
Where OOP Falls Short
of Hardware Verification Needs

Matan Vax
Cadence Design Systems, Inc.

8 Hamelacha St., Rosh Ha'ain, 48091, Israel
matan@cadence.com

ABSTRACT
Functional verification requires, among other things,
dedicated programming constructs and mechanisms. Such are
accessible to a wide community of verification engineers
today more than in the past thanks to the SystemVerilog
language. Along with many verification specific constructs it
features object-oriented programming (OOP) framework.
OOP has been extremely successful in facilitating reuse in
many software application domains. This observation
suggests that it should serve just as well for reuse in the
verification domain. The present paper critically examines
this supposition. It demonstrates issues with the naive
application of object-oriented mechanisms, and how they are
partially overcome by more sophisticated design techniques.
Still these techniques don't scale well and increase code
complexity. The same needs are shown to be met more
naturally with modularization mechanisms that go beyond
strict OOP. This analysis leads to an interesting observation
on the nature of reuse in verification. It turns out to differ
substantially from that of classical software application
domains. If hardware verification languages are to address
the challenges of creating reusable verification code, they
must accommodate for its unique character.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Verification; D.3.3
[Programming Languages]: Language Constructs and
Features – Classes and Objects, Patterns.

General Terms
Languages, Verification.

Keywords
Object-Oriented Design, Hardware Verification Languages.

1. INTRODUCTION
Simulation-based functional verification of hardware
designs1 has established itself in recent years as an
engineering discipline in its own right. It has its own
dedicated languages, tool set, methodologies, library eco-
systems, and body of knowledge. The turning point in the
evolution of the discipline was the adoption of coverage-
driven methods in conjunction with constrained-random
stimuli generation [11, 16]. Replacing traditional approaches
that were either strictly directed or fully randomized, it deals
more systematically with the explosion of simulation state

1 Henceforth I shall use the unqualified term 'verification' in
this sense.

and stimuli spaces. As the discipline matures, reuse of
libraries and verification IPs becomes ubiquitous and crucial
for the success of projects.

With the adoption of coverage-driven methods existing
programming languages were no longer sufficient for
testbench development, as they lacked the means to express
constraints on stimuli generation and functional coverage
definitions. So languages dedicated for the task emerged –
hardware verification languages (HVLs). The most widely
used public domain HVLs today are e [6], SystemVerilog
[7], and SystemC/SCV [13].2 All three languages support a
rich set of verification specific constructs to express
constraints, coverage points, temporal properties, hardware
interfaces, and more. However, they differ in the basic
modularization mechanisms they provide.

Developing testbenches for hardware devices is in many
senses a software engineering task. In order to exercise the
design under test (DUT) and check its behavior the testbench
needs to emulate the behavior of the environment in which
the device is embedded, as well as the device's own
operation, at various levels of abstraction. This essentially
involves models, algorithms, and data structures naturally
expressed in high-level programming languages. Advanced
testbenches are, in this sense, large scale software systems.

Much of the code of a testbench, if built well, may live for
years and be reused across the hardware project's
proliferations, various different projects, and even different
companies. A different and more elementary dimension of
reuse in verification is that between the numerous tests in a
single project's test suite [5]. This kind of reuse has no
obvious counterpart in general software systems, but is
somewhat reminiscent of the variability found in software
product lines. In any case, verification engineers nowadays
must draw upon state-of-the-art software engineering
methods to meet the challenge of effective code reuse.

The dominant programming paradigm in the industrial
software world is object-oriented programming. OOP makes
use of the notion of class as the primary unit of

2 These languages are not exclusively used for verification.
SystemVerilog is also a hardware design language, and
SystemC is primarily used for hardware modeling.
SystemC is referred to as a language, although it is actually
a C++ library compiled with standard C++ compilers. Vera
and OpenVera are still used in the industry, but are
proclaimed to be superseded by SystemVerilog. There are
many proprietary verification languages and language
extensions mostly developed in-house by chip makers.

modularization, and relies on class inheritance as its main
abstraction mechanism. In so far as verification is ultimately
about writing software, it is only natural to expect that OOP
would serve just as well for verification needs. Indeed this
expectation is echoed in all three leading languages.

