
What Ever Happened to AOP ?

James Strober, P.Eng
Ciena Corporation

3500 Carling Avenue
Ottawa, Ontario, K2K 3C8 Canada

jstrober@ciena.com

Corey Goss
Cadence Design Systems Inc.
1130 Morrison Drive, Suite 240

Ottawa, Ontario K2H 9N6 Canada
cgoss@cadence.com

mailto:jstrober@ciena.com
mailto:cgoss@cadence.com

What is Aspect Oriented
Programming (AOP) ?

• From Wikipedia:
Aspect-oriented programming (AOP) is a programming
paradigm that aims to increase modularity by allowing
the separation of cross-cutting concerns
–Cross-cutting concerns are aspects of a program that
affect other concerns. These concerns often cannot be
cleanly decomposed from the rest of the system in both
the design and implementation, and can result in either
scattering (code duplication), tangling (significant
dependencies between systems), or both.

3/2/2022 Corey Goss, Cadence James Strober, Ciena 2

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Modularity_(programming)
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Cross-cutting_concern
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Concern_(computer_science)
http://en.wikipedia.org/wiki/Modularity_(programming)
http://en.wikipedia.org/wiki/Source_code

Orthogonal Relationship
Between Aspects & Objects

Checking, Coverage, Error Injection

Specific Test / Corner case

Environment Changes/Evolutions

Operation Modes

Aspects

Port Packet Packet
Sequence

Config
Register

Objects OOP allows for modular approach by
encapsulating behavior within objects

There are
typically

aspects of
behavior that

cut across
many objects

3/2/2022 Corey Goss, Cadence James Strober, Ciena 3

History of AOP
• Emerged from a need to better modularize and address cross

cutting concerns
• Many believe that AspectJ AOP extension to Java 2001 was

the first AOP language
• Has since been adopted by several languages including:

– Perl, Python, Ruby, Groovy, C++, COBOL, Java, Matlab,
Prolog, Smalltalk, XML and many others

• Has led to an emerging discipline of “Aspect Oriented SW
Development” AOSD
• http://en.wikipedia.org/wiki/Aspect-oriented_software_development

3/2/2022 Corey Goss, Cadence James Strober, Ciena 4

http://en.wikipedia.org/wiki/Aspect-oriented_software_development

History for Verification
• Cross cutting and modularization concerns have been

present in our industry since inception
• As a result, we have had AOP languages for much longer than the SW

industry as a whole
• e, created by Verisity Design Inc. in 1993 is natively AOP
• AOP extensions subsequently added to OpenVera
• Now, our industry is moving towards SV, an OOP language,

which is a significant step back for advanced verification
• AOP proposed to SystemVerilog 2012 but rejected

3/2/2022 Corey Goss, Cadence James Strober, Ciena 5

Power of AOP for
Verification

• Efficient handling of cross-cutting concerns is particularly
well-suited to:
– Mitigating the impact of product feature churn
– Addressing real-world verification architecture challenges
– Verification closure
– Code re-use
– Debugging

3/2/2022 Corey Goss, Cadence James Strober, Ciena 6

Cross Cutting – What’s in a
testcase?

my_tb

bus_env

Config:
name
has_…
…

Monitor

Signals

ARBITER
agent

B

seq-
drv

Config

M

SLAVE
agent

B

seq-
drv

Config

M

MASTER
agent

B

seq-
drv

Config

M

serial_env
Config:
… TX_RX agent

TX
BFM

sequence
driver

seq

Config

TX
mon

Signals

RX
mon

3/2/2022 Corey Goss, Cadence James Strober, Ciena 7

Device Development Ideal
Waterfall Flow

3/2/2022 Corey Goss, Cadence James Strober, Ciena 8

Device
Requirements

Device
Architecture

Design
Implementation

Support

Verification
Execution

Verification
Architecture

Deployment

Validation

How many of you have a project that looks like this?

