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• IPs & SoC verification environments are based on UVM-
methodology
– Advanced verification capabilities
– Robust class libraries
– Open, Interoperable
– CAD Multi-vendor compatibility

• Software Driven Verification for IPs & SoC
– Development of SW tests running at bare metal without any OS
– Low-level drivers to abstract hardware

• Reusability during Top-Level verification
• Reusability during silicon validation

– Verification environment exposed on SW (VAL)

• Use of Virtual Platform for the verification
– An LVP (Lightweight Virtual Platform) instantiated with Dut (IP or SUBS) used 

to develop test that will be ported at SoC level
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Key SOC Methodologies



The path to SOC verification
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Hide the differences

• Main assumption of the path from LVP to SOC:

– The scenario developed at LVP must be reusable at SOC

• This implies that:
• The differences in the SW layers and/or in the verification 

infrastructures are hidden to the test developer
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Our Proposal

• Keep the information and relevant data to distinguish
platforms (the “model”) separated from a layer
representing SW and HVL implementation of
functionalities (the “view”)

• In the Web application domain the technique is an
architectural pattern known as MTV (Model-
Template-View)
– The data (“Model”) are separated from the way they are

presented to the user (the “View” through “Template”)

• The Template language used is a Python package
called “Jinja2”
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What is a Template Language?
• The Template languages are tools used to simplify the

dynamic generation of Web pages

• Jinja2 is a modern and designer-friendly template
language for Python
– a Jinja2 template is a text file and can generate any text-based

files as output
– http://jinