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Abstract 
  With the adoption of SystemVerilog and UVM the size and 

complexity of testbench code has increased dramatically over 

the years, to the point where the testbench code often dwarfs 

the size of the RTL design code to be verified. Along the way 

it was recognized that bugs in the testbench code are as 

dangerous as bugs in the RTL and that a method to objectively 

measure the quality of the entire verification environment was 

required. 

  
  The traditional methods of Code and Functional Coverage 

were a good start, providing insight into the stimulus 

capabilities of testbenches, but these metrics provide no 

visibility into whether the scripts, tests, and checkers that 

make up the whole verification environment are capable of 

detecting bugs if they exist in the RTL. Functional 

Qualification tools are intended to fill this gap.  This paper 

will describe how we have successfully used one such tool, 

Synopsys/Springsoft’s Certitude, to fill this void in our 

verification signoff process. Topics covered will include 

integrating Functional Qualification into different verification 

environments, running the tool, analyzing results, and 

examples of real issues found in our verification 

environments. 

Keywords—Functional Qualification, Certitude, Functional 

Verification, Verification Quality 

I.  INTRODUCTION  

 
Verification is hard. Whether the verification environment 

consists of a simple Verilog testbench with directed test cases 
or a full blown System Verilog constrained-random coverage-
driven environment based on the latest UVM release, 
verification engineers all struggle with the same questions.  Are 
my tests exercising all the important scenarios?  Am I checking 
everything?  What did I forget?  Am I done?  In the end, 
effective verification always comes down to same three words: 
Activation, Propagation, and Detection.  For every potential 
bug in the design the verification environment must have at 

least one test capable of activating the bug, propagating the 
result of the bug to a checker, and finally the checker must 
report a failure.  An oversight in any one aspect means 
potential bugs remain in the design. 

 

Figure 1. Requirement for Effective Verification 

 

 The traditional method to determine if your verification 
effort was effective and to answer the questions posed earlier 
has been to collect and analyze code and functional coverage.  
There is an inherent problem with relying solely on these 
metrics; while they do an excellent job of measuring the 
activation capabilities of a verification environment, they 
provide no insight into the propagation or detection capabilities 
of the testbench.  These coverage metrics rely on the 
unfounded belief that if the environment is capable of 
activating a bug then it is also capable of propagating and 
detecting that bug.    

Given the size and complexity of modern testbenches and 
the fact that coding mistakes are just as likely in the testbench 
as the design this is a very risky assumption to make.   In order 
to truly measure the effectiveness of an environment one must 
be able to measure that environments ability to activate, 
propagate and detect bugs within a design.  This is exactly what 
Functional Qualification tools are able to do.   



II. FUNCTIONAL QUALIFICATION 

A. A Brief History of Functional Qualification 

 
Functional Qualification for design verification was 

inspired by mutation analysis in the software development 
domain where research has been ongoing since the 1970s.  The 
foundation of mutation analysis is the idea that one can identify 
weaknesses in the testing of a software program by 
systematically introducing small behavioral changes, called 
“mutations”, into the program and checking that the mutation is 
observed by the validation suite.  If there is a difference in the 
output of a test between the mutated code and the original code 
then the mutation is considered “killed”.  However, if no 
difference is observed then the mutation is considered “live” 
and indicates a potential weakness in the testing of the software 
program.  The next principal of mutation analysis is that by 
improving the testing of the program to kill the mutants one 
can potentially identify real bugs that are not capable of being 
detected in the current environment.  Table 1 below shows 
example mutations that could be inserted into a program. 

TABLE I.  MUTATION   EXAMPLES 

Original Code Mutated Code  

A = B + C; A = B - C; 

If (A || B) If (A && B) 

 

The major limitation of mutation analysis is that it can be 
extremely computationally expensive; all mutations are 
considered in isolation and the entire test suite must be run for 
each mutation to determine if it is killed or live.  In large 
software systems the amount of time required to consider all 
possible mutations can exceed available resources.  

 

In today’s Functional Qualification software for 
semiconductor verification the term “mutation” has been 
replaced with “fault”, but the underlying principle is the same.  
The software systematically introduces faults into the design 
code and runs the verification test suite to see if the faults are 
detected by the testbench.  A fault is considered detected if a 
passing test fails when the fault is in place, and any fault that is 
not detected highlights a potential weakness in the verification 
environment.  Fixing these weaknesses by adding new tests or 
improving the testbench checkers, increases the chances of 
exposing any real bugs that remain in the design.  Today’s 
software also employs algorithms for test ordering, duplicate 
fault analysis, and fault dropping to improve the computational 
efficiency of the analysis. 