Realistic Parallel Waterfall
Flow

3/2/2022 Corey Goss, Cadence James Strober, Ciena 9

Device Requirements

Device Architecture

Design/Implementation

Support

Verification Execution

Verification Architecture

Deployment

Validation

This seems to be the norm
for most of today’s projects

OOP for VE Architecture
• OOP is well-suited to address the ideal flow but NOT

the realistic flows. Why?
– We can architect the Verification Environment (VE) for

anticipated scalability and flexibility requirements
ONLY when they are known

– We can allow for flexibility through judicious
application of inheritance and encapsulation and
implementation of predefined hooks but ONLY based
on known requirements

– VE architecture can be detrimentally sensitive to
architectural churn

3/2/2022 Corey Goss, Cadence James Strober, Ciena 10

AOP for VE Architecture
• AOP is well-suited to address realistic flows. Why?

– Probability of arriving at a first order approximation of
final VE at project onset is usually low

– AOP provides a framework for efficient re-architecture
and re-work

– AOP constructs provide hooks without a need to
anticipate or predict their necessity and without
disturbing the original code base

– Feature addition, changes, pruning as well as arbitrary
variants can be handled safely and efficiently

3/2/2022 Corey Goss, Cadence James Strober, Ciena 11

VE Churn Example: New 64
BIT driving protocol

• Midway through the project, a new 64 bit driving protocol
must be supported
– Current environment supports 8, 16 and 32 bit bus speeds
– New driving protocol will affect several objects:

• Configuration: Adjust the clock speed
• Driver: Need to segment/drive 64 bits at a time
• Monitor: Need to receive 64 bits at a time

Corey Goss, Cadence James Strober, Ciena 12

Note: The code examples in this paper are based on an imaginary
AOP verification language.

3/2/2022

VE Churn Example: AOP
extensions for new packet

Corey Goss, Cadence James Strober, Ciena 13

extend project_config_objects_c (BITS_64’bus_speed) {

constraint clock_cg is also {

clock_speed == serial_clock_frequency/64;

};};

extend project_driver_c (BITS_64’bus_speed) {
task drive_packet(…) is only {
…

};};

drive protocol extended to
account for new bus speed

configuration
class extended
and constraint
group modified

extend project_monitor_c (BITS_64’bus_speed) {
task receive_packet(…) is only {
…

};};
monitoring protocol extended
to account for new bus speed

extend bus_speed_t: [BITS_64];
enumeration extended to
include new bus speed

C
rosscutting

Aspect

3/2/2022

VE Churn Example: New
packet version

• Midway through the project, a new packet format must be
supported
– Current environment supports VI and VII packets

– New packet must:
• Have payload within the range of 100 to 200 bytes
• By default, contain a parity byte after the payload
• Be driven 16 bits at a time into the DUT with no inter packet gap

– Current packets are 8 bits at a time
Corey Goss, Cadence James Strober, Ciena 14

type version_t: [VI, VII];
class packet_c {

rand version_t version;
rand byte payload [];

};

3/2/2022

VE Churn Example: AOP
extensions for new packet

Corey Goss, Cadence James Strober, Ciena 15

extend packet_c (VIII’version) {

rand bit contains_parity;

constraint v3_pkt_constraints {

payload.size() inside [200:100];

contains_parity == 1’b1;};

byte parity; //only present for VIII packets

};};

extend port_c (VIII’version) {
constraint VIII_port {

bus_width == 16;
inter_pkt_gap == 0; // no gaps for VII

};};

Port must also be modified
to support new VIII packet

format

base packet easily
extended for VIII

packets

C
rosscutting

Aspect

3/2/2022

Stream 0

OOP - Linear Scalability

3/2/2022 Corey Goss, Cadence James Strober, Ciena 16

DUT
Packet Stream Scheduler

Checker

Lm Lm-1 L1 L0

Stream n

Lm Lm-1 L1 L0

• Consider a scalable testbench for a packet stream scheduler
• Stimulus for each stream is generated by an instance of a

legacy multi-layer stack of verification components
• Conceptually scalable but scale practically limited by memory

and performance constraints
• What happens if we need to transcend this practical limit to hit

a maximum scale boundary that is orders of magnitude
greater than our normal range of testing ?

