or else conditions from if statements, forcing

the alternate paths to be chosen. These faults tend to remove

a small piece of functionality from the design or slightly alter

the path taken by tests. If a verification environment cannot

detect a fault in this class usually indicates a weakness with an

existing checker or missing testcase.

4) Logic Faults : The remaining fault types are generally

classified as logic faults that can exist inside and outside of

synchronous control code. This a rather large fault class that

includes conditional faults forcing conditions to evaluate to

always true or always false as well as operator faults to change

various operators such as “or” to “and” or “+” to ”–“. The

last group of faults in this class is directed towards busses

defined in the design and includes faults which force stuck at

faults on the first and last bits of the bus as well as faults to

negate the entire bus. Non-detected faults in this class tend

to be difficult to diagnose and resolve as they are often

associated with corner cases in the design. Ideally all of these

faults would be resolved with additional checkers and tests,

but often this is not the possible due to schedule and resource

constraints. Because of the large amount of time required to

analyze and kill these faults. This group should only be

considered when all faults in the higher classes are detected.

C. The Functional Qualification Process

Functional qualification of a verification environment
consists of three distinct phase: the model phase, the activate
phase, and the detect phase.

1) The Model Phase: In this first phase users configure

the RTL files to be targeted for qualification as well as the

types of faults that are allowed to be inserted. The tool then

parses the files to determine all of the possible locations that

faults can be inserted and creates instrumented versions of the

code for use in the following two phases.

 Table II shows how two example faults could be instrumented

into design code. One fault completely removes an assign

statement so the target variable never gets updated, and the

second changes an “or” operator to “and” changing the output

of the assign. The selection of which fault is active during

simulation can be controlled with plusargs passed through the

simulation command or using the simulator PLI interface.

TABLE II. FAULT INSTRUMENTATION

Original Code Instrumented Code

Always @(posedge clk)

 A <= (B || C);

Always @(posedge clk)

 //remove assign fault

 If (FAULT_ID == 1)
 begin end

 //or operator replace with and

 else if (FAULT_ID == 2)

 A <= (B && C) ;

 // original code no faults

 else
 A <= (B || C) ;

 In an effort to minimize the time required to complete the

next two phases, the functional qualification software

performs analysis to eliminate equivalent and unreachable

faults and determines cones of influence for each fault during

the model phase. The cone of influence information is used

in the final phase so that when a fault is not detected, all the

related faults can be dropped from the analysis while the initial

fault is evaluated.

2) The Activate Phase: The first step in the Activate phase

is for the user to configure all the tests to be used in the

qualification and if the testbench is a constrained-random

environment the user must also configure which seeds to use

for each test. The software will then run each test one time to

determine the runtime and which faults are “Activated” by

each test. A fault is considered “Activated” by a test if the line

of design code containing the fault was executed at least once

during the test.

 If no test in the entire test suite executes the lines containing

the fault then that fault is considered “Non-Activated”. These

faults will often match up with missing line coverage in the

design’s code coverage report “Non-Activated” faults can

mean there are tests missing in the verification suite, tests are

over-constrained, or possibly that there is dead code in the

design. There are also valid reasons for these lines not be

activated and just as in code coverage where users can exclude

faults, users can easily disable faults from consideration in the

functional qualification tool as well.

 At the end of this phase the it will be known for every fault,

that either the fault is “Non-Activated” or that the fault is at

least capable of being detected and exactly which tests are

capable of doing so. This information allows the runtime in

the detect phase to be kept to the absolute minimum, by

ordering the tests to run from the shortest to the longest in

duration.

3) The Detect Phase: In this final phase each fault is

considered in isolation by inserting the fault and running the

tests that activate the fault serially, from shortest to longest, to

determine if any test detects the fault. A fault is considered

detected by a test if the test fails when the fault is inserted and

passes when it is not present. In functional qualification terms

a fault is considered “Detected” if any one test from the full

test suite detects the fault.