B. Faults 

    A common argument raised against functional qualification 

is that it is not possible to model every coding mistake that 

users will make, and therefore there can still be bugs in your 

design after completing the effort.  Both of these statements 

are true, however, they are also not claims made by users of 

functional qualification tools.   

 

  It is important to remember that the faults introduced during 

functional qualification are not intended to replicate bugs that 

a user might make in the code; they are only intended to 

introduce a change of functionality into the design.  If the 

verification suite is not capable of detecting this change, the 

claim of functional qualification users is that there is a 

potential weakness in the verification environment. 

Furthermore, improving the testbench to detect this change the 

likelihood will increase of exposing real bugs that may still 

exist in the design.    

 

    Since the purpose of functional qualification is to find 

weaknesses in the verification environment and that this 

process can be very computationally expensive; faults are 

organized into classes based on how large of an impact they 

are likely to have on the design.  A fault in a “higher” class is 

more likely to fundamentally change design behavior when 

compared to a fault in a “lower” class, and therefore higher 

class faults should be easier to detect by the verification 

environment.  The higher the class of a non-detected fault, the 

higher the likelihood of a major weakness in the verification 

environment. 

 

    For example, a stuck-at fault placed on a module output is 

much more likely to create a detectable change in behavior 

during a test run, than a fault changing a conditional operator 

from “||” to “&&” inside of the same module.  If the testbench 

cannot detect a stuck-at fault on a module output, there is 

potentially a major weakness in the environment checkers, and 

it is unlikely that the testbench would be capable of detecting a 

more subtle conditional change inside module.  Higher class 

faults are submitted for analysis, before lower class faults and 

non-detectable faults in higher classes should always be 

analyzed before lower class faults.  Below are 4 classes of 

faults we typically consider during functional qualification, 

from highest to lowest. 

 

1) Connectivity Faults : This class of faults consists of 

stuck-at-0, stuck-at-1, or negation faults on the module inputs 

and outputs throughout the design hierarchy.  These faults tend 

to enable/disable functionality throughout the design and 

should be easily detectable by a verification environment.  A 

non-detected connectivity fault can indicate a major issue in 

the verification environment such as completely missing 

checkers or tests.  All non-detectable connectivity faults must 

be resolved before proceeding with functional qualification of 

lower class faults, as these faults gate the propagation of faults 

inside the module and it will be a waste of resources to 

continue. 

 

2) Reset Faults : The reset fault class consists of a single 

fault targetting a common weakness found in verification 

environments related to reset.  Often,  reset is asserted once at 

the beginning of tests and held steady for the remaining 

duration of the tests.  Therefore, none of the conditional logic 

associated with reset is fully exercised or verified.  The fault in 



this class forces the first conditional statement inside an 

always @(reset) block to evaluate to true, which will quickly 

highlight if the verification environment is fully checking the 

reset states of the DUT. 

 

3) Synchronous Control Faults : There are a large 

number of specific fault types inside the Synchronous Control 

fault class that are intended to change functionality of control 

statements such as if/then/else, or case within always blocks 

inside the design.  Examples of these faults include faults  

forcing conditional statements to evaluate to always true, 

always false, or negate the entire conditional statement.  These 

faults can also completely remove cases items from case 

statement trees or else conditions from if statements, forcing 

the alternate  paths to be chosen.  These faults tend to remove 

a small piece of functionality from the design or slightly alter 

the path taken by tests.  If a verification environment cannot 

detect a fault in this class usually indicates a weakness with an 

existing checker or missing testcase. 

 

4) Logic Faults : The remaining fault types are generally 

classified as logic faults that can exist inside and outside of 

synchronous control code.  This a rather large fault class that 

includes conditional faults forcing conditions to evaluate to 

always true or always false as well as operator faults to change 

various operators such as “or” to “and” or “+” to ”–“.   The 

last group of faults in this class is directed towards busses 

defined in the design and includes faults which force stuck at 

faults on the first and last bits of the bus as well as faults to 

negate  the entire bus.   Non-detected faults in this class tend 

to be difficult to diagnose and resolve as they are often 

associated with corner cases in the design.  Ideally all of these 

faults would be resolved with additional checkers and tests, 

but often this is not the possible due to schedule and resource 

constraints.  Because of the large amount of time required to 

analyze and kill these faults.  This group should only be 

considered when all faults in the higher classes are detected. 