However, in practice even with object-oriented mechanisms
in place the design of testbenches does not resemble all that
much mainstream software design. This is manifested in the
extensive use of certain design patterns and auxiliary design
constructions. Similar techniques are applied in other
domains, but never in such sweeping manner. This
phenomenon was observed before but the present paper
proposes a generalized analysis for it under the title – the
layering problem. The main contribution of the paper is in
suggesting what it is about the task of verification that does
not lend itself naturally to classic object-oriented design. The
answer has to do with the unique form that code reuse must
take in this domain.

The remainder of the paper is organized as follows: Section 2
presents a design situation encountered regularly in
verification, known as "layering", and explains why it does
not map directly to object-oriented constructs. Section 3
surveys and evaluates techniques to address layering within
OOP. Section 4 shows how the required relationship can be
captured directly with a different set of language constructs.
Section 5 builds on previous observations and tries to address
the main question framed above. Work related to this kind
analysis is surveyed in section 6, and section 7 concludes.

2. THE LAYERING PROBLEM
The constrained-random verification flow is essentially about
running a multitude of tests, each focusing on some specific
feature, condition, or aspect of the DUT. There may be
hundreds or even thousands of such tests in a regression
suite, and each test is executed multiple times with different
random seeds. The verification environment is the common
infrastructure for test execution for a given DUT, or simply
put, the code that is shared between all tests.

2.1. Layering Constraints
It would be instructive to open the exposition of the problem
through an example. Let us consider a testbench for a
switching device that interfaces through some packet
protocol. Here is a simplistic definition of packet data type in
SystemVerilog:3

class packet;
 rand bit[15:0] addr;
 rand bit[7:0] data[];

constraint addr_range {addr >= 'h10;}
endclass

This class has two randomized member variables (fields): a
16 bit address and an array of data bytes. It also has one
member constraint restricting the range of values for variable

3 For simplicity, all code examples in this section and the
next are in SystemVerilog. The same issues arise in
SystemC/C++ and e so far as standard object-oriented
inheritance is used.

addr. The verification environment should provide the signal
level logic for actually driving a packet into the DUT, as in:

class packet_env;
 ...
 task drive_packet(packet p);
 // write packet onto DUT signals
 endtask
endclass

Consider a very simple test on top of this environment that
drives 20 packets having lower-end addresses into the DUT.
Here is its code:

class low_addr_packet extends packet;
 constraint low_addr { addr <= 'hFF; }

endclass

program test1;
 packet_env env;

 initial begin
 env = new();
 random_scenario();
 end

 task random_scenario();
 int i;
 for (i = 0; i < 20; i++) begin
 low_addr_packet p = new();
 assert(p.randomize());
 env.drive_packet(p);
 end
 endtask
endprogram

Now imagine another test that drives 20 upper-end address
packets into the DUT, and yet another that drives random
packets with addresses distributed in some other way. These
tests share the base packet definition and the driving logic.
However, they have in common also the scenario code that
generates 20 packets, with the sole difference being the
additional constraint. Unfortunately this code cannot be
shared between them because the new operator considers
only the static type of its operand. If the code of task
random_scenrio above had used class packet instead of
low_addr_packet randomization would have ignored
lower_addr constraint. Note that using inline constraints (the
randomize with operator) may obviate the subclasses of
packet, but the recurrence of generation code in all three tests
would still remain.

In this trivial example the loop that generates and drives
packets is obviously not worth the trouble of factoring out
and reusing. But it so happens that the structure of legitimate
transaction streams may involve some of the most intricate
logic of the protocol. Ideally most tests would reuse this logic
and entirely abstract from it. When constructing a testbench
for a device that interacts through a USB port, for example,
the environment may wish to hide the complex packet
handshaking flows while letting the test merely affect the
data packets delivered. But this is rendered impossible using
the language's constructs in this naive manner.

2.2. Layering Behavior
The above situation is often referred to as the layering
problem – the test writer needs to layer some property on top
of the environment's data type. This problem is by no means
restricted to constraints. To illustrate, imagine that in the
above testbench some legality check is implemented for
packets and is invoked after a packet has been read off the
DUT interface. Here is this aspect of the environment:

class packet;
 ...
 virtual function void check_length();
 // perform check
 endfunction
endclass

class packet_env;
 ...
 task monitor();
 packet p;
 forever begin
 collect_packet(p);
 p.check_length();
 ...
 end
 endtask

 task collect_packet(output packet p);
 p = new();
 // read packet off DUT signals
 endtask
endclass

If a test writer needs to refine the check in some way, she
cannot expect to achieve this just by overriding function
check_length in a derived class. This is again because task
collect_packet allocates packets by new-ing the base type.
Editing the code of class packet_env may not be an option, as
the source code for this part of the environment is not
necessarily available (as in the case of commercial IPs, for
example). But even if it were, the decoupling of test and
environment would be sacrificed. Inheriting packet_env and
overriding collect_packet is impractical for reasons that shall
be discussed next. Note also that non trivial behavioral
extensions often require auxiliary member variables and
functions and may affect more than one class.

