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ABSTRACT
Functional verification requires, among other things, 
dedicated programming constructs and mechanisms. Such are 
accessible to a wide community of verification engineers 
today more than in the past thanks to the SystemVerilog 
language. Along with many verification specific constructs it 
features object-oriented programming (OOP) framework. 
OOP has been extremely successful in facilitating reuse in 
many software application domains. This observation 
suggests that it should serve just as well for reuse in the 
verification domain. The present paper critically examines 
this supposition. It demonstrates issues with the naive 
application of object-oriented mechanisms, and how they are 
partially overcome by more sophisticated design techniques. 
Still these techniques don't scale well and increase code 
complexity. The same needs are shown to be met more 
naturally with modularization mechanisms that go beyond 
strict OOP. This analysis leads to an interesting observation 
on the nature of reuse in verification. It turns out to differ 
substantially from that of classical software application 
domains. If hardware verification languages are to address 
the challenges of creating reusable verification code, they 
must accommodate for its unique character.

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids—Verification; D.3.3 
[Programming Languages]: Language Constructs and 
Features – Classes and Objects, Patterns.

General Terms 
Languages, Verification. 

Keywords 
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1. INTRODUCTION
Simulation-based functional verification of hardware 
designs1 has established itself in recent years as an 
engineering discipline in its own right. It has its own
dedicated languages, tool set, methodologies, library eco-
systems, and body of knowledge. The turning point in the 
evolution of the discipline was the adoption of coverage-
driven methods in conjunction with constrained-random 
stimuli generation [11, 16]. Replacing traditional approaches 
that were either strictly directed or fully randomized, it deals 
more systematically with the explosion of simulation state 

                                                                

1 Henceforth I shall use the unqualified term 'verification' in 
this sense.

and stimuli spaces. As the discipline matures, reuse of 
libraries and verification IPs becomes ubiquitous and crucial
for the success of projects.

With the adoption of coverage-driven methods existing 
programming languages were no longer sufficient for 
testbench development, as they lacked the means to express 
constraints on stimuli generation and functional coverage 
definitions. So languages dedicated for the task emerged –
hardware verification languages (HVLs). The most widely 
used public domain HVLs today are e [6], SystemVerilog 
[7], and SystemC/SCV [13].2 All three languages support a 
rich set of verification specific constructs to express 
constraints, coverage points, temporal properties, hardware 
interfaces, and more. However, they differ in the basic 
modularization mechanisms they provide.

Developing testbenches for hardware devices is in many 
senses a software engineering task. In order to exercise the
design under test (DUT) and check its behavior the testbench 
needs to emulate the behavior of the environment in which 
the device is embedded, as well as the device's own 
operation, at various levels of abstraction. This essentially 
involves models, algorithms, and data structures naturally 
expressed in high-level programming languages. Advanced 
testbenches are, in this sense, large scale software systems.

Much of the code of a testbench, if built well, may live for 
years and be reused across the hardware project's 
proliferations, various different projects, and even different 
companies. A different and more elementary dimension of 
reuse in verification is that between the numerous tests in a 
single project's test suite [5]. This kind of reuse has no 
obvious counterpart in general software systems, but is 
somewhat reminiscent of the variability found in software 
product lines. In any case, verification engineers nowadays 
must draw upon state-of-the-art software engineering 
methods to meet the challenge of effective code reuse.

The dominant programming paradigm in the industrial 
software world is object-oriented programming. OOP makes
use of the notion of class as the primary unit of 

                                                                

2 These languages are not exclusively used for verification. 
SystemVerilog is also a hardware design language, and 
SystemC is primarily used for hardware modeling. 
SystemC is referred to as a language, although it is actually 
a C++ library compiled with standard C++ compilers. Vera 
and OpenVera are still used in the industry, but are 
proclaimed to be superseded by SystemVerilog. There are 
many proprietary verification languages and language 
extensions mostly developed in-house by chip makers.



modularization, and relies on class inheritance as its main
abstraction mechanism. In so far as verification is ultimately
about writing software, it is only natural to expect that OOP
would serve just as well for verification needs. Indeed this 
expectation is echoed in all three leading languages.