 

C. The Functional Qualification Process 

Functional qualification of a verification environment 
consists of three distinct phase: the model phase, the activate 
phase, and the detect phase. 

1) The Model Phase: In this first phase users configure 

the RTL files to be targeted for qualification as well as the 

types of faults that are allowed to be inserted.  The tool then 

parses the files to determine all of the possible locations that 

faults can be inserted and creates instrumented versions of the 

code for use in the following two phases.  

 

 Table II shows how two example faults could be instrumented 

into design code.  One fault completely removes an assign 

statement so the target variable never gets updated,  and the 

second changes an “or” operator to “and” changing the output 

of the assign.  The selection of which fault is active during 

simulation can be controlled with plusargs passed through the 

simulation command or using the simulator PLI interface.   

 

TABLE II.  FAULT   INSTRUMENTATION 

Original Code Instrumented Code  

Always @(posedge clk) 

  A <= (B || C); 

Always @(posedge clk) 

 

  //remove assign fault 

  If (FAULT_ID == 1) 
    begin end 

  

 //or operator replace with and 

 else if (FAULT_ID == 2) 

    A <= (B && C) ; 

   

 // original code no faults 

 else 
    A <= (B || C) ; 

 

 

    In an effort to minimize the time required to complete the 

next two phases, the functional qualification software 

performs analysis to eliminate equivalent and unreachable 

faults and determines cones of influence for each fault during 

the model phase.  The cone of influence  information is used 

in the final phase so that when a fault is not detected, all the 

related faults can be dropped from the analysis while the initial 

fault is evaluated.  

 

2) The Activate Phase: The first step in the Activate phase 

is for the user to configure all the tests to be used in the 

qualification and if the testbench is a constrained-random 

environment the user must also configure which seeds to use 

for each test.  The software will then run each test one time to 

determine the runtime and which faults are “Activated” by 

each test.  A fault is considered “Activated” by a test if the line 

of design code containing the fault was executed at least once 

during the test.   

 

    If no test in the entire test suite executes the lines containing 

the fault then that fault is considered “Non-Activated”.   These 

faults will often match up with missing line coverage in the 

design’s code coverage report   “Non-Activated” faults can 

mean there are tests missing in the verification suite, tests are 

over-constrained, or possibly that there is dead code in the 

design.  There are also valid reasons for these lines not be 

activated and just as in code coverage where users can exclude 

faults, users can easily disable faults from consideration in the 

functional qualification tool as well. 

 

    At the end of this phase the it will be known for every fault, 

that either the fault is “Non-Activated” or that the fault is at 

least capable of being detected and exactly which tests are 

capable of doing so.  This information allows the runtime in 

the detect phase to be kept to the absolute minimum, by 

ordering the tests to run from the shortest to the longest in 

duration. 



3) The Detect Phase: In this final phase each fault is 

considered in isolation by inserting the fault and running the 

tests that activate the fault serially, from shortest to longest, to 

determine if any test detects the fault.  A fault is considered 

detected by a test if the test fails when the fault is inserted and 

passes when it is not present.  In functional qualification terms 

a fault is considered “Detected” if any one test from the full 

test suite detects the fault. 

 

    If no test which activated a fault fails when the fault is 

inserted then there are two classifications that fault will fit 

into.  The first is “Non-Propogated”, which means there was 

no difference observed at the “output of the design” when 

compared to the same test with no fault inserted.   The second 

is “Non-Detected” which means that there was a difference in 

the “output of the design” compared to the no fault test, but 

the test checkers did not report a failure.  “Non-Detected” 

faults are a strong indication of weaknesses or bugs  in the 

verification environment. 

 

    “Output of the design” typically refers to the top level 

output pins of the design under test, where verification 

checkers are typically located.  However, any node in the 

design hierarchy can be declared as “output of the design”, 

and the only difference between a “Non-Propagated” and a 

“Non-Detected” classification is this definition.   