 If no test which activated a fault fails when the fault is

inserted then there are two classifications that fault will fit

into. The first is “Non-Propogated”, which means there was

no difference observed at the “output of the design” when

compared to the same test with no fault inserted. The second

is “Non-Detected” which means that there was a difference in

the “output of the design” compared to the no fault test, but

the test checkers did not report a failure. “Non-Detected”

faults are a strong indication of weaknesses or bugs in the

verification environment.

 “Output of the design” typically refers to the top level

output pins of the design under test, where verification

checkers are typically located. However, any node in the

design hierarchy can be declared as “output of the design”,

and the only difference between a “Non-Propagated” and a

“Non-Detected” classification is this definition.

 Both classifications indicate probable weaknesses in the

verification environment and should be analyzed further to

understand why the verification environment is not capable of

detecting these faults. We have observed that “Non-

Propagated” faults often indicate missing tests in the

evaluation; whereas “Non-Detected” faults indicate

weaknesses within current checkers or that no check exists for

some outputs of the DUT.

D. Results of Functional Qualification

 At the end of a functional qualification effort every fault

will have been categorized as shown in table III, and users will

know for every line of RTL if the verification environment is

at least capable of finding a bug if it exists on the line.

TABLE III. FAULT CLASSIFICATION

Category Description

Non-Activated No test capable of activating the fault

Non-Propagated Fault Activated, but not propagated to a checker

Non-Detected Fault propagated to checker, but no fail reported

Detected At least one test reported a failure

 Throughout the remained of this paper the following
abbreviations will be used for fault classifications: Non-
Activated (NA), Non-Propagated (NP), and Non-Detected
(ND).

 These classifications are the distinct advantage of functional
qualification compared to code coverage and functional
coverage metrics. With these traditional verification metrics,
when an item is “covered” all one knows is that a test
stimulated a particular line of code or defined coverpoint.
There is no information about whether the testbench is
observing and correctly checking the result of executing the
code being covered. The different fault classifications of
functional qualification provide all of this information.

Another benefit of functional qualification is the
information gathered on the tests in your verification suite. For
every test you will know the simulation time, number of faults
activated by the test, count of faults propagated by the test, and
total number of faults detected by the test. With this
information the verification team can optimize regression test
ordering based on test time and number detected faults, and
eliminate tests that are not providing any value.

As with any verification metric there has to be a minimum
criteria to determine when the effort is complete. Within our
organization the signoff criteria for verification complete status
is zero NA and zero ND faults, after waivers. For NP Faults
the current target is less than 10% of the total faults, but this
varies depending on the project.

One of the biggest surprises found when we implemented
functional qualification was the number of NP faults in our
environments. These are faults that would typically be reported
as covered with our old metrics but in reality were never being
checked. Reducing the number of NP faults can be as simple
as adding more seeds for constrained-random tests in the
qualification or as time consuming as adding more checkers
and assertions throughout the design hierarchy to increase the
odds of observing faults.

III. OUR EXPERIENCES WITH FUNCTIONAL

QUALIFICATION

A. Integrating Functional Qualification Software

 Over the last year and half we have integrated functional

qualification into the verification process for more than 10

separate projects in three different organizations within the

company. The environments analyzed have ranged from small

block level testbenches to full system level SOC verification

testbenches, and in all cases the integration has been very

straight forward.

 On average we have seen it takes new users 1 to 2 days to

get functional qualification software running on their initial

project, but for follow-on projects the setup time is typically

less than half of a day. The process of preparing an

environment for functional qualification can be automated if

there is a high level of standardization in your environments

and this has been done by some groups reducing the setup

time to a few minutes.

 Table IV below shows the size of the design and testbench

for a few of the environments we have analyzed. Most of

these environments are written in SystemVerilog, constrained-

random focused, and based on either VMM or UVM. Notice

that the testbenches are generally larger than the designs they

are verifying, with the one exception being the small SOC

testbench. This was the only testbench written in standard

Verilog using primarily directed tests and interestingly, it is

also the environment with the highest percentage of non-

detected faults!

TABLE IV. ENVIRONMENTS QUALIFIED

Testbench RTL Line Count TB Line Count

Peripheral Block ~9000 ~14000

Processor Sub-block ~15000 ~22000

Memory Controller ~18000 ~42000

Small SOC System ~90000 ~17000

SOC System XXX >250000

 Setting up testbenches for evaluation consists of creating

configuration files to tell the functional qualification software

five things: what files to analyze, what fault types insert, what

tests to use, how to compile the testbench, and how to run a

test and determine if it passed or failed.