However, in practice even with object-oriented mechanisms
in place the design of testbenches does not resemble all that 
much mainstream software design. This is manifested in the 
extensive use of certain design patterns and auxiliary design 
constructions. Similar techniques are applied in other 
domains, but never in such sweeping manner. This 
phenomenon was observed before but the present paper 
proposes a generalized analysis for it under the title – the 
layering problem. The main contribution of the paper is in 
suggesting what it is about the task of verification that does 
not lend itself naturally to classic object-oriented design. The 
answer has to do with the unique form that code reuse must 
take in this domain.

The remainder of the paper is organized as follows: Section 2 
presents a design situation encountered regularly in 
verification, known as "layering", and explains why it does 
not map directly to object-oriented constructs. Section 3 
surveys and evaluates techniques to address layering within 
OOP. Section 4 shows how the required relationship can be 
captured directly with a different set of language constructs. 
Section 5 builds on previous observations and tries to address 
the main question framed above. Work related to this kind 
analysis is surveyed in section 6, and section 7 concludes. 

2. THE LAYERING PROBLEM
The constrained-random verification flow is essentially about 
running a multitude of tests, each focusing on some specific 
feature, condition, or aspect of the DUT. There may be 
hundreds or even thousands of such tests in a regression 
suite, and each test is executed multiple times with different 
random seeds. The verification environment is the common 
infrastructure for test execution for a given DUT, or simply 
put, the code that is shared between all tests.

2.1. Layering Constraints
It would be instructive to open the exposition of the problem 
through an example. Let us consider a testbench for a
switching device that interfaces through some packet 
protocol. Here is a simplistic definition of packet data type in 
SystemVerilog:3

class packet;
   rand bit[15:0] addr;
  rand bit[7:0] data[];

constraint addr_range {addr >= 'h10;}
endclass

This class has two randomized member variables (fields): a 
16 bit address and an array of data bytes. It also has one 
member constraint restricting the range of values for variable

                                                                

3 For simplicity, all code examples in this section and the 
next are in SystemVerilog. The same issues arise in 
SystemC/C++ and e so far as standard object-oriented 
inheritance is used.

addr. The verification environment should provide the signal
level logic for actually driving a packet into the DUT, as in:

class packet_env;
   ...
   task drive_packet(packet p);
      // write packet onto DUT signals
   endtask
endclass

Consider a very simple test on top of this environment that
drives 20 packets having lower-end addresses into the DUT. 
Here is its code:

class low_addr_packet extends packet;
  constraint low_addr { addr <= 'hFF; }

endclass

program test1;
   packet_env env;

   initial begin
      env = new();
      random_scenario();
   end

   task random_scenario();
      int i;
      for (i = 0; i < 20; i++) begin
         low_addr_packet p = new();
         assert(p.randomize());
         env.drive_packet(p);
      end
   endtask
endprogram

Now imagine another test that drives 20 upper-end address
packets into the DUT, and yet another that drives random 
packets with addresses distributed in some other way. These 
tests share the base packet definition and the driving logic. 
However, they have in common also the scenario code that 
generates 20 packets, with the sole difference being the 
additional constraint. Unfortunately this code cannot be 
shared between them because the new operator considers
only the static type of its operand. If the code of task 
random_scenrio above had used class packet instead of 
low_addr_packet randomization would have ignored 
lower_addr constraint. Note that using inline constraints (the 
randomize with operator) may obviate the subclasses of 
packet, but the recurrence of generation code in all three tests 
would still remain.

In this trivial example the loop that generates and drives 
packets is obviously not worth the trouble of factoring out 
and reusing. But it so happens that the structure of legitimate 
transaction streams may involve some of the most intricate 
logic of the protocol. Ideally most tests would reuse this logic 
and entirely abstract from it. When constructing a testbench 
for a device that interacts through a USB port, for example, 
the environment may wish to hide the complex packet 
handshaking flows while letting the test merely affect the 
data packets delivered. But this is rendered impossible using 
the language's constructs in this naive manner.



2.2. Layering Behavior
The above situation is often referred to as the layering
problem – the test writer needs to layer some property on top 
of the environment's data type. This problem is by no means 
restricted to constraints. To illustrate, imagine that in the 
above testbench some legality check is implemented for 
packets and is invoked after a packet has been read off the 
DUT interface. Here is this aspect of the environment:

class packet;
   ...
   virtual function void check_length();
      // perform check
   endfunction
endclass

class packet_env;
   ...   
   task monitor();
      packet p;
      forever begin
         collect_packet(p);
         p.check_length();
         ...
      end
   endtask

   task collect_packet(output packet p);
      p = new();
      // read packet off DUT signals
  endtask
endclass

If a test writer needs to refine the check in some way, she
cannot expect to achieve this just by overriding function 
check_length in a derived class. This is again because task 
collect_packet allocates packets by new-ing the base type. 
Editing the code of class packet_env may not be an option, as 
the source code for this part of the environment is not 
necessarily available (as in the case of commercial IPs, for 
example). But even if it were, the decoupling of test and 
environment would be sacrificed. Inheriting packet_env and 
overriding collect_packet is impractical for reasons that shall 
be discussed next. Note also that non trivial behavioral 
extensions often require auxiliary member variables and 
functions and may affect more than one class.

2.3. Layering on top of Components
So far we focused on layering properties or behavior on top 
of data item classes provided by the verification 
environment. However, most checks and coverage points are 
defined outside the data model, and so are some aspects of 
stimuli such as timing and error injection. Here too 
individual tests may need to intervene with the environment's 
operation in certain respects to hit corner cases or observe 
specific DUT behavior correctly. The naive object-oriented 
approach would be again to subclass the environment's 
classes that handle these tasks and make the required 
adaptations. But in itself this move is futile, because just like 
in the case of the data model, instantiation of these classes is 
something the test cannot take over. Here is why.

The main tasks of the environment are decomposed into 
separate objects classified by their function. Different 
methodologies differ in details and terminology, but are alike 
in spirit with respect to this classification. They name entities 
such as monitors, drivers, sequencers, collectors, loggers, 
generators, etc. These are composed together to form agents 
or transactors, and multiple agents are further grouped in 
module and system environments. All these objects function
as software components in the sense that they are created and 
configured during environment setup and live throughout the 
simulation. Other kinds of components, such as scoreboards, 
abstract scenario libraries, register file models, and 
behavioral "golden" models, may also be instantiated in the 
same environment and interconnected.

The architecture of a large scale testbench may become 
rather complex. Fortunately, it remains constant (perhaps
with minor variations) for the entire test suite since it 
corresponds to the structure of the DUT. It is unrealistic to 
expect that a test would construct and configure the entire 
component hierarchy for itself just to be able to control the 
actual type of some specific monitor or driver. After all, this 
structure is exactly the kind of non-trivial definition that 
should be abstracted from and reused. So for purposes of test 
writing, inheritance of component classes in its simple form 
is out of the question.

Finally it should be stressed that the layering problem is not
restricted to tests. Standalone module-level environments can 
be reused as verification IPs by integrating them into
different system environments. The large scale environment 
will typically need to customize the verification IP and adapt 
it to its needs. This is done in much the same way as tests 
would, since the IP logic that needs to be reused involves 
instantiation of its own object model. Packaged IP code is 
usually not open for integrators to edit even if they wanted, 
and they rarely do.

3. DESIGN PATTERNS FOR
LAYERING
3.1. Layering with Factories
In object-oriented languages virtual method calls are bound 
dynamically, that is, dispatched based on the actual type of 
the receiver object. The new operator, on the other hand, 
determines the type of the object in the first place and so 
must be bound statically with some class. The way to work 
around this is seemingly straightforward – use another object 
for the instantiation and leverage its polymorphic behavior. 
This auxiliary class is known as a factory. In this way objects 
can be created in multiple places using an abstract factory 
interface, while the actual class being thus instantiated is 
determined by the type of a concrete factory object. This is 
actually an old technique that was named a design pattern in 
the famous Gang-of-Four book [3].

If we apply the pattern to the example in section 2.1 above, 
we would need to replace all explicit uses of the new
operator with calls to a virtual method create() of an abstract 
factory class. The test would then only have to instantiate a 
concrete factory once, and it in turn will affect the behavior 
of the entire environment. Leaving out much of the detail, the 
environment code may now look thus:



class packet_factory;
   virtual function packet create();
      // by default create a packet
      create = new();
   endfunction
endclass

class packet_env;
   packet_factory pfact;
   ...
      packet p = pfact.create();
      ...
      packet p = pfact.create();
   ...
endclass

This way layering additional properties or refined behavior 
on top of the basic packet definition does not require any 
intrusive editing of the environment code. A test can simply 
define a factory subclass and register its instance with the 
environment class, as follows:

class test1_packet_factory
                 extends packet_factory;
   virtual function packet create();
      low_addr_packet p = new();
      return p;
   endfunction
endclass

program test1;
   packet_env env;
   
   initial begin;
      // factory registration
      test1_packet_factory pf;
      pf = new();
      env.pfact = pf;
      ...
   end
endprogram

A utility library can reduce the coding overhead of the 
abstract factory pattern for both environment developer and 
test writer. The OVM-SV library, for example, includes a 
very sophisticated version of the Abstract Factory pattern
[10]. It involves global type registry and bookkeeping code 
encapsulated in base classes and in preprocessor macros. So 
the environment developer needs to derive from a common 
base class, and use a factory method for creation supplied by 
the library rather then new. The test writer simply needs to 
call a library function to "override" all allocations of some 
class with that of a subclass. Neither test nor environment 
need to explicitly define or instantiate a factory class.

3.2. Limitations of Factories
The use of factories solves the layering problem in its simple 
form. However, often when tests are defined as refinement 
layers on top of an existing object model, useful tests may be 
obtained by composing two or more such refinements. This 
cannot be done with the Abstract Factory pattern, at least not
in a single inheritance language such as SystemVerilog.

Imagine a test with another variant of packet, call it 
round_addr_packet, which gives more weight to 4-byte 
aligned addresses. It may make sense to apply this property
also in conjunction with the low_addr property defined 
above to create a third test. But since a different class is used 
to define each of the variants and both derive from packet
they cannot be applied together to the same instances. 
Conversely, if round_addr_packet explicitly derives from 
low_addr_packet it cannot be applied separately.

With multiple inheritance, as in SystemC (C++), this kind of 
reuse can be achieved by deriving a third class from both 
subclasses of packet. This way each test could choose 
between the base class, one of the two subclasses, or the third 
class that combines the two. However, this still requires 
explicit definition of the combination as a separate class. So 
the two definitions are not truly pluggable independently in a 
test. The situation gets worse with more independent 
properties, of which arbitrary subsets may be used in 
different tests. The number of explicit classes that need to be 
created and maintained grows exponentially with the number 
of such independent properties.

A related requirement on the part of test writers has to do 
with leveraging existing abstractions of the data model. Tests 
may need to layer a property on top of an abstract class so as 
to affect all its subclasses equally. Consider a protocol that 
defines several variants of its basic data item which have 
some properties in common and others not. For example, in 
an environment for USB interface it would be natural to 
define data packet, token packet, and handshake packet, as 
separate classes, all deriving from an abstract packet class. 
Now some tests may need to layer an additional constraint on 
top of all three subclasses. Ideally the new property would be 
associated with the common base class, rather than 
duplicated for each concrete class. The test writer in this case 
need not even be aware of the subclasses. But even if 
factories have been used to instantiate these classes 
throughout the environment, deriving a new class from the 
base class would not help. The new class does not "blend in" 
with any of the existing.

Here too multiple inheritance can be used to overcome the 
reuse issue. But this is, again, a very lean sense of reuse. It is 
achieved at the price of explicitly crossing the new property 
with every existing subclass. The number of synthetic classes 
generated by this cross may be large, causing significant 
coding and maintenance overhead. Moreover, the test writer 
cannot remain agnostic of the concrete data model.

3.3. Behavioral Extensions with Callbacks
We turn now to discuss another well known object-oriented
technique to tackle the layering problem. It involves using
"listeners" or callback objects, and is akin to Command and 
Observer design patterns [3]. We shall use the term 'callback', 
as it is more commonly used in this context.