 

    Both classifications indicate probable weaknesses in the 

verification environment and should be analyzed further to 

understand why the verification environment is not capable of 

detecting these faults. We have observed that “Non-

Propagated” faults often indicate missing tests in the 

evaluation; whereas “Non-Detected” faults indicate 

weaknesses within current checkers or that no check exists for 

some outputs of the DUT. 

 

D. Results of Functional Qualification 

 

    At the end of a functional qualification effort every fault 

will have been categorized as shown in table III, and users will 

know for every line of RTL if the verification environment is 

at least capable of finding a bug if it exists on the line. 

TABLE III.  FAULT   CLASSIFICATION 

Category Description  

Non-Activated No test capable of activating the fault 

Non-Propagated Fault Activated, but not propagated to a checker 

Non-Detected Fault propagated to checker, but no fail reported 

Detected At least one test reported a failure  

 

 

 

    Throughout the remained of this paper the following 
abbreviations will be used for fault classifications: Non-
Activated (NA), Non-Propagated (NP), and Non-Detected 
(ND).   

    These classifications are the distinct advantage of functional 
qualification compared to code coverage and functional 
coverage metrics.  With these traditional verification metrics, 
when an item is “covered” all one knows is that a test 
stimulated a particular line of code or defined coverpoint.  
There is no information about whether the testbench is 
observing and correctly checking the result of executing the 
code being covered.  The different fault classifications of 
functional qualification provide all of this information. 

Another benefit of functional qualification is the 
information gathered on the tests in your verification suite.  For 
every test you will know the simulation time, number of faults 
activated by the test, count of faults propagated by the test, and 
total number of faults detected by the test.  With this 
information the verification team can optimize regression test 
ordering based on test time and number detected faults, and 
eliminate tests that are not providing any value. 

As with any verification metric there has to be a minimum 
criteria to determine when the effort is complete.  Within our 
organization the signoff criteria for verification complete status 
is zero NA and zero ND faults, after waivers.  For NP Faults 
the current target is less than 10% of the total faults, but this 
varies depending on the project.   

One of the biggest surprises found when we implemented 
functional qualification was the number of NP faults in our 
environments.  These are faults that would typically be reported 
as covered with our old metrics but in reality were never being 
checked.  Reducing the number of NP faults can be as simple 
as adding more seeds for constrained-random tests in the 
qualification or as time consuming as adding more checkers 
and assertions throughout the design hierarchy to increase the 
odds of observing faults. 

III. OUR EXPERIENCES WITH FUNCTIONAL 

QUALIFICATION 

A. Integrating Functional Qualification Software 

 

    Over the last year and half we have integrated functional 

qualification into the verification process for more than 10 

separate projects in three different organizations within the 

company.  The environments analyzed have ranged from small 

block level testbenches to full system level SOC verification 

testbenches, and in all cases the integration has been very 

straight forward.  

 

    On average we have seen it takes new users 1 to 2 days to 

get functional qualification software running on their initial 

project, but for follow-on projects the setup time is typically 

less than half of a day.  The process of preparing an 

environment for functional qualification can be automated if 

there is a high level of standardization in your environments 



and this has been done by some groups reducing the setup 

time to a few minutes.    

 

    Table IV below shows the size of the design and testbench 

for a few of the environments we have analyzed.  Most of 

these environments are written in SystemVerilog, constrained-

random focused, and based on either VMM or UVM.  Notice 

that the testbenches are generally larger than the designs they 

are verifying, with the one exception being the small SOC 

testbench.  This was the only testbench written in standard 

Verilog using primarily directed tests and interestingly, it is 

also the environment with the highest percentage of non-

detected faults!   

TABLE IV.  ENVIRONMENTS QUALIFIED 

Testbench RTL Line Count TB Line Count 

Peripheral Block ~9000 ~14000 

Processor Sub-block ~15000 ~22000 

Memory Controller ~18000 ~42000 

Small SOC System ~90000 ~17000 

SOC System XXX >250000 

 

    Setting up testbenches for evaluation consists of creating 

configuration files to tell the functional qualification software 

five things: what files to analyze, what fault types insert, what 

tests to use, how to compile the testbench, and how to run a 

test and determine if it passed or failed.   

 

    The most critical, and sometimes overly complicated task, is 

defining for the functional qualification software what 

constitutes a pass or fail when a test is run.  A mistake in this 

configuration file can easily lead to bad results where non-

detected faults are falsely reported as detected.  To ensure 

valid results the verification environment should employ a 

standard messaging system which reports at the end of every 

test that the simulation ran to completion and the number of 

failures.  Allowing test creators to print their own error 

messages and relying on complicated post-processing scripts 

to track errors can lead to false passes in your regression runs 

and complicates qualification runs.  The good news is that if 

your testbench currently uses this method then functional 

qualification will highlight any holes you do have.  

 

B. Running the Analysis 

 

1) The Model Phase : As described earlier the model 

phase of qualification is where the targeted RTL files are 

instrumented with the faults to be inserted during the analysis.  

This phase is typically the shortest of the three phases and in 

our experience takes between 1 minute and 1 hour, depending 

on the size and complexity of RTL files being targeted for 

qualification.  Table V. shows the number of faults 

instrumented and the corresponding model phase run times for 

the environments shown earlier.  The SOC system TB is not 

shown as only a subset of the system was targetted for 

analysis. 

TABLE V.  MODEL PHASE RESULTS 

Testbench Faults Inserted Runtime 

Peripheral Block TB 5789 2 min 

Processor Sub-block TB 7512 3 min 

Memory Controller TB 8476 5 min 

Small SOC System 44812 46 min 

  

2) The Activate Phase : The activate phase is where each 

test is run exactly one time to determine which faults are 

potentially detectable by that test.   The runtime for this phase 

can vary greatly as it is directly determined by the number and 

length of the tests included for analysis.   

 

    We have found that the first time you run functional 

qualification on an environment you will invariably identify 

non-detectable faults and for this reason we recommend 

limiting the initial test suite to a set of tests that can complete 

this phase in less than 1/2 hour.  This is because many faults 

are activated by nearly every test, and if they are not initially 

detecable every test will be run for each these faults, quickly 

leading to excessivly long run times in the detect phase.     

 

   Keeping the initial runtime short ensures a fast turnaround 

on the first pass of the detect phase which can help to quickly 

identify major holes in the environment.  Once the initial pass 

has been completed and early non-detects resolved one can 

add the full test suite and rerun the activate and detect stages 

to complete the full analysis. 

 

    The primary purpose of the the activate phase is to identify 

the non-activated faults in the design which are not exercised 

by any test in the evaluation suite.  Analyzing these faults to 

determine if they are located within dead code and can be 

diasabled or within valid code and additional tests are required 

is identical to the process of debugging and excluding code 

coverage.  If you already have code coverage exclude files for 

the design you can easily convert them to work with the 

functional qualification software. 

 

TABLE VI.  ACTIVATE  PHASE RESULTS 

Testbench NA Faults Found Runtime 

Peripheral Block TB 49 12 min 

Processor Sub-block TB 461 9 min 

Memory Controller TB 146 10 min 

Small SOC System 3277 39 min 

 



3) The Detect Phase :  This final phase of analysis is the 

most time consuming, both in terms of compute resources to 

analyze the propagation and detection of faults, and in 

engineering resources to debug the NP faults and ND faults 

that are found.  An envirornment with a high number of NP 

and ND faults will take longer to run than the same 

environment that is capable of detecting all the faults.  This is 

because faults must run through all tests that activate the fault 

to be considered as NP or ND, whereas soon as a single test is 

found that is capable of detecting a fault, analysis is complete 

for that fault.  When NP or ND faults are identified the 

software will “drop” faults in the cone of influence for these 

faults, to speed up the analysis.  This means once the NP and 

ND faults are resolved analysis will have to be run again to 

evaulate the dropped faults. 

 

    We have observed that it can take weeks for large designs to 

complete a single qualification run and have found it is best to 

take an iterative approach.  We now run the analysis until five 

ND faults are identified and then debug and resolve these 

faults before continuing.  The tables VII and VIII below show 

some the initial and full runtimes for various environments. 