 The most critical, and sometimes overly complicated task, is

defining for the functional qualification software what

constitutes a pass or fail when a test is run. A mistake in this

configuration file can easily lead to bad results where non-

detected faults are falsely reported as detected. To ensure

valid results the verification environment should employ a

standard messaging system which reports at the end of every

test that the simulation ran to completion and the number of

failures. Allowing test creators to print their own error

messages and relying on complicated post-processing scripts

to track errors can lead to false passes in your regression runs

and complicates qualification runs. The good news is that if

your testbench currently uses this method then functional

qualification will highlight any holes you do have.

B. Running the Analysis

1) The Model Phase : As described earlier the model

phase of qualification is where the targeted RTL files are

instrumented with the faults to be inserted during the analysis.

This phase is typically the shortest of the three phases and in

our experience takes between 1 minute and 1 hour, depending

on the size and complexity of RTL files being targeted for

qualification. Table V. shows the number of faults

instrumented and the corresponding model phase run times for

the environments shown earlier. The SOC system TB is not

shown as only a subset of the system was targetted for

analysis.

TABLE V. MODEL PHASE RESULTS

Testbench Faults Inserted Runtime

Peripheral Block TB 5789 2 min

Processor Sub-block TB 7512 3 min

Memory Controller TB 8476 5 min

Small SOC System 44812 46 min

2) The Activate Phase : The activate phase is where each

test is run exactly one time to determine which faults are

potentially detectable by that test. The runtime for this phase

can vary greatly as it is directly determined by the number and

length of the tests included for analysis.

 We have found that the first time you run functional

qualification on an environment you will invariably identify

non-detectable faults and for this reason we recommend

limiting the initial test suite to a set of tests that can complete

this phase in less than 1/2 hour. This is because many faults

are activated by nearly every test, and if they are not initially

detecable every test will be run for each these faults, quickly

leading to excessivly long run times in the detect phase.

 Keeping the initial runtime short ensures a fast turnaround

on the first pass of the detect phase which can help to quickly

identify major holes in the environment. Once the initial pass

has been completed and early non-detects resolved one can

add the full test suite and rerun the activate and detect stages

to complete the full analysis.

 The primary purpose of the the activate phase is to identify

the non-activated faults in the design which are not exercised

by any test in the evaluation suite. Analyzing these faults to

determine if they are located within dead code and can be

diasabled or within valid code and additional tests are required

is identical to the process of debugging and excluding code

coverage. If you already have code coverage exclude files for

the design you can easily convert them to work with the

functional qualification software.

TABLE VI. ACTIVATE PHASE RESULTS

Testbench NA Faults Found Runtime

Peripheral Block TB 49 12 min

Processor Sub-block TB 461 9 min

Memory Controller TB 146 10 min

Small SOC System 3277 39 min

3) The Detect Phase : This final phase of analysis is the

most time consuming, both in terms of compute resources to

analyze the propagation and detection of faults, and in

engineering resources to debug the NP faults and ND faults

that are found. An envirornment with a high number of NP

and ND faults will take longer to run than the same

environment that is capable of detecting all the faults. This is

because faults must run through all tests that activate the fault

to be considered as NP or ND, whereas soon as a single test is

found that is capable of detecting a fault, analysis is complete

for that fault. When NP or ND faults are identified the

software will “drop” faults in the cone of influence for these

faults, to speed up the analysis. This means once the NP and

ND faults are resolved analysis will have to be run again to

evaulate the dropped faults.

 We have observed that it can take weeks for large designs to

complete a single qualification run and have found it is best to

take an iterative approach. We now run the analysis until five

ND faults are identified and then debug and resolve these

faults before continuing. The tables VII and VIII below show

some the initial and full runtimes for various environments.