The principle is simple. The environment declares an abstract 
class with one or more virtual functions that are called at 
designated points in the execution. The classic observer is 
intended to monitor state changes within some model, but 
any kind of occurrence can be monitored just as well. The 
key here is that a single occurrence may trigger the 



notification of multiple callbacks. In its simplest form, the 
idea may be implemented in the environment thus:

class env_callback;
   virtual task execute();
   endtask // does nothing by default
endclass

class packet_env;
   // callback queue
   env_callback pre_drive_cbs[$];

   task drive_packet(packet p);
      // invoke all registered callbacks
      for (int i = 0;
          i < pre_drive_cbs.size(); i++)
         pre_drive_cbs[i].execute();

    ... // do the actual driving
   endtask
endclass

Here the environment triggers all callbacks registered in 
pre_driver_cbs queue right before actually driving a packet 
into the DUT. A test that needs to modify the driving 
behavior in this sense can simply define its own callback 
object and register it. The following test utilizes the above 
preparation to force random delay before each packet:

class my_delay_cb extends env_callback;
   virtual task execute();
      int unsigned delay;
      delay = $urandom_range(10);
     #(delay); // wait 0..10 time units
   endtask
endclass

program test1;
   packet_env env;
   my_delay_cb my_cb;

   initial begin
     // ...

      // regiester callback with the env
      my_cb = new();
      env.pre_drive_cbs.push_back(my_cb);
   end
endprogram

Different observer classes (and queues) may be used to 
encapsulate different function signatures. Conversely, several 
callback functions may be grouped together in a single
abstract callback class to encapsulate the handling of related 
events.

Just like in the case the Abstract Factory pattern, it is 
worthwhile to encapsulate pattern related services in a utility 
library. The Verification Methodology Manual (VMM), for 
example, recommends a very wide application of callbacks, 
and provides related services encapsulated in library base 
classes and macros [1, 15]. These handle registration, 
unregistration, and the actual invocation of callback objects.

3.4. Advantages and Limitation of 
Callbacks

First it should be noted that callback objects can only 
implement behavioral extensions. If structural properties
need to be added to an existing class, such as constraints, 
fields, or new methods, other techniques must be applied, 
such as factories.4

Callbacks require upfront design of extension points and are 
only as good as the preparation they have in the environment 
code. Unlike factories, they cannot be used to apply 
unanticipated modifications to a class. In particular, callbacks 
cannot completely override existing functionality, unless 
explicit preparation for this has been made. It could be 
argued that this restriction is actually an advantage, as it 
enforces more disciplined usage. Perhaps this position is 
valid in other domains, but often turns out to be too rigid for
real life situations in verification (see a case for this claim in
[12]). A related issue with callbacks is the fact that they 
encapsulate the extension code in a separate class, while it is 
often tightly coupled with the extended class.

On the other hand, callbacks are much more flexible with 
respect to layer composition. Any number of independent 
callback objects can be registered to monitor the same event,
as long as it has the required preparation. In fact, callbacks 
are independent in a way that does not allow one to affect 
another, even when this is needed. Further techniques can be 
applied to implement more sophisticated notification 
semantics. In particular, Chain of Responsibility pattern [3]
can be used to enable control flow variability between the 
calls. With more flexibility comes more complication of 
flow, which impedes readability and understandability of the 
code.

4. FROM DESIGN PATTERNS TO 
NATIVE CONSTRUCTS
Limitations of specific design patterns can usually be 
overcome with yet more sophisticated techniques. But the 
one inherent down side of design patterns is their very 
existence in the code. They put both cognitive and coding 
overhead on the programmer, even when reduced to the 
minimum using utility libraries, and have negative impact on 
traceability and understandability of the code [2]. The 
compiler and other development tools remain ignorant of the 
design intent expressed in these terms. The pain grows with 
density and variety of patterns applied. It seems that with 
advanced object-oriented verification methodologies this 
becomes a serious issue.