2.3. Layering on top of Components
So far we focused on layering properties or behavior on top
of data item classes provided by the verification
environment. However, most checks and coverage points are
defined outside the data model, and so are some aspects of
stimuli such as timing and error injection. Here too
individual tests may need to intervene with the environment's
operation in certain respects to hit corner cases or observe
specific DUT behavior correctly. The naive object-oriented
approach would be again to subclass the environment's
classes that handle these tasks and make the required
adaptations. But in itself this move is futile, because just like
in the case of the data model, instantiation of these classes is
something the test cannot take over. Here is why.

The main tasks of the environment are decomposed into
separate objects classified by their function. Different
methodologies differ in details and terminology, but are alike
in spirit with respect to this classification. They name entities
such as monitors, drivers, sequencers, collectors, loggers,
generators, etc. These are composed together to form agents
or transactors, and multiple agents are further grouped in
module and system environments. All these objects function
as software components in the sense that they are created and
configured during environment setup and live throughout the
simulation. Other kinds of components, such as scoreboards,
abstract scenario libraries, register file models, and
behavioral "golden" models, may also be instantiated in the
same environment and interconnected.

The architecture of a large scale testbench may become
rather complex. Fortunately, it remains constant (perhaps
with minor variations) for the entire test suite since it
corresponds to the structure of the DUT. It is unrealistic to
expect that a test would construct and configure the entire
component hierarchy for itself just to be able to control the
actual type of some specific monitor or driver. After all, this
structure is exactly the kind of non-trivial definition that
should be abstracted from and reused. So for purposes of test
writing, inheritance of component classes in its simple form
is out of the question.

Finally it should be stressed that the layering problem is not
restricted to tests. Standalone module-level environments can
be reused as verification IPs by integrating them into
different system environments. The large scale environment
will typically need to customize the verification IP and adapt
it to its needs. This is done in much the same way as tests
would, since the IP logic that needs to be reused involves
instantiation of its own object model. Packaged IP code is
usually not open for integrators to edit even if they wanted,
and they rarely do.

3. DESIGN PATTERNS FOR
LAYERING
3.1. Layering with Factories
In object-oriented languages virtual method calls are bound
dynamically, that is, dispatched based on the actual type of
the receiver object. The new operator, on the other hand,
determines the type of the object in the first place and so
must be bound statically with some class. The way to work
around this is seemingly straightforward – use another object
for the instantiation and leverage its polymorphic behavior.
This auxiliary class is known as a factory. In this way objects
can be created in multiple places using an abstract factory
interface, while the actual class being thus instantiated is
determined by the type of a concrete factory object. This is
actually an old technique that was named a design pattern in
the famous Gang-of-Four book [3].

If we apply the pattern to the example in section 2.1 above,
we would need to replace all explicit uses of the new
operator with calls to a virtual method create() of an abstract
factory class. The test would then only have to instantiate a
concrete factory once, and it in turn will affect the behavior
of the entire environment. Leaving out much of the detail, the
environment code may now look thus:

class packet_factory;
 virtual function packet create();
 // by default create a packet
 create = new();
 endfunction
endclass

class packet_env;
 packet_factory pfact;
 ...
 packet p = pfact.create();
 ...
 packet p = pfact.create();
 ...
endclass

This way layering additional properties or refined behavior
on top of the basic packet definition does not require any
intrusive editing of the environment code. A test can simply
define a factory subclass and register its instance with the
environment class, as follows:

class test1_packet_factory
 extends packet_factory;
 virtual function packet create();
 low_addr_packet p = new();
 return p;
 endfunction
endclass

program test1;
 packet_env env;

 initial begin;
 // factory registration
 test1_packet_factory pf;
 pf = new();
 env.pfact = pf;
 ...
 end
endprogram

A utility library can reduce the coding overhead of the
abstract factory pattern for both environment developer and
test writer. The OVM-SV library, for example, includes a
very sophisticated version of the Abstract Factory pattern
[10]. It involves global type registry and bookkeeping code
encapsulated in base classes and in preprocessor macros. So
the environment developer needs to derive from a common
base class, and use a factory method for creation supplied by
the library rather then new. The test writer simply needs to
call a library function to "override" all allocations of some
class with that of a subclass. Neither test nor environment
need to explicitly define or instantiate a factory class.