TABLE VII. INITIAL DETECT PHASE RESULTS

Testbench ND NP Detected
Not

Qualified
Runtime

Peripheral 5 62 208 5514 62 min

Proc. Sub-block 5 340 86 7081 5 min

Mem Controller 5 88 267 8116 100 min

SOC System 5 1432 23 43352 30 min

TABLE VIII. FULL DETECT PHASE RESULTS

Testbench ND NP Detected
Not

Qualified
Runtime

Peripheral 30 74 762 4923 8hr 10m

Proc. Sub-block 16 411 5258 1827 7hr 42m

Mem Controller 23 102 299 8052 6hr 21m

SOC System 309 1496 1006 42001 >7 days

 When ND and NP faults are identified they must be

analyzed to determine why the testbench did not detect them.

To do this we always go through the following steps. First, we

identify the type of fault and where it was inserted in the

design. Then we can compare the original test waveforms to

the waveform with the fault and work with the designer to

understand the change in functionality caused by the fault.

Once the change is understood we compare the behavior to the

design specification and test plan to see if the testbench should

identify this change as a bug. If the answer is no then we

disable the fault, if the answer is yes then a new test or checker

must be added to the environment and the analysis is run again

for this fault.

C. Our Results: Every Environment has Problems

When we first began implementing functional qualification

as part of our verification signoff process we expected to find

few if any ND and NP faults as we were already using 100%

code and functional coverage for signoff metrics. We quickly

learned that no environment is perfect and in fact all of our

environments had weaknesses and many had significant holes.

Every team that has adopted functional qualification in our

organization has had similar results where every testbench has

problems; the following paragraphs will highlight the most

common weaknesses found behind ND and NP in all of the

environments that have been analyzed.

1) Missing Checkers on DUT outputs: The most basic

principal of proper functional verification is that all output

pins must be monitored and checked for correctness. We have

found when functionally qualifying our verification

enviroments that in nearly every case pins that we thought

were being monitored were in fact not being checked at all.

 Most often these are control pins as part of an interface

where the verification engineer simply forgot to put a check in

place, and because the pins are toggling during tests functional

coverage and code coverage report the pins as covered so the

mistake goes unnoticed. In one case we found missing checks

on a the lower portion of a data bus where an engineer mis-

understood the protocol and incorrectly removed the checks on

those pins. Again as these bits were toggling our coverage

metrics were reporting the pins as covered, only functional

qualification exposed the missing checkers.

2) Missing Reset Tests and Checks: The second most

common item uncovered by running functional qualification

on all these environments is that we do a poor job of verifying

the reset functionality. In almost all cases there were initially

no tests that asserted reset multiple times during a test so only

a power on reset was being tested. The most common excuse

for the missing tests is that they are difficult to write and many

testbench monitors could require rework to support random

reset assertions.

3) Logic Activated but Poorly Propagated : The most

unsettling item uncovered during our initial forays into

functional qualification is the percentage of faults that are

classified as non-propagated. These are faults that are

activated but the change in behavior caused by these faults

never reaches a checker in the testbench. In the worst cases

we have observed as high as 30% of faults are classified as

NP. Again, these are faults that would typically be reported as

covered using code or functional coverage metrics, but

functional qualification shows that the code is not truly being

verified.

 In many cases the number of non-propagated faults can be

reduced simply by including more tests in the evaluation;

however this is not an efficient method to remove all non-

propagated faults. Improving the efficiency of investigating

and removing NP faults is an active area of research for us;

both formal and improved stimulus generation techniques are

being investigated. We currently target having less than 10%

of the total faults classified as NP, but this requirement is often

waived because of schedule requirements.

4) Missing Negative Checks : Often the effect of the faults

inserted during functional qualification is for features and

functions of the DUT to be enabled when they normally would

not be. For example, a clock that should only be toggling

when a specific signal is asserted will instead be active

throughout the entire test when a fault is inserted. We often

find that checkers are written to prove that an action happens

when it supposed to but there is no check to prove that the

action does not happen when it shouldn’t.