Gamma et al. readily admitted that design patterns are a 
matter of point of view – "One person's pattern can be 
another person's primitive building block" [3]. The difference 
between two such persons may simply be the programming 

                                                                

4 It should be s,//tressed that neither this section, nor the rest 
of the paper, attempts a comparison of OVM and VMM. 
Both include more concepts and services that bear on the 
considerations raised here. The intention is merely to 
evaluate the two design techniques per se with respect to 
the needs outlined previously.



language they use. Bosch writes "... design patterns are part 
of the software engineer’s paradigm and it is the task of the 
programming language to represent the concepts in the 
paradigm as accurate as possible" [2]. Gil and Lorentz call 
design patters "puppy language features" and argue that in 
many cases they compensate in one language for capabilities
that already exist in other languages [4]. This is evident, for 
example, with aspect-oriented languages such as AspectJ that
have the Observer collaboration (as in the callback pattern) 
as their prototypical application [9].

The e language has unconventional features with direct 
bearing on the design requirements described above. This 
should come as no surprise, as they were devised from the 
outset to tackle exactly these challenges. They are 
inheritance-like mechanisms on top of the standard single 
inheritance – class extensions and "when" subtyping. Both 
have been presented previously in [6]. Their affinity to key
aspect-oriented concepts, namely advice and introductions, 
has been analyzed in [12, 14]. In this chapter we shall explain 
very briefly these two mechanisms, leaving details out, and 
demonstrate their application to the layering problem. The 
main purpose of this is to substantiate the claim that design 
techniques discussed above indeed compensate for limited 
expressive power of strict object-oriented languages.5

4.1. Class Extensions
In e a class is initially declared with the struct or unit
keyword,6 optionally deriving from another class in the 
standard object-oriented sense. Within the scope of the class' 
initial definition new members can be defined, and existing 
members can be overridden.

Having been initially defined in this way, a class may be 
extended elsewhere using the keyword extend. In the scope 
of this construct the class may be further defined in exactly 
the same manner – new members can be added and existing 
members can be overridden "in-place" so to speak. New 
members and new definitions to existing members affect all 
instances of that class, including classes inherited from it,
just as if they were part of its initial definition. This is 
regardless of where the instantiation of (or inheritance from)
the class occurs in the code.

Overriding existing definition in the strict sense is often not 
required. Subclasses inherited in the standard way, and more 
so in-place class extensions, often need to augment existing 
definitions rather than replace them altogether. For this 
purpose e makes available two additive modes of member 
overriding, or more aptly – refinement. They place the new 
definitions after or before the exiting definitions, and are 
denoted by the key phrases is also and is first
respectively. The standard object-oriented replacement 
semantics is denoted by is only.

                                                                

5 This is not to claim that e's are the only conceivable 
mechanisms for that purpose, nor even that they are the 
best ones.

6 The difference between the two corresponds to a distinction 
made previously between data types and components. For 
present purposes both keywords prefix class definitions.

4.2. Applying Class Extensions in Layering
The constraint layering example from section 2.1 above 
could be rewritten in e such that a generic random scenario is
defined in the environment using the new operator directly. 
The e equivalent of the environment's definition for class 
packet would be:

struct packet {
   addr: uint(bits:16);
  data: list of byte;
  keep addr_range is { addr >= 0x10; }
};

The code of test1 would consist simply of an extension to
class packet with the additional constraint thus:

extend packet {
   keep addr < 0xFF;
};

The reader can appreciate the way the extend construct 
expresses the intention of the test in a concise and intuitive 
way without the need for auxiliary definitions. If defining the 
same class in multiple locations should seem strange at first 
glance, it may be just because we disregard the fact that this 
is in fact what we try to achieve here, and what the patterns 
discussed above try to emulate.

Moreover, the limitations listed in section 3.2 do not plague 
this mechanism. Consider another property defined in some 
other test, for example:

extend packet {
   keep data.size() in [2,4,8];
};

The two properties thus defined could be loaded together in 
the same session and would then apply equally to all
generated packets, be it within the environment code or 
outside. Note that this would have been true even if packet 
was an abstract class in the environment and only subclasses 
of it were actually generated.