 

TABLE VII.  INITIAL DETECT  PHASE RESULTS 

Testbench ND NP Detected 
Not 

Qualified 
Runtime 

Peripheral 5 62 208 5514 62 min 

Proc. Sub-block 5 340 86 7081 5 min 

Mem Controller 5 88 267 8116 100 min 

SOC System 5 1432 23 43352 30 min 

 

TABLE VIII.  FULL DETECT  PHASE RESULTS 

Testbench ND NP Detected 
Not 

Qualified 
Runtime 

Peripheral  30 74 762 4923 8hr 10m 

Proc. Sub-block 16 411 5258 1827 7hr 42m 

Mem Controller 23 102 299 8052 6hr 21m 

SOC System 309 1496 1006 42001 >7 days 

 

    When ND and NP faults are identified they must be 

analyzed to determine why the testbench did not detect them.  

To do this we always go through the following steps.  First, we 

identify the type of fault and where it was inserted in the 

design.  Then we can compare the original test waveforms to 

the waveform with the fault and work with the designer to 

understand the change in functionality caused by the fault.  

Once the change is understood we compare the behavior to the 

design specification and test plan to see if the testbench should 

identify this change as a bug.  If the answer is no then we 

disable the fault, if the answer is yes then a new test or checker 

must be added to the environment and the analysis is run again 

for this fault. 

C. Our Results: Every Environment has Problems 

When we first began implementing functional qualification 

as part of our verification signoff process we expected to find 

few if any ND and NP faults as we were already using 100% 

code and functional coverage for signoff metrics.  We quickly 

learned that no environment is perfect and in fact all of our 

environments had weaknesses and many had significant holes.  

Every team that has adopted functional qualification in our 

organization has had similar results where every testbench has 

problems; the following paragraphs will highlight the most 

common weaknesses found behind ND and NP in all of the 

environments that have been analyzed. 

 

1) Missing Checkers on DUT outputs:  The most basic 

principal of proper functional verification is that all output 

pins must be monitored and checked for correctness.  We have 

found when functionally qualifying our verification 

enviroments that in nearly every case pins that we thought 

were being monitored were in fact not being checked at all.   

 

    Most often these are control pins as part of an interface 

where the verification engineer simply forgot to put a check in 

place, and because the pins are toggling during tests functional 

coverage and code coverage report the pins as covered so the 

mistake goes unnoticed.  In one case we found missing checks 

on a the lower portion of a data bus where an engineer mis-

understood the protocol and incorrectly removed the checks on 

those pins.  Again as these bits were toggling our coverage 

metrics were reporting the pins as covered, only functional 

qualification exposed the missing checkers.  

 

2) Missing Reset Tests and Checks: The second most 

common item uncovered by running functional qualification 

on all these environments is that we do a poor job of verifying 

the reset functionality.  In almost all cases there were initially 

no tests that asserted reset multiple times during a test so only 

a power on reset was being tested.  The most common excuse 

for the missing tests is that they are difficult to write and many 

testbench monitors could require rework to support random 

reset assertions. 

 

3) Logic Activated but Poorly Propagated : The most 

unsettling item uncovered during our initial forays into 

functional qualification is the percentage of faults that are 

classified as non-propagated.  These are faults that are 

activated but the change in behavior caused by these faults 

never reaches a checker in the testbench.  In the worst cases 

we have observed as high as 30% of faults are classified as 

NP.  Again, these are faults that would typically be reported as 

covered using code or functional coverage metrics, but 

functional qualification shows that the code is not truly being 

verified. 



 

    In many cases the number of non-propagated faults can be 

reduced simply by including more tests in the evaluation; 

however this is not an efficient method to remove all non-

propagated faults.  Improving the efficiency of investigating 

and removing NP faults is an active area of research for us; 

both formal and improved stimulus generation techniques are 

being investigated.  We currently target having less than 10% 

of the total faults classified as NP, but this requirement is often 

waived because of schedule requirements.   

 

4) Missing Negative Checks : Often the effect of the faults 

inserted during functional qualification is for features and 

functions of the DUT to be enabled when they normally would 

not be.  For example, a clock that should only be toggling 

when a specific signal is asserted will instead be active 

throughout the entire test when a fault is inserted.   We often 

find that checkers are written to prove that an action happens 

when it supposed to but there is no check to prove that the 

action does not happen when it shouldn’t.    

 

5) Incorrect Checkers : This is the category of items we 

expected to uncover with functional qualification which were 

simply mistakes in the testbench code itself, and we have 

found many of them.  They include cut and paste errors in 

control code, badly coded assertions that do not trigger when 

expected, and simple specification mis-understanding leading 

to incorrectly coded checks.  Just as there are limitless ways 

for designers to make mistakes in the DUT there are just as 

many ways for verification engineers to make mistakes in their 

code, and functional qualification is a systematic unbiased 

approach that can uncover them.  