5) Incorrect Checkers : This is the category of items we

expected to uncover with functional qualification which were

simply mistakes in the testbench code itself, and we have

found many of them. They include cut and paste errors in

control code, badly coded assertions that do not trigger when

expected, and simple specification mis-understanding leading

to incorrectly coded checks. Just as there are limitless ways

for designers to make mistakes in the DUT there are just as

many ways for verification engineers to make mistakes in their

code, and functional qualification is a systematic unbiased

approach that can uncover them.

D. Limitations

 The above examples clearly demonstrate why one should

employ functional qualification to objectively measure the

quality of their verification environment. Before undertaking

this effort one should also be aware of the costs to do so; in

terms of schedule, compute resources, and engineering

resources the cost to complete a full functional qualification

analysis can be extremely high.

1) Runtime: Runtime is the primary limiter of functional

qualification and depending on the number of faults placed in

a design and the efficiency of the testbench in detecting those

faults, the runtime can become extremely large.

Consider the following example where functional

qualification is going to analyze a design with 10,000 faults

and 200 test patterns that each take 30 seconds using 10 single

core compute servers. Equation (1) shows the calculation to

determine the runtime for the activate phase, which is this case

is 10 minutes.

 Activation Runtime =(# tests * test time) / Number of Servers (1)

During the detect stage of the analysis every fault must be

considered in isolation and for a fault to be categorized as non-

detected all tests that activate that fault must be run. Taking

this to the extreme, suppose all tests activate all 10,000 faults

and all faults will be categorized as non-detected. The runtime

to complete this analysis would be 100,000 minutes or almost

70 days, as shown in equation (2).

Detect Runtime = (# faults * # tests * test time) / # Servers (2)

 Consider the opposite extreme which is a perfect verification

environment where every fault is detected by the first test run

with the fault included. Even in this ideal case the Detect

phase runtime will be 500 minutes or 50x longer than a single

regression run.

Detect Runtime = (# faults * test time) / # Servers (3)

 In addition to testbench efficiency in fault classification the

throughput for your functional qualification analysis will also

depend heavily on your company’s simulator license and

compute farm resource availability. We highly recommend

the iterative approach described earlier in which the detect

phase is limited to identification of a pre-defined number of

non-detected faults which are resolved before restarting the

analysis.

2) Volume of Data: The other major limiter to

productivity with functional qualification is the sheer amount

of data generated by the tool, and just as the runtime puts

pressure on compute resources the data generated can tax

engineering resources trying to sort through it all.

 Consider again the fictional testbench with 10,000 faults

and where we now have completed a full pass through the

detect phase. At the end of this phase the functional

qualification software reports that 9000 of the faults are

detected, 990 faults are non-propagated and 10 faults are non-

detected. We would classify this as a good result in that 90%

of the design is being inspected by the verification

environment, but that still leaves 1000 faults that need to be

investigated. For each one this process would include

understanding the fault, dumping waveforms to observe what

effect the fault had on the design behavior, and finally

determining why the testbench is not detecting the fault. At

the end of this analysis new checks or tests are added to detect

the fault if it is determined that the testbench should not be

capable of detecting this fault it can be disabled.

 We found it takes anywhere from 1 hour to a full day to

fully debug and resolve a single non-detected or non-

propagated fault. For this example it could take 10 hours to 10

days just too fully analyze the non-detected faults, which still

leaves 990 non-propagated faults to analyze. Our current

signoff metrics are defined as zero ND faults and for number

of NP faults to be less that 10% of the total faults. However,

we have not been able to establish firm signoff criteria as the

number of NP faults is often more than we can analyze in a

reasonable timeframe. This is still a weakness in our overall

verification methodology that we are actively working to

improve.

E. Lessons Learned

1) No Environment is Perfect

 The very first environment analyzed using functional

qualification provided the “light bulb” moment when we

realized we must include functional qualification in our

verification signoff process going forward. The targeted

testbench was a block level constrained-random environment

for a DSP Processor Data Address Generator (DAG) block

and was chosen because verification was as complete and

perfect as we knew how to do.

 Code and Functional coverage were both at 100%, a full

verification plan had been written and signed off, and

regressions had run clean for multiple weeks. When we began

the analysis the functional qualification software quickly

returned with a ND fault on output pin that asserted only when

a specific instruction was sent to the DAG block. We were

incredulous at first, as a specific test and dedicated checker

had been written specifically for that pin.