AOP Continuum of
Controllability

3/2/2022 Corey Goss, Cadence James Strober, Ciena 17

Stream 0

DUT
Packet Stream Scheduler

Checker

Lm Lm-1 L1 L0X X X
Stream n

Lm Lm-1 L1 L0X X X XX
• Layers can be collapsed into lower functionality L0 to achieve

maximum scale using AOP
• To hit the maximum scale boundary there is also the option to give

L0 limited multi-stream capability using AOP
• To hit the boundary, use AOP to trade-off functionality for memory,

performance, and scale within the narrow scope of 1 testcase or
verification intent

• AOP enables a “Continuum of Controllability”

Verification
Closure

3/2/2022 Corey Goss, Cadence James Strober, Ciena 18

Start

Create Testplan, Intents
and Metrics

Architect Verification
Environment

Execute
Testplan/Testcases and

Collect Metrics

Metric
Goals Met?

Done

Implement Testcases
and Metrics

Refine Metrics

VE Changes

New Tests

More seeds/
cycles

Yes

No

Empirical 90/10 Target
• Verification Coverage and Metrics Closure is one of

the most significant risks to project schedule/quality
• We should be targeting to hit 90% of verification

metrics through randomized tests before resorting to
directed verification

• 90% can typically only be achieved with significant
verification planning discipline and verification
architecture expertise

• Even at 90%, the effort to close the remaining 10%
can easily explode

3/2/2022 Corey Goss, Cadence James Strober, Ciena 19

Verification Intent Closure

3/2/2022 Corey Goss, Cadence James Strober, Ciena 20

Discard
Threshold

Coverage
Goal

Quality

Ti
m

e/
Ef

fo
rt

AOP for hard to hit coverage
• AOP is particularly well suited for targeting typically

hard-to-hit coverage:
– Out of scope from original VE architecture
– Complex design interactions that present

controllability and/or visibility challenges
– Scenarios requiring complex synchronization,

orchestration, and alignment of configuration
• Alignment of Earth, Moon and Stars

3/2/2022 Corey Goss, Cadence James Strober, Ciena 21

Efficiency and Quality
• Consider that for any given verification project we

may have anywhere from hundreds to thousands of
individual verification intents to close

• Even a marginal improvement in coverage closure
efficiency using AOP will have an appreciable impact
on project schedule and quality

• Verification is the bottleneck, we need all the help we
can get

3/2/2022 Corey Goss, Cadence James Strober, Ciena 22

• Yes, almost anything can be done in any language
– Just a matter of how much effort

• Consider a simple “Hello World!” example:

Coding Efficiency Examples

3/2/2022 Corey Goss, Cadence James Strober, Ciena 23

extend global {
run() is also {

out(“Hello World”);
};};

AOP – 4 lines

class my_class;
function new();

$display(“Hello World”);
endfunction

endclass
my_class myc = new();

OOP (SV) – 6 lines

+
+
+
…
+
.
>
+
+
. brainf*ck – 106 lines

http://en.wikipedia.org/wiki/Brainfuck

Coding Efficiency Example
(OOP vs. AOP)

• Stream a single random packet into our DUT
– Example uses sequences (common in today’s TB’s)
– Example is far from complete code

• Assume that all other code is in place for
driving/monitoring, checking, etc.

3/2/2022 Corey Goss, Cadence James Strober, Ciena 24

Coding Efficiency Example:
AOP

• Recall our previous packet definitions:

• Now, the additional code:

3/2/2022 Corey Goss, Cadence James Strober, Ciena 25

extend my_sequence_c (RANDOM’kind) {
rand packet_c item;
function new();

item = new();
assert(randomize(item));

endfunction
};};

type version_t: [VI, VII];
class packet_c {

rand version_t version;
rand byte payload [];

};

extend version_t: [VIII];

extend packet_c (VIII’version) {

rand bit contains_parity;

byte parity;

};};

No need to consider version
when randomizing as all

AOP extensions are of the
base type

AOP – 6 lines

Coding Efficiency Example:
SV OOP with UVM

• Red colour indicates extra code compared to AOP

3/2/2022 Corey Goss, Cadence James Strober, Ciena 26

import uvm_pkg::*;
typedef enum {VI, VII, VIII} version_t;
class packet_c;

`uvm_object_utils(packet_c)
…

`uvm_object_utils_end
rand version_t version;
rand byte payload [];

endclass

class viii_packet extends packet_c;
`uvm_object_utils(packet_c)

