
Web Template Mechanisms in
SOC Verification

Rinaldo Franco, Alberto Allara

© Accellera Systems Initiative 1

STMicroelectronics, Digital & Mixed Processes
Asic Division

• IPs & SoC verification environments are based on UVM-
methodology
– Advanced verification capabilities
– Robust class libraries
– Open, Interoperable
– CAD Multi-vendor compatibility

• Software Driven Verification for IPs & SoC
– Development of SW tests running at bare metal without any OS
– Low-level drivers to abstract hardware

• Reusability during Top-Level verification
• Reusability during silicon validation

– Verification environment exposed on SW (VAL)

• Use of Virtual Platform for the verification
– An LVP (Lightweight Virtual Platform) instantiated with Dut (IP or SUBS) used

to develop test that will be ported at SoC level

2

Key SOC Methodologies

The path to SOC verification

© Accellera Systems Initiative 3

IP VIP
Virtual

Platform

(LVP)

SOC level

Verification

in simulation

IP/SS level sw-driven

verification

MEM

IP VIP

IP VIP

IP VIP

SOC

LVP enables the development

of integration tests in a

simplified environment

(abstraction of SoC)

IP Firmware, C tests and

verification components are

developed at LVP level and

ported at SOC

Hide the differences

• Main assumption of the path from LVP to SOC:

– The scenario developed at LVP must be reusable at SOC

• This implies that:
• The differences in the SW layers and/or in the verification

infrastructures are hidden to the test developer

© Accellera Systems Initiative 4

Our Proposal

• Keep the information and relevant data to distinguish
platforms (the “model”) separated from a layer
representing SW and HVL implementation of
functionalities (the “view”)

• In the Web application domain the technique is an
architectural pattern known as MTV (Model-
Template-View)
– The data (“Model”) are separated from the way they are

presented to the user (the “View” through “Template”)

• The Template language used is a Python package
called “Jinja2”

© Accellera Systems Initiative 5

What is a Template Language?
• The Template languages are tools used to simplify the

dynamic generation of Web pages

• Jinja2 is a modern and designer-friendly template
language for Python
– a Jinja2 template is a text file and can generate any text-based

files as output
– http://jinja.pocoo.org/docs/dev/

• A Jinja2 template contains variable and/or expressions,
which get replaced with values coming from a context
dictionary in Python during rendering

© Accellera Systems Initiative 6

http://jinja.pocoo.org/docs/dev/

Example of Template mechanism
<!DOCTYPE html>
<html lang="en">
<head>

<title>My Webpage</title>
</head>
<body>

<ul id="navigation">
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

<h1>My Webpage</h1>
{{ a_variable }}

{# a comment #}
</body>
</html>

© Accellera Systems Initiative 7

Unrolls the content based on

the information of “navigation”

variable

Each item from navigation list

include an href and a caption

The content of variable is

represented with {{ }}

Supported tags are {% if %},

{%macro%}, {%filter%}, {% set %},

{%include%}, {% import %},..

Templates in the SOC context

• Our proposal is to apply the Jinja2 template
mechanism in the context of a SoC verification

• The templates are used to generate a SW view and a
HVL view in a consistent manner based on high level
descriptions of a platform expressed in a JSON
format

© Accellera Systems Initiative 8

Why JSON?

• JSON is a language independent open format using
human-readable text.

• The choice of using JSON w.r.t. other formats more
common in the SOC context (e.g. XML) is due to a list of
benefits:
– Python comes with a standard library to easily convert a JSON

file into a dictionary
• Jinja2 uses the dictionary to directly render a Template

– JSON is extremely more compact than XML, aspect that
simplifies the insertion and the manipulation of data

– Typically IPXACT data targets register map and pin-level
connectivity not addressed by the platform description

© Accellera Systems Initiative 9

1) Read and convert the JSON

into a dictionary

Template Engine

© Accellera Systems Initiative 10

def generate_template(data,templ_tb,gen_tb):

f=open(gen_tb,'w')

template=env.get_template(templ_tb)

sv=template.render(data)

f.write(sv)

f.close()

def main():

def converthex2dec(n,fmt=None):

return int(n,16)

env.filters['converthex2dec']=converthex2dec

parser = argparse.ArgumentParser(description='Template generator')

parser.add_argument('--cfg',"-f", action="store", dest="cfg",

help="specify the configuration file in JSON",default="platform.json")

parser.add_argument('--otb',"-o", action="store", dest="otb",

help="define the file name of the generated file")

parser.add_argument('--itb',"-i", action="store", dest="itb",

help="define the file name of the template file")

parser.add_argument('--extval',"-e", action="store", dest="extval",

help="pass value to the template file", default="0")

args = parser.parse_args()

cfg_h = open(os.path.join(PATH,".",args.cfg),"r")

data = json.load(cfg_h)

generate_template(data,args.itb,args.otb)