 

D. Limitations 

 

    The above examples clearly demonstrate why one should 

employ functional qualification to objectively measure the 

quality of their verification environment.  Before undertaking 

this effort one should also be aware of the costs to do so; in 

terms of schedule, compute resources, and engineering 

resources the cost to complete a full functional qualification 

analysis can be extremely high. 

 

1) Runtime: Runtime is the primary limiter of functional 

qualification and depending on the number of faults placed in 

a design and the efficiency of the testbench in detecting those 

faults, the runtime can become extremely large. 

 

Consider the following example where functional 

qualification is going to analyze a design with 10,000 faults 

and 200 test patterns that each take 30 seconds using 10 single 

core compute servers.  Equation (1) shows the calculation to 

determine the runtime for the activate phase, which is this case 

is 10 minutes. 

 

 Activation Runtime =(# tests * test time) / Number of Servers        (1) 

 

During the detect stage of the analysis every fault must be 

considered in isolation and for a fault to be categorized as non-

detected all tests that activate that fault must be run.   Taking 

this to the extreme, suppose all tests activate all 10,000 faults 

and all faults will be categorized as non-detected.  The runtime 

to complete this analysis would be 100,000 minutes or almost 

70 days, as shown in equation (2).         

 
Detect Runtime = (# faults * # tests * test time) / # Servers    (2) 

 

    Consider the opposite extreme which is a perfect verification 

environment where every fault is detected by the first test run 

with the fault included.  Even in this ideal case the Detect 

phase runtime will be 500 minutes or 50x longer than a single 

regression run.    

 
Detect Runtime = (# faults * test time) / # Servers    (3) 

 

     In addition to testbench efficiency in fault classification the 

throughput for your functional qualification analysis will also 

depend heavily on your company’s simulator license and 

compute farm resource availability.   We highly recommend 

the iterative approach described earlier in which the detect 

phase is limited to identification of a pre-defined number of 

non-detected faults which are resolved before restarting the 

analysis. 

 

2) Volume of Data: The other major limiter to 

productivity with functional qualification is the sheer amount 

of data generated by the tool, and just as the runtime puts 

pressure on compute resources the data generated can tax 

engineering resources trying to sort through it all. 

 

    Consider again the fictional testbench with 10,000 faults 

and where we now have completed a full pass through the 

detect phase.  At the end of this phase the functional 

qualification software reports that 9000 of the faults are 

detected, 990 faults are non-propagated and 10 faults are non-

detected.   We would classify this as a good result in that 90% 

of the design is being inspected by the verification 

environment, but that still leaves 1000 faults that need to be 

investigated.  For each one this process would include 

understanding the fault, dumping waveforms to observe what 

effect the fault had on the design behavior, and finally 

determining why the testbench is not detecting the fault.  At 

the end of this analysis new checks or tests are added to detect 

the fault if it is determined that the testbench should not be 

capable of detecting this fault it can be disabled. 

 

     We found it takes anywhere from 1 hour to a full day to 

fully debug and resolve a single non-detected or non-

propagated fault.  For this example it could take 10 hours to 10 

days just too fully analyze the non-detected faults, which still 

leaves 990 non-propagated faults to analyze.  Our current 

signoff metrics are defined as zero ND faults and for number 



of NP faults to be less that 10% of the total faults.  However, 

we have not been able to establish firm signoff criteria as the 

number of NP faults is often more than we can analyze in a 

reasonable timeframe.  This is still a weakness in our overall 

verification methodology that we are actively working to 

improve. 

  

E. Lessons Learned 

 

1) No Environment is Perfect 

 

    The very first environment analyzed using functional 

qualification provided the “light bulb” moment when we 

realized we must include functional qualification in our 

verification signoff process going forward.  The targeted 

testbench was a block level constrained-random environment 

for a DSP Processor Data Address Generator (DAG) block 

and was chosen because verification was as complete and 

perfect as we knew how to do.   