3.2. Limitations of Factories
The use of factories solves the layering problem in its simple
form. However, often when tests are defined as refinement
layers on top of an existing object model, useful tests may be
obtained by composing two or more such refinements. This
cannot be done with the Abstract Factory pattern, at least not
in a single inheritance language such as SystemVerilog.

Imagine a test with another variant of packet, call it
round_addr_packet, which gives more weight to 4-byte
aligned addresses. It may make sense to apply this property
also in conjunction with the low_addr property defined
above to create a third test. But since a different class is used
to define each of the variants and both derive from packet
they cannot be applied together to the same instances.
Conversely, if round_addr_packet explicitly derives from
low_addr_packet it cannot be applied separately.

With multiple inheritance, as in SystemC (C++), this kind of
reuse can be achieved by deriving a third class from both
subclasses of packet. This way each test could choose
between the base class, one of the two subclasses, or the third
class that combines the two. However, this still requires
explicit definition of the combination as a separate class. So
the two definitions are not truly pluggable independently in a
test. The situation gets worse with more independent
properties, of which arbitrary subsets may be used in
different tests. The number of explicit classes that need to be
created and maintained grows exponentially with the number
of such independent properties.

A related requirement on the part of test writers has to do
with leveraging existing abstractions of the data model. Tests
may need to layer a property on top of an abstract class so as
to affect all its subclasses equally. Consider a protocol that
defines several variants of its basic data item which have
some properties in common and others not. For example, in
an environment for USB interface it would be natural to
define data packet, token packet, and handshake packet, as
separate classes, all deriving from an abstract packet class.
Now some tests may need to layer an additional constraint on
top of all three subclasses. Ideally the new property would be
associated with the common base class, rather than
duplicated for each concrete class. The test writer in this case
need not even be aware of the subclasses. But even if
factories have been used to instantiate these classes
throughout the environment, deriving a new class from the
base class would not help. The new class does not "blend in"
with any of the existing.

Here too multiple inheritance can be used to overcome the
reuse issue. But this is, again, a very lean sense of reuse. It is
achieved at the price of explicitly crossing the new property
with every existing subclass. The number of synthetic classes
generated by this cross may be large, causing significant
coding and maintenance overhead. Moreover, the test writer
cannot remain agnostic of the concrete data model.

3.3. Behavioral Extensions with Callbacks
We turn now to discuss another well known object-oriented
technique to tackle the layering problem. It involves using
"listeners" or callback objects, and is akin to Command and
Observer design patterns [3]. We shall use the term 'callback',
as it is more commonly used in this context.

The principle is simple. The environment declares an abstract
class with one or more virtual functions that are called at
designated points in the execution. The classic observer is
intended to monitor state changes within some model, but
any kind of occurrence can be monitored just as well. The
key here is that a single occurrence may trigger the

notification of multiple callbacks. In its simplest form, the
idea may be implemented in the environment thus:

class env_callback;
 virtual task execute();
 endtask // does nothing by default
endclass

class packet_env;
 // callback queue
 env_callback pre_drive_cbs[$];

 task drive_packet(packet p);
 // invoke all registered callbacks
 for (int i = 0;
 i < pre_drive_cbs.size(); i++)
 pre_drive_cbs[i].execute();

 ... // do the actual driving
 endtask
endclass

Here the environment triggers all callbacks registered in
pre_driver_cbs queue right before actually driving a packet
into the DUT. A test that needs to modify the driving
behavior in this sense can simply define its own callback
object and register it. The following test utilizes the above
preparation to force random delay before each packet:

class my_delay_cb extends env_callback;
 virtual task execute();
 int unsigned delay;
 delay = $urandom_range(10);
 #(delay); // wait 0..10 time units
 endtask
endclass

program test1;
 packet_env env;
 my_delay_cb my_cb;

 initial begin
 // ...