…
`uvm_object_utils_end

rand bit contains_parity;

byte parity;

endclass

Intrusive addition of new version

Need to register class with factory
to allow for type overrides (see

next slide)

Need to create a new derived class
to represent new variant

Import UVM to access factories

Need to register new class with
factory as well

• Red colour indicates extra code compared to AOP

• It is typical to see > 30% less code using AOP languages

Coding Efficiency Example:
SV OOP with UVM

3/2/2022 Corey Goss, Cadence James Strober, Ciena 27

class my_random_sequence extend my_sequence_c;
rand version_t version;
rand packet_c item;
function void new();

assert(randomize(version));
case(version)

VI,VII: item = new();
VIII: item = v3_packet::type_id::create(…);

endcase
assert(item.randomize());

endclass

We need to use the
UVM factory to pull

in the correct
derived class

Note: Must rewrite
this logic if a new
version is added

Add new field to randomize the
packet version first, before

assigning the correct packet class

OOP SV – 18+ lines

AOP for Debug
• AOP constructs are particularly well suited for

debugging. Why ?
– Extend any part of the VE to add visibility for

instrumentation
– Extend any part of the VE to increase controllability
– Selectively change any part of the VE functionality for

exploration and what if analysis
– All can be layered on top of existing code without

changing the code base
– Reproduce escapes seen in validation that require

precise orchestration

3/2/2022 Corey Goss, Cadence James Strober, Ciena 28

Debug Coding Example
• Recall our previous example (new 64 bit bus speed)
• After making our code changes, we notice:

– 64 bit data was not being read correctly by DUT
• Can see data on bus, but bit ordering appears incorrect

– Data appears on rising edge when falling is expected
• Drivers clocking event might be incorrectly defined

• Let’s see how AOP can help us:
– Debug how packets are being converted into bits
– Try out a new fix to the clocking event used to drive

data

3/2/2022 Corey Goss, Cadence James Strober, Ciena 29

Debug Coding Example: The
base code definition

3/2/2022 Corey Goss, Cadence James Strober, Ciena 30

extend project_driver_c (BITS_64’bus_speed) {

event clock is rise(clock_sig);

task drive_packet(p: project_packet_c) is only {
packet_as_64_bit_words =

transform_packet(p, config.endienness);
req_sig = 1’b1;
@dut_ready;
req_sig = 1’b0;
data_valid_sig = 1’b1;
for(int i=0; i<packet_as_64_bit_words.size();i++) {

data_signal = packet_as_64_bit_words[i];
@clock;

};
data_valid_sig = 1’b0;

};};

bits within every word
seem incorrect

Clock seems incorrect

Debug Coding Example: AOP
Extensions

3/2/2022 Corey Goss, Cadence James Strober, Ciena 31

extend project_driver_c (BITS_64’bus_speed) {

event clock is only fall(clock_sig);

function [63:0] transform_packet [](p:project_packet_c,
endianness:endianness_t) is only {

print p;
print endianness;
proceed();
print result;

};

event data_sig_change is change(data_sig);
on data_sig_change {

print hex(data_sig);
};

};

Print each value applied to the
DUT’s input data signal

Print packet and endianness
before transformation and resulting

array of 64 bit words

Overwrite the clock

Discipline and Expertise

“With great power comes great responsibility”
-Voltaire

•There are two major, but related, criticisms of AOP
from OOP programmers

1. OOP requires a more structured approach
• Enforces more careful planning up front, which is better

2. AOP languages result in “Spaghetti code”
• Extensions are hard to manage/maintain

3/2/2022 Corey Goss, Cadence James Strober, Ciena 32

OOP is More Structured
Therefore, Better Than AOP

• AOP is a superset of OOP
– Can be considered as OOP++
– There is nothing in OOP that you cannot do with a

capable AOP language
• Though, as we have seen, the opposite is not true

• In the functional verification space, more structure
does not equate to enhanced productivity
– Cannot possibly implement an architecture of all

needed features at project onset
– Reduced flexibility, causing un-needed re-architecting

3/2/2022 Corey Goss, Cadence James Strober, Ciena 33

AOP Languages Result in
“Spaghetti Code”

• For inexperienced programmers, this can be true
• AOP allows for new methodologies in code

management
– Traditional OOP: One class per file
– AOP: Can break up files/functionality in many ways