 We verified that the test was included in the analysis and

then discovered that the testbench control code was incorrect.

The control statement that enabled the checker had been

copied from another section of code and never updated to fire

when the correct instruction was issued. In fact, the checker

that was specifically written for this pin was never enabled!

 Upon fixing the testbench the fault was detectable and while

no design bug was uncovered by the corrected checker the

realization was there; if a bug had been present in the design

we would not have identified the problem.

2) When to Start Functional Qualification :

 Given the valuable information that will be gathered by

running functional qualification on one’s testbench it can be

tempting to start the process sooner rather than later in the

project schedule. However, it is best to wait until the

testbench is complete, meaning all planned tests and checkers

have been written, before attempting to run functional

qualification for the first time. Attempting to run before this

stage of the project will result in a large number of NA and

ND faults related to the checkers you already know you are

missing and make it more difficult identify true ND and NA

faults in your environment.

 We typically end up running functional qualification two

times during the life of a project. The first time as soon as the

environment is complete and all planned checkers and tests

have been written. This analysis identifies any major holes in

the verification plan and environment. Then we will run again

once RTL is frozen as part of our final verification signoff

procedure.

3) Set Clear Priorities

 The time to run and the amount of data generated during

functional qualification can be extensive, and depending on

the compute and engineering resources available it will often

not be possible to resolve every potential testbench weakness

identified. This can cause difficulty in determining when an

evaluation is completed. The best approach we have found is

to dedicate a fixed amount of time to running functional

qualification, not setting extensive signoff metrics such as 0

NA, 0 ND and 0 NP faults.

 We typically allocate two weeks in the schedule for

debugging functional qualification issues and our minimum

signoff requirement is zero Non-Activated faults and zero

Non-Detected faults. If schedule pressure is particularly high

we will limit the Non-Detected criteria to connectivity faults

only.

4) Increasing Qualification Throughput

 Due to the large number of repetitive test runs required for

functional qualification, anything that can be done to improve

individual test runtimes can have a significant impact on the

overall effort. Below are a few items we have identified that

can help speed up the process.

 Often environments will continue to run tests even after a

failure has been identified in an effort to provide more debug

information in log files for engineers. During functional

qualification this is not required as a single failure is enough to

determine that a fault is detectable. Test environments

undergoing functional qualification should always be

configured to stop after the first failure.

 Most tests used in functional qualification activate hundreds

or thousands of individual faults in the design and depending

on your license availability and compute farm resources many

faults can undergo analysis in parallel as long as tests are

reentrant. For a test to be reentrant it must be possible to run

multiple instances of the test in parallel without those tests

affecting each other. An example of a non-reentrant test is one

that outputs a file and reads it back during execution. If

multiple versions of this test are running the files can be

overwritten and create false failures. Environments with non-

reentrant tests will run much slower than environments with

reentrant tests.

 The last recommendation to improve qualification is related

to testbench architecture and placement of checkers. Often

testbench checkers are placed only on the top level outputs of

the DUT which then requires the effects of faults to be

propagated through the entire design hierarchy to be detected.

Including assertions in the design code and increasing the

usage of block level checkers in an environment can greatly

improve efficiency in detecting faults. Including checks

throughout the design also promotes faster debug, as failures

on top level pins can often be difficult to trace back to their

root cause. Anything that can be done to bring checks closer

to the faults will greatly improve the efficiency of functional

qualification as well as the overall verification quality.

IV. CONCLUSION

 While acknowledging the significant run-times and

resources required to complete functional qualification this

paper has shown that the effort is required because of the

complexity and size of modern verification environments.

Without an unbiased, systematic approach to measure the

effectiveness of a verification environment there will be holes

in your environment which could lead to bugs in your design.

ACKNOWLEDGMENTS

I would like to thank Marty Rowe and Myles Glisson of
Springsoft/Synopsys for their help integrating Functional
Qualification into the Design Verification Methodology at
Analog Devices.

REFERENCES

[1] M. Hampton, “Functional Qualification,” EE Times, June 25th 2007.