Now consider the example from section 3.3. The same 
approach would apply here just as well. The test only needs 
to extend class packet_env and refine time-consuming 
method drive_packet (e's equivalent of SystemVerilog's
member task):

extend packet_env {
   drive_packet() @clock is first {
      var delay: int[0..10]
      gen delay;
      wait [delay];
   };
};

If a number of refinements for the same method are compiled 
or loaded in the same session they all get executed upon 
every call. The order of execution is determined according to
dependency between the modules (source files). The effect 
thus achieved is similar to that of the use of callbacks. But no 
up-front preparation in the base environment is required and 
the coding overhead is gone.



4.3. Taking it Further with When Subtypes
A when subtype is simply a class under some condition. 
Assume that class packet has a field (member variable) 
named kind of an enumerated type, whose possible values are 
token, data, and handshake. In e these values imply the 
existence of 3 subtypes of packet, namely token packet, data 
packet, and handshake packet. An instance of class packet
with field kind equals to token is actually an instance of the 
type token packet. The phrase token packet represents a
type for all purposes – declaring variables, casting, etc. When
subtypes may be extended just like any other class type, 
making the definitions in the extension scope conditional. 
They apply to an object in as far as it is an instance of that 
subtype, that is, it is an instance of the base class and its 
corresponding field is of the right value at that time.

When subtypes are ideal for data modeling where different
values of a field correspond to structural differences of the 
data item in which it is embedded. This is often the case in 
hardware protocols and processor instruction sets. More 
importantly, with when subtypes it is possible to constrain 
and randomize the type of data items.

In the context of the present discussion when subtypes are a
way to introduce independent sub-classifications of objects 
and thus gain finer control over extensions. A constraint may
be put on data packet without affecting other kinds of 
packets. Imagine another field of packet indicating whether it 
is legal or corrupt. This field would expand a sub-
classification on an orthogonal dimension. So under corrupt 
packet there could be a refined implementation of some 
method, and it would apply to all corrupt packets, regardless 
of whether they are data packets or of other kinds.

This use for when subtypes is very common also in
customizing components. Bus agents, for example, are 
typically classified into masters and slaves, a classification 
that may affect both their structure and behavior. From the 
testbench point of view some may be active in the sense that 
they actually inject synthetic traffic, while others passive, 
that is, merely monitoring traffic. These classifications are 
naturally captured as when subtype extensions to class agent. 
Any given agent is either a master or a slave, and 
independently either active or passive. In all four cases all
and only the relevant definitions apply.

5. DISCUSSION: THE REUSE MODEL
IN VERIFICATION
The object-oriented programming paradigm emerged in the 
1970's with the development of Smalltalk. One of its first and 
most distinctive applications was in the design of a graphical 
user interface (GUI) framework [8]. The language 
mechanisms forged for this purpose, most notably class 
inheritance and polymorphism, were extremely successful in 
capturing the commonalities between library entities, and in 
supplying useful abstractions to the end application.

Let us consider the mode of reuse in the context of this
classical application for OOP. Reuse here means first and 
foremost factoring the code-intense definitions of graphical 
elements into a library so that they can easily be shared 
between many different applications. Applications define 
their custom GUI by specializing, instantiating, and 

configuring components, such as buttons, panes, menus etc.
These are placed within a window, and behavior is associated 
with events reported by them. The library provides a pure
object model for these components while instantiation is left 
exclusively to the application.

What in verification is analogous to this classic relation 
between library and end-application? Where does the main 
"reuse divide" pass? In a single verification project much of 
logic is common to all tests in a regression suite. Its 
complexity is typically greater than that of any specific test, 
and so is the effort that goes into its development. But a 
verification environment is very different in nature from a 
class library, just as tests are very different from GUI
applications.

Section 2 above already outlined what a verification 
environment should consist of. It is not merely a set of 
abstract building blocks for writing test. Rather, it is a 
concrete and fully operational model simulating in great 
details relevant aspects of the environment in which the 
device is embedded. If built properly a verification 
environment could, at least in principle, execute as-is (or 
almost as-is) achieving real coverage and possibly
uncovering bugs.7 It obviously makes no sense to expect 
something of the sort from the average class library.