 // regiester callback with the env
 my_cb = new();
 env.pre_drive_cbs.push_back(my_cb);
 end
endprogram

Different observer classes (and queues) may be used to
encapsulate different function signatures. Conversely, several
callback functions may be grouped together in a single
abstract callback class to encapsulate the handling of related
events.

Just like in the case the Abstract Factory pattern, it is
worthwhile to encapsulate pattern related services in a utility
library. The Verification Methodology Manual (VMM), for
example, recommends a very wide application of callbacks,
and provides related services encapsulated in library base
classes and macros [1, 15]. These handle registration,
unregistration, and the actual invocation of callback objects.

3.4. Advantages and Limitation of
Callbacks

First it should be noted that callback objects can only
implement behavioral extensions. If structural properties
need to be added to an existing class, such as constraints,
fields, or new methods, other techniques must be applied,
such as factories.4

Callbacks require upfront design of extension points and are
only as good as the preparation they have in the environment
code. Unlike factories, they cannot be used to apply
unanticipated modifications to a class. In particular, callbacks
cannot completely override existing functionality, unless
explicit preparation for this has been made. It could be
argued that this restriction is actually an advantage, as it
enforces more disciplined usage. Perhaps this position is
valid in other domains, but often turns out to be too rigid for
real life situations in verification (see a case for this claim in
[12]). A related issue with callbacks is the fact that they
encapsulate the extension code in a separate class, while it is
often tightly coupled with the extended class.

On the other hand, callbacks are much more flexible with
respect to layer composition. Any number of independent
callback objects can be registered to monitor the same event,
as long as it has the required preparation. In fact, callbacks
are independent in a way that does not allow one to affect
another, even when this is needed. Further techniques can be
applied to implement more sophisticated notification
semantics. In particular, Chain of Responsibility pattern [3]
can be used to enable control flow variability between the
calls. With more flexibility comes more complication of
flow, which impedes readability and understandability of the
code.

4. FROM DESIGN PATTERNS TO
NATIVE CONSTRUCTS
Limitations of specific design patterns can usually be
overcome with yet more sophisticated techniques. But the
one inherent down side of design patterns is their very
existence in the code. They put both cognitive and coding
overhead on the programmer, even when reduced to the
minimum using utility libraries, and have negative impact on
traceability and understandability of the code [2]. The
compiler and other development tools remain ignorant of the
design intent expressed in these terms. The pain grows with
density and variety of patterns applied. It seems that with
advanced object-oriented verification methodologies this
becomes a serious issue.

Gamma et al. readily admitted that design patterns are a
matter of point of view – "One person's pattern can be
another person's primitive building block" [3]. The difference
between two such persons may simply be the programming

4 It should be s,//tressed that neither this section, nor the rest
of the paper, attempts a comparison of OVM and VMM.
Both include more concepts and services that bear on the
considerations raised here. The intention is merely to
evaluate the two design techniques per se with respect to
the needs outlined previously.

language they use. Bosch writes "... design patterns are part
of the software engineer’s paradigm and it is the task of the
programming language to represent the concepts in the
paradigm as accurate as possible" [2]. Gil and Lorentz call
design patters "puppy language features" and argue that in
many cases they compensate in one language for capabilities
that already exist in other languages [4]. This is evident, for
example, with aspect-oriented languages such as AspectJ that
have the Observer collaboration (as in the callback pattern)
as their prototypical application [9].

The e language has unconventional features with direct
bearing on the design requirements described above. This
should come as no surprise, as they were devised from the
outset to tackle exactly these challenges. They are
inheritance-like mechanisms on top of the standard single
inheritance – class extensions and "when" subtyping. Both
have been presented previously in [6]. Their affinity to key
aspect-oriented concepts, namely advice and introductions,
has been analyzed in [12, 14]. In this chapter we shall explain
very briefly these two mechanisms, leaving details out, and
demonstrate their application to the layering problem. The
main purpose of this is to substantiate the claim that design
techniques discussed above indeed compensate for limited
expressive power of strict object-oriented languages.5

4.1. Class Extensions
In e a class is initially declared with the struct or unit
keyword,6 optionally deriving from another class in the
standard object-oriented sense. Within the scope of the class'
initial definition new members can be defined, and existing
members can be overridden.

Having been initially defined in this way, a class may be
extended elsewhere using the keyword extend. In the scope
of this construct the class may be further defined in exactly
the same manner – new members can be added and existing
members can be overridden "in-place" so to speak. New
members and new definitions to existing members affect all
instances of that class, including classes inherited from it,
just as if they were part of its initial definition. This is
regardless of where the instantiation of (or inheritance from)
the class occurs in the code.

Overriding existing definition in the strict sense is often not
required. Subclasses inherited in the standard way, and more
so in-place class extensions, often need to augment existing
definitions rather than replace them altogether. For this
purpose e makes available two additive modes of member
overriding, or more aptly – refinement. They place the new
definitions after or before the exiting definitions, and are
denoted by the key phrases is also and is first
respectively. The standard object-oriented replacement
semantics is denoted by is only.

5 This is not to claim that e's are the only conceivable
mechanisms for that purpose, nor even that they are the
best ones.

6 The difference between the two corresponds to a distinction
made previously between data types and components. For
present purposes both keywords prefix class definitions.

4.2. Applying Class Extensions in Layering
The constraint layering example from section 2.1 above
could be rewritten in e such that a generic random scenario is
defined in the environment using the new operator directly.
The e equivalent of the environment's definition for class
packet would be:

struct packet {
 addr: uint(bits:16);
 data: list of byte;
 keep addr_range is { addr >= 0x10; }
};

The code of test1 would consist simply of an extension to
class packet with the additional constraint thus:

extend packet {
 keep addr < 0xFF;
};

The reader can appreciate the way the extend construct
expresses the intention of the test in a concise and intuitive
way without the need for auxiliary definitions. If defining the
same class in multiple locations should seem strange at first
glance, it may be just because we disregard the fact that this
is in fact what we try to achieve here, and what the patterns
discussed above try to emulate.

Moreover, the limitations listed in section 3.2 do not plague
this mechanism. Consider another property defined in some
other test, for example:

extend packet {
 keep data.size() in [2,4,8];
};

The two properties thus defined could be loaded together in
the same session and would then apply equally to all
generated packets, be it within the environment code or
outside. Note that this would have been true even if packet
was an abstract class in the environment and only subclasses
of it were actually generated.

Now consider the example from section 3.3. The same
approach would apply here just as well. The test only needs
to extend class packet_env and refine time-consuming
method drive_packet (e's equivalent of SystemVerilog's
member task):

extend packet_env {
 drive_packet() @clock is first {
 var delay: int[0..10]
 gen delay;
 wait [delay];
 };
};

If a number of refinements for the same method are compiled
or loaded in the same session they all get executed upon
every call. The order of execution is determined according to
dependency between the modules (source files). The effect
thus achieved is similar to that of the use of callbacks. But no
up-front preparation in the base environment is required and
the coding overhead is gone.

4.3. Taking it Further with When Subtypes
A when subtype is simply a class under some condition.
Assume that class packet has a field (member variable)
named kind of an enumerated type, whose possible values are
token, data, and handshake. In e these values imply the
existence of 3 subtypes of packet, namely token packet, data
packet, and handshake packet. An instance of class packet
with field kind equals to token is actually an instance of the
type token packet. The phrase token packet represents a
type for all purposes – declaring variables, casting, etc. When
subtypes may be extended just like any other class type,
making the definitions in the extension scope conditional.
They apply to an object in as far as it is an instance of that
subtype, that is, it is an instance of the base class and its
corresponding field is of the right value at that time.

When subtypes are ideal for data modeling where different
values of a field correspond to structural differences of the
data item in which it is embedded. This is often the case in
hardware protocols and processor instruction sets. More
importantly, with when subtypes it is possible to constrain
and randomize the type of data items.

In the context of the present discussion when subtypes are a
way to introduce independent sub-classifications of objects
and thus gain finer control over extensions. A constraint may
be put on data packet without affecting other kinds of
packets. Imagine another field of packet indicating whether it
is legal or corrupt. This field would expand a sub-
classification on an orthogonal dimension. So under corrupt
packet there could be a refined implementation of some
method, and it would apply to all corrupt packets, regardless
of whether they are data packets or of other kinds.