2) Read the input template and

create a template object

3) Render the template based

on the content of the dictionary

Example of user defined filter

Example of Template file

11

#ifndef _MEMORY_MAP_H_

#define _MEMORY_MAP_H_

/* ATTENTION this file is automatic generated! DO NOT MODIFY BY HAND! */

/* ESRAM MEMORY MAP */

{% for esram in platform.memory_map.esram %}

#define {{ esram.name }}_BASE_ADDR 0x{{ esram.base_addr }}

#define {{ esram.name }}_SOC_COMMON_BASE_ADDR 0x{{ esram.base_addr }}

#define {{ esram.name }}_CUT_SIZE 0x{{ esram.cut_size }}

{% for cut in range(esram.n_cut) %}

{% if loop.first %}

#define {{ esram.name }}_CUT{{ cut }}_BASE_ADDR {{ esram.name }}_BASE_ADDR

{% else %}

#define {{ esram.name }}_CUT{{ cut }}_BASE_ADDR ({{ esram.name }}_CUT{{ cut-1 }}_BASE_ADDR + {{ esram.name }}_CUT_SIZE)

{% endif %}

{% endfor %}

{% endfor %}

...

/* IPs MEMORY MAP */

{% for ip in platform.ip %}

{% if (ip.n_instance > 1) %}

{% for n_inst in range(ip.n_instance) %}

{% if loop.first %}

#define {{ ip.name.upper() }}_{{ n_inst }}_BASE_ADDR 0x{{ ip.base_addr }}

{% else %}

#define {{ ip.name.upper() }}_{{ n_inst }}_BASE_ADDR ({{ ip.name.upper() }}_{{ n_inst-1 }}_BASE_ADDR + 0x{{ ip.instance_offset }})

{% endif%}

{% endfor %}

{% else %}

#define {{ ip.name.upper() }}_BASE_ADDR 0x{{ ip.base_addr }}

{% endif%}

{% endfor %}

#endif // _MEMORY_MAP_H_

Template flow applied to a SOC

© Accellera Systems Initiative 12

verif

fw

Ip

vip

project <IP>

include

scatter

tb

test

Soc

common

hvl

project <IP>

db

sv

simvips

aux templates

Template
Engine

.h,.c,.scatter

systemverilog

Makefiles

Platform.json

Template flow applied to a SOC (2)

© Accellera Systems Initiative 13

verif

fw

Ip

vip

project <IP>

include

scatter

tb

test

soc

common

hvl

project <IP>

db

sv

simvips

aux templates

Template
Engine

Each <IP> identify a

platform, includes

information regarding

the register map

description of the

component, the low-

level drivers in C and

the platform-

independent integration

tests in C

Common c-code used by all the

platform C environment

Template flow applied to a SOC (3)

© Accellera Systems Initiative 14

verif

fw

Ip

vip

project <IP>

include

scatter

tb

test

soc

common

hvl

project <IP>

db

sv

simvips

aux templates

Template
Engine

Contains for each VAL

backend the “virtual”

description of the

register map and their

APIs

Contains a set of

“platform” elements. Each

platform is matched with

the SW view

Contains the UVM code of the

VAL backend. Each

component matches the SW

view

Contains for each Ip, the description of the register map, the

low-level driver and platform independent test

Platform Description File Format

• The platform description file is characterized by the
following structure of information:

– Details on IPs (e.g. base address, INT lines, DMA lines,..)

– Static RAM and Memory regions

– Testbench details with information regarding:
• Clocks

• Resets

• Timers

• VAL front-ends each them connecting a set of UVM env

© Accellera Systems Initiative 15

Platform at LVP level

16

IP info

VAL backend
VAL backend

UVM Env

Clocks/Resets/Timers

At LVP only one VAL FE

is available. The VAL FE

include a single UVM

env containing one or

more VAL back end

components

Define clocks, resets and

timers that are generated

at LVP level through

dedicated VAL

components

VAL FE

ESRAMs

Regions

Define the esram for

the LVP

Define other memory

regions

Define an IP at LVP

(usually only 1)

T
B

Platform at SOC level

17
Clocks/Resets/Timers

VAL FE

ESRAMs

Regions

T
B

VAL FE

UVM Env

IP info
IP info

IP info At SOC level the

platform is a set of

IPs

Define the esram for

the LVP

Define other memory

regions

Clocks, resets and Timers are features of

the SOC and not of the TB. Their information

are used to pre-generate the related FW

UVM Env
UVM Env

The platform contains a set of UVM

env, one for each IP/SS. Each UVM

env is directly connected to a VAL FE

and internally it takes care of managing

the VIPs needed for the verification of

the associated IP. More than one VAL

FE is possible

Conclusions

• The Web Template Mechanism allow to separate the
data (Platform configuration file) from the way they
are used in the layers representing SW
implementation of functionalities (c-code) and HDL
verification infrastructures (System Verilog – UVM).

• The Platform configuration file contains high level
descriptions of the scenario developed at LVP that
can be reusable at SOC level, hiding differences to
the test developer and reducing porting overhead.

© Accellera Systems Initiative 24