 

    Code and Functional coverage were both at 100%, a full 

verification plan had been written and signed off, and 

regressions had run clean for multiple weeks.  When we began 

the analysis the functional qualification software quickly 

returned with a ND fault on output pin that asserted only when 

a specific instruction was sent to the DAG block.  We were 

incredulous at first, as a specific test and dedicated checker 

had been written specifically for that pin.    

 

  We verified that the test was included in the analysis and 

then discovered that the testbench control code was incorrect.  

The control statement that enabled the checker had been 

copied from another section of code and never updated to fire 

when the correct instruction was issued.  In fact, the checker 

that was specifically written for this pin was never enabled!   

 

    Upon fixing the testbench the fault was detectable and while 

no design bug was uncovered by the corrected checker the 

realization was there; if a bug had been present in the design 

we would not have identified the problem.   

 

2) When to Start Functional Qualification : 

  

  Given the valuable information that will be gathered by 

running functional qualification on one’s testbench it can be 

tempting to start the process sooner rather than later in the 

project schedule.   However, it is best to wait until the 

testbench is complete, meaning all planned tests and checkers 

have been written, before attempting to run functional 

qualification for the first time.  Attempting to run before this 

stage of the project will result in a large number of NA and 

ND faults related to the checkers you already know you are 

missing and make it more difficult identify true ND and NA 

faults in your environment. 

 

  We typically end up running functional qualification two 

times during the life of a project.  The first time as soon as the 

environment is complete and all planned checkers and tests 

have been written.  This analysis identifies any major holes in 

the verification plan and environment.  Then we will run again 

once RTL is frozen as part of our final verification signoff 

procedure. 

 

3) Set Clear Priorities 

 

 The time to run and the amount of data generated during 

functional qualification can be extensive, and depending on 

the compute and engineering resources available it will often 

not be possible to resolve every potential testbench weakness 

identified.  This can cause difficulty in determining when an 

evaluation is completed.  The best approach we have found is 

to dedicate a fixed amount of time to running functional 

qualification, not setting extensive signoff metrics such as 0 

NA, 0 ND and 0 NP faults.  

 

     We typically allocate two weeks in the schedule for 

debugging functional qualification issues and our minimum 

signoff requirement is zero Non-Activated faults and zero 

Non-Detected faults.  If schedule pressure is particularly high 

we will limit the Non-Detected criteria to connectivity faults 

only. 

 

4) Increasing Qualification Throughput 

 

    Due to the large number of repetitive test runs required for 

functional qualification, anything that can be done to improve 

individual test runtimes can have a significant impact on the 

overall effort.  Below are a few items we have identified that 

can help speed up the process. 

 

    Often environments will continue to run tests even after a 

failure has been identified in an effort to provide more debug 

information in log files for engineers.  During functional 

qualification this is not required as a single failure is enough to 

determine that a fault is detectable.  Test environments 

undergoing functional qualification should always be 

configured to stop after the first failure. 

 

    Most tests used in functional qualification activate hundreds 

or thousands of individual faults in the design and depending 

on your license availability and compute farm resources many 

faults can undergo analysis in parallel as long as tests are 

reentrant.  For a test to be reentrant it must be possible to run 

multiple instances of the test in parallel without those tests 

affecting each other.  An example of a non-reentrant test is one 

that outputs a file and reads it back during execution.  If 

multiple versions of this test are running the files can be 

overwritten and create false failures.  Environments with non-

reentrant tests will run much slower than environments with 

reentrant tests. 

 

    The last recommendation to improve qualification is related 

to testbench architecture and placement of checkers.  Often 

testbench checkers are placed only on the top level outputs of 



the DUT which then requires the effects of faults to be 

propagated through the entire design hierarchy to be detected.     

Including assertions in the design code and increasing the 

usage of block level checkers in an environment can greatly 

improve efficiency in detecting faults.  Including checks 

throughout the design also promotes faster debug, as failures 

on top level pins can often be difficult to trace back to their 

root cause.  Anything that can be done to bring checks closer 

to the faults will greatly improve the efficiency of functional 

qualification as well as the overall verification quality.  

 

IV. CONCLUSION 

 

   While acknowledging the significant run-times and 

resources required to complete functional qualification this 

paper has shown that the effort is required because of the 

complexity and size of modern verification environments.  

Without an unbiased, systematic approach to measure the 

effectiveness of a verification environment there will be holes 

in your environment which could lead to bugs in your design. 
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