This use for when subtypes is very common also in
customizing components. Bus agents, for example, are
typically classified into masters and slaves, a classification
that may affect both their structure and behavior. From the
testbench point of view some may be active in the sense that
they actually inject synthetic traffic, while others passive,
that is, merely monitoring traffic. These classifications are
naturally captured as when subtype extensions to class agent.
Any given agent is either a master or a slave, and
independently either active or passive. In all four cases all
and only the relevant definitions apply.

5. DISCUSSION: THE REUSE MODEL
IN VERIFICATION
The object-oriented programming paradigm emerged in the
1970's with the development of Smalltalk. One of its first and
most distinctive applications was in the design of a graphical
user interface (GUI) framework [8]. The language
mechanisms forged for this purpose, most notably class
inheritance and polymorphism, were extremely successful in
capturing the commonalities between library entities, and in
supplying useful abstractions to the end application.

Let us consider the mode of reuse in the context of this
classical application for OOP. Reuse here means first and
foremost factoring the code-intense definitions of graphical
elements into a library so that they can easily be shared
between many different applications. Applications define
their custom GUI by specializing, instantiating, and

configuring components, such as buttons, panes, menus etc.
These are placed within a window, and behavior is associated
with events reported by them. The library provides a pure
object model for these components while instantiation is left
exclusively to the application.

What in verification is analogous to this classic relation
between library and end-application? Where does the main
"reuse divide" pass? In a single verification project much of
logic is common to all tests in a regression suite. Its
complexity is typically greater than that of any specific test,
and so is the effort that goes into its development. But a
verification environment is very different in nature from a
class library, just as tests are very different from GUI
applications.

Section 2 above already outlined what a verification
environment should consist of. It is not merely a set of
abstract building blocks for writing test. Rather, it is a
concrete and fully operational model simulating in great
details relevant aspects of the environment in which the
device is embedded. If built properly a verification
environment could, at least in principle, execute as-is (or
almost as-is) achieving real coverage and possibly
uncovering bugs.7 It obviously makes no sense to expect
something of the sort from the average class library.

Similarly, individual tests, when distilled to their essentials,
don't resemble standalone applications in any way. Tests may
need to configure some properties of the environment,
perhaps make slight adaptations to its behavior. But most
commonly tests use constraints and procedural code to guide
random stimuli into the scenario's areas of interest. In this
sense tests are merely variations on the environment's
definitions. If fact, test may involve a number of independent
variations combined together, where variations themselves
may be shared across some (but not all) tests. Interestingly,
this mode of reuse is not restricted to tests. It is often
manifested also when integrating verification IPs in system-
level environments.

At the heart of what we identified as the layering problem
lies the fact that the model defined by the environment is
concrete. Unlike the case with class libraries, the verification
environment does much, if not all, of the actual instantiation
of classes it defines. Generation of data item streams for
stimulating the DUT obviously requires instantiation, and so
does collection of DUT responses for checking. The
construction of environment's component architecture, which
may become fairly complex, also involves instantiation of
objects.

There are two basic tasks that a software system needs to
handle – the definition of a model and its instantiation. The
object-oriented paradigm focuses on modularization of the
model's definition prior to its instantiation, and indeed this is
where potential for reuse lies in many application domains.
But in verification the balance between the two tasks is
different from a reuse point of view. Much of the logic of a

7 In fact, some commercial verification IPs do just that and
even claim to cover significant portions of the verification
goals relative to a given plan.

verification environment involves instantiation, while the
tests typically just need refine some aspect of the model. This
mode of reuse constitutes a different programming paradigm.
As quoted previously, it is the task of the programming
language to represent the concepts in the paradigm as
accurate as possible.

6. RELATED WORK
Hollander et al. [5] survey the unique mechanisms for
separation of concerns of the e language, and their relation to
the specific challenges encountered in verification. The
present paper is very much following the lead of hints in their
work, in particular in its focus on the special relation between
a verification environments and individual tests in a test
suite. However, in their paper Hollander et al. do not discuss
possible solutions within the bounds of object-oriented
programming, and their limitations. The present paper
attempts exactly this analysis. Here e's mechanisms are
mentioned mostly to substantiate the criticism of object-
oriented languages in this respect.

Robinson's book [12] is strongly related to issues discussed
in the present paper. Apart from being a valuable book for
practitioners, it contains some insights on the very idea of
aspects and AOP. Unlike the present paper, it stresses the
general problem of crosscutting concerns and how AOP
promotes better modularization of them. Robinson is surely
right in that, being large software systems, testbenches have
crosscutting concerns. He does not stress enough, though, the
special traits of the verification domain that make these
AOP-like mechanisms indispensable. Unlike Robinson, the
present paper focuses on problems of reuse in verification
that are not germane to most other domains.