• One class per file
• One class extension per file
• One feature per file (many extensions to VE to support it)
• Base class vs. project/user specific files

• Need to decide on a methodology that is right for you

3/2/2022 Corey Goss, Cadence James Strober, Ciena 34

Reducing “Spaghetti Code”

• Files can be stored in several locations and
assembled into the final via compilation order

3/2/2022 Corey Goss, Cadence James Strober, Ciena 35

Base Class re-use library /my_company/vip

class driver {…}

Project library /my_company/projects/my_project

extend driver (my_project’project) {…}

User library /my_company/projects/my_project/userid

extend driver (test_1234’test_name){…}

import/include

import/include

Improving File Organization

• AOP allows for
improved functional
partitioning

• Can separate
functionality based
on any number of
concerns

• Allows for greater re-
use flexibility

3/2/2022 Corey Goss, Cadence James Strober, Ciena 36

my_vip
All re-usable code

source
All source files

base
All common code

vI
VI cross cutting

vII
VII cross cutting

vIII
VIII cross cutting

Constraints
Default, legal,

illegal

Coverage
Coverage extensions

Users of the VIP
need only include
the functionality
they need when

re-using

Example: Project
only supports VIII

packets, only
need to include

relevant files and
constraints

Does AOP really deliver ?
• AOP is a relatively recent innovation which is still

maturing
• Adoption within the realm of Software development

is becoming more widespread with AOP being
implemented using AspectJ for JAVA, Aquarium for
Ruby, and Spring for .NET

• For an interesting example of a real-world case that
gives a true sense of the power of AOP please see :

• http://ramnivas.com/blog/?p=19

3/2/2022 Corey Goss, Cadence James Strober, Ciena 37

http://ramnivas.com/blog/?p=19

Summary and
Recommendations

• For verification engineers using HDL languages
today, OOP offers new, much needed functionality

• For verification engineers accustomed to using AOP
languages, OOP is a significant step backward

• AOP is highly beneficial to our world of ever
changing specs and requirements
– Allows verif. engineers to keep up with pace of

change
• While the SW industry advances towards AOP, our

industry (who pioneered AOP) is walking away

3/2/2022 Corey Goss, Cadence James Strober, Ciena 38

Summary and
Recommendations

• We recommend:
• The relevant standards bodies, committees, vendors and

verification community as a whole re-examine the overall
benefits of AOP languages and create a roadmap for
creatively re-adopting AOP

• All avenues should be explored on the spectrum from
leveraging existing mature languages to defining a next
generation language to tackle tomorrow’s verification
challenges including HLS, SW Driven verification, MS,
Formal

3/2/2022 Corey Goss, Cadence James Strober, Ciena 39

	What Ever Happened to AOP ?
	What is Aspect Oriented Programming (AOP) ?
	Orthogonal Relationship Between Aspects & Objects
	History of AOP
	History for Verification
	Power of AOP for Verification
	Cross Cutting – What’s in a testcase?
	Device Development Ideal Waterfall Flow
	Realistic Parallel Waterfall Flow
	OOP for VE Architecture
	AOP for VE Architecture
	VE Churn Example: New 64 BIT driving protocol
	VE Churn Example: AOP extensions for new packet
	VE Churn Example: New packet version
	VE Churn Example: AOP extensions for new packet
	OOP - Linear Scalability
	AOP Continuum of Controllability
	Verification Closure
	Empirical 90/10 Target
	Verification Intent Closure
	AOP for hard to hit coverage
	Efficiency and Quality
	Coding Efficiency Examples
	Coding Efficiency Example (OOP vs. AOP)
	Coding Efficiency Example: AOP
	Coding Efficiency Example: SV OOP with UVM
	Coding Efficiency Example: SV OOP with UVM
	AOP for Debug
	Debug Coding Example
	Debug Coding Example: The base code definition
	Debug Coding Example: AOP Extensions
	Discipline and Expertise
	OOP is More Structured Therefore, Better Than AOP
	AOP Languages Result in “Spaghetti Code”
	Reducing “Spaghetti Code”
	Improving File Organization
	Does AOP really deliver ?
	Summary and Recommendations
	Summary and Recommendations

