
What Time Is It: Implementing a SystemVerilog Object-Oriented Wrapper
for Interacting with the C Library time

Eldon Nelson M.S. P.E., Synopsys, Inc.

A common question within the SystemVerilog community is how to get the wall-time
during the simulation. There is no built-in method within SystemVerilog to get wall-
time. This paper documents the development and motivations of a SystemVerilog
object-oriented wrapper of the C library time. The design of this wrapper is based
upon the object-oriented solutions from the Python time library and the Ruby Time
library. The solution is released under the GNU GPL license and is available on
GitHub.

The svtime package provides a non-object-oriented implementation of the
wrapper, which is very similar to the Python time implementation. This Python style
time library uses purely static methods and a struct matching that of the C time
library. Also provided in the svtime package is a Ruby style object-oriented
implementation. This uses, in contrast, an object to handle the conversions and
functions in an object-oriented style. The author prefers the Ruby style
implementation and recommends that version for ease-of-use at a small, but
reasonable, overhead of 3% over the Python style. The performance benefit of using
a SystemVerilog DPI wrapper is 801 times faster than a common solution using
$system, as documented on Stack Overflow.

 Conclusion

Simulation time is the time within the SystemVerilog simulation which can be
obtained by running the built-in $time function. Wall-time is the time you see on
your watch; the actual time in space that we are all experiencing together.
SystemVerilog users are attempting to mark when a test started in the simulation log
for post processing, determine how long in wall-time a sequence takes to run, or
conduct simulator performance experiments. The wall-time query with most other
programming languages is common and easily answered. Unfortunately,
SystemVerilog does not have access to wall-time, out-of-the-box. This lack of the
wall-time query has resulted in less than optimal understanding and solutions to get
to the wall-time from the SystemVerilog simulation.

This paper discusses design choices and motivations, and provides the source code
for a user-friendly SystemVerilog object-oriented wrapper to interact with the C
library time. The proposed approach is several hundred times faster than
conventional $system functions. In addition, an approach to determining key
bottlenecks in simulation runs is proposed by plotting the simulation time versus
wall-time.

 Introduction

https://github.com/tenthousandfailures/svtime

The product of this paper is a user-friendly SystemVerilog
wrapper around the C time library. It is published on GitHub
under a GNU GPL license. The desire is to make this a common
library for SystemVerilog. A well documented make file, full
examples, and a thoughtful port of the Python/Ruby time libraries
are provided for SystemVerilog. Pull requests accepted.

 Results

Plot simulation time versus wall-time per simulation time. This allows for seeing
when in a simulation that simulator performance degrades. Knowing this could
ultimately help in deploying efforts to speed up a simulation once the simulation time
that caused it is known.

 Application 1: Simulation Performance Monitoring

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9

W
al

l-T
im

e
in

 S
ec

on
ds

 /
Si

m
ul

at
io

n
Ti

m
e
!s

Simulation Time in !s

“Is there a built in DPI function to get time so that I don’t have to write one?”
User Jean on Stack Overflow, Oct 14, 2014

 Quote and Motivation: Stack Overflow

A major benefit of using the SystemVerilog DPI and the provided wrapper is speed
compared to other methods. The speed improvement of using this method versus
using a $system call is over 800 times faster! It is even faster than calling date on
the Linux command line. It is apparent why this result happens. It is because of the
performance difference between system DRAM and current non-volatile memory
systems. The graph below compares the performance of different methods of getting
wall-time in SystemVerilog over 10 million calls (lower is better).

 Performance of svtime Versus Other Methods

28400

8100

32 31
0

5000

10000

15000

20000

25000

30000

SystemVerilog date shell
command

command line date shell
command

SystemVerilog svtime object
oriented method (paper)

SystemVerilog svtime non-
object oriented static

method (paper)

Ti
m

e
 in

 S
ec

on
ds

svtime_pkg::svtimep svtimep_inst;

...

svtimep_inst = new();
svtimep_inst.now();
$display("svtimep_inst.to_s() = %s", svtimep_inst.to_s());
$display("svtimep_inst.sec() = %0d", svtimep_inst.sec());
$display("svtimep_inst.min() = %0d", svtimep_inst.min());

svtime::sleep(2);
svtimep_inst.now();
$display("svtimep_inst.to_s() = %s", svtimep_inst.to_s());

 Example svtime API Usage

svtimep_inst.to_s() = 2017-11-16 01:37:07
svtimep_inst.sec() = 7
svtimep_inst.min() = 37
svtimep_inst.to_s() = 2017-11-16 01:37:09

 Example svtime API Usage Output
Make the nightly regressions simulations aware of the wall-time. The regressions
can then quiesce its stimulus on a schedule to ensure that nightly regressions can
end gracefully before the morning reporting.

interface time_alarmclock(input reg clk);
 parameter period = 2;
 parameter alarm_hour = 5;
 parameter alarm_min = 0;
 parameter prefix = "ta";

 longint cycles = 0;
 bit triggered = 0;
 svtime_pkg::svtimep svtimep_inst;

...

 // trigger if wall-time equals alarm_hour and at or above alarm_min
 always @(posedge clk) begin;
 svtimep_inst.now();
 if ((cycles >= period) &&
 (triggered == 0) &&
 (alarm_hour == svtimep_inst.hour()) &&
 (alarm_min <= svtimep_inst.min())
) begin
 $display("[%s] time_alarmclock TRIGGERED at simtime \
 %0t with period %0d at %2d:%2d:%2d",
 prefix, $time(), period,
 svtimep_inst.hour(), svtimep_inst.min(), svtimep_inst.sec()
);
 triggered = 1;
 cycles = 0;
 end else begin
 cycles++;
 end
 end
endinterface

 Application 2: Wall-Time Aware Nightly Regressions

Eldon Nelson M.S. P.E.
Synopsys Verification Application Engineer
eldon.nelson@synopsys.com
eldon_nelson@ieee.org

 Contact

Poor
Solution