7. CONCLUSION
This paper presented a software design situation that is
ubiquitous when building reusable verification environments.
It concerns layering properties and behavior on top of a
model without owning its instantiation. This design situation
does not map naturally to native object-oriented constructs.
Design patterns and techniques are applied across the board
by verification methodologies to overcome this shortcoming,
but these techniques are inherently cumbersome and not
wholly satisfactory. Language mechanisms that go beyond
the strict object-oriented paradigm do a much better job in
capturing the same design intent. In fact, the object-oriented
techniques seem to emulate these very mechanisms.

What makes the programming paradigm that works so well
for most complex software systems not right for verification?
Some insight can be gained by comparing the mode of reuse
in classical object-oriented application domains and that of
verification environments. In a nutshell, object models make
very good candidates for reuse, but construction and
generation logic does not. The latter is extremely important
in verification, and less so in other domains.

The upshot of this discussion is twofold. It reinforces the
claim that simulation-based verification is a unique kind of
challenge, not reducible in its methods to other engineering
disciplines. From the point of view of language design, there
is a lesson to be learned too. A domain specific language is
not all about domain specific types, operators, or even

constructs. It may well need a suitable programming
paradigm to supply the right toolbox for modularization,
abstraction, and reuse.

8. ACKNOWLEDGEMENTS
I wish to thank Brett Lammers, Shlomi Uziel, and Zeev
Kirshenbaum of Cadence, and JL Gray of Verilab, who
provided valuable feedback on earlier drafts of this paper.

9. REFERENCES
1. Bergeron, J., Cerny, E., Hunter, A., and Nightingale, A.

2005 Verification Methodology Manual for
Systemverilog. Springer-Verlag New York, Inc.

2. Bosch, J. 1998. Design Patterns as Language Constructs.
In Journal of Object-Oriented Programming, vol 11, 18-
32.

3. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Longman Publishing Co., Inc.

4. Gil, J. and Lorenz, D. H., 1998, Design patterns vs.
language design. In Proceedings of the 11 th European
Conference on Object-Oriented Programming, Lecture
Notes in Computer Science, vol. 1241, 9-13.

5. Hollander, Y., Morley, M., and Noy, A. 2001. The e
language: A fresh separation of concerns. In Proceedings
of the International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS 2001 Europe
Conference, Zurich, Switzerland).

6. IEEE Standard for the Functional Verification Language
'e', IEEE Computer Society, IEEE, New York, NY, IEEE
Std 1647—2006

7. IEEE Standard For System Verilog - Unified Hardware
Design, Specification and Verification Language, IEEE
Computer Society, IEEE, New York, NY, IEEE Std
1800—2005

8. Kay, A. C. 1993. The early history of Smalltalk. In the
Second ACM SIGPLAN Conference on History of
Programming Languages (Cambridge, Massachusetts,
United States, April 20 - 23, 1993). HOPL-II. ACM, New
York, NY, 69-95.

9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. 2001. An Overview of AspectJ.
In Proceedings of the 15th European Conference on
Object-Oriented Programming (June 18 - 22, 2001). J. L.
Knudsen, Ed. Lecture Notes In Computer Science, vol.
2072. Springer-Verlag, London, 327-353.

10. OVM web site. http://ovmworld.org

11. Piziali, A. 2007 Functional Verification Coverage
Measurement and Analysis. 1st. Springer Publishing
Company, Incorporated.

12. Robinson, D. 2007, Aspect-Oriented Programming with
the e Verification Language: A Pragmatic Guide for
Testbench Developers. Elsevier Inc.

13. SystemC web site. http://www.systemc.org

14. Vax, M. 2007. Conservative aspect-orientated
programming with the e language. In Proceedings of the
6th international Conference on Aspect-Oriented
Software Development (Vancouver, British Columbia,
Canada, March 12 - 16, 2007). AOSD '07, vol. 208.

15. VMM web site. http://vmm-sv.org

16. Wile, B., Goss, J., and Roesner, W. 2005 Comprehensive
Functional Verification: the Complete Industry Cycle
(Systems on Silicon). Morgan Kaufmann Publishers Inc.