Similarly, individual tests, when distilled to their essentials, 
don't resemble standalone applications in any way. Tests may 
need to configure some properties of the environment, 
perhaps make slight adaptations to its behavior. But most 
commonly tests use constraints and procedural code to guide 
random stimuli into the scenario's areas of interest. In this 
sense tests are merely variations on the environment's 
definitions. If fact, test may involve a number of independent 
variations combined together, where variations themselves 
may be shared across some (but not all) tests. Interestingly, 
this mode of reuse is not restricted to tests. It is often 
manifested also when integrating verification IPs in system-
level environments.

At the heart of what we identified as the layering problem
lies the fact that the model defined by the environment is 
concrete. Unlike the case with class libraries, the verification 
environment does much, if not all, of the actual instantiation 
of classes it defines. Generation of data item streams for 
stimulating the DUT obviously requires instantiation, and so 
does collection of DUT responses for checking. The 
construction of environment's component architecture, which 
may become fairly complex, also involves instantiation of 
objects.

There are two basic tasks that a software system needs to 
handle – the definition of a model and its instantiation. The
object-oriented paradigm focuses on modularization of the
model's definition prior to its instantiation, and indeed this is 
where potential for reuse lies in many application domains. 
But in verification the balance between the two tasks is 
different from a reuse point of view. Much of the logic of a 

                                                                

7 In fact, some commercial verification IPs do just that and
even claim to cover significant portions of the verification 
goals relative to a given plan.



verification environment involves instantiation, while the 
tests typically just need refine some aspect of the model. This 
mode of reuse constitutes a different programming paradigm. 
As quoted previously, it is the task of the programming 
language to represent the concepts in the paradigm as 
accurate as possible.

6. RELATED WORK
Hollander et al. [5] survey the unique mechanisms for 
separation of concerns of the e language, and their relation to 
the specific challenges encountered in verification. The 
present paper is very much following the lead of hints in their 
work, in particular in its focus on the special relation between 
a verification environments and individual tests in a test 
suite. However, in their paper Hollander et al. do not discuss
possible solutions within the bounds of object-oriented 
programming, and their limitations. The present paper 
attempts exactly this analysis. Here e's mechanisms are 
mentioned mostly to substantiate the criticism of object-
oriented languages in this respect.

Robinson's book [12] is strongly related to issues discussed 
in the present paper. Apart from being a valuable book for 
practitioners, it contains some insights on the very idea of 
aspects and AOP. Unlike the present paper, it stresses the 
general problem of crosscutting concerns and how AOP 
promotes better modularization of them. Robinson is surely 
right in that, being large software systems, testbenches have 
crosscutting concerns. He does not stress enough, though, the 
special traits of the verification domain that make these 
AOP-like mechanisms indispensable. Unlike Robinson, the 
present paper focuses on problems of reuse in verification
that are not germane to most other domains.

7. CONCLUSION
This paper presented a software design situation that is 
ubiquitous when building reusable verification environments. 
It concerns layering properties and behavior on top of a 
model without owning its instantiation. This design situation 
does not map naturally to native object-oriented constructs. 
Design patterns and techniques are applied across the board 
by verification methodologies to overcome this shortcoming, 
but these techniques are inherently cumbersome and not 
wholly satisfactory. Language mechanisms that go beyond
the strict object-oriented paradigm do a much better job in 
capturing the same design intent. In fact, the object-oriented 
techniques seem to emulate these very mechanisms.

What makes the programming paradigm that works so well 
for most complex software systems not right for verification? 
Some insight can be gained by comparing the mode of reuse 
in classical object-oriented application domains and that of 
verification environments. In a nutshell, object models make 
very good candidates for reuse, but construction and 
generation logic does not. The latter is extremely important 
in verification, and less so in other domains.

The upshot of this discussion is twofold. It reinforces the 
claim that simulation-based verification is a unique kind of 
challenge, not reducible in its methods to other engineering 
disciplines. From the point of view of language design, there 
is a lesson to be learned too. A domain specific language is
not all about domain specific types, operators, or even 

constructs. It may well need a suitable programming 
paradigm to supply the right toolbox for modularization, 
abstraction, and reuse.
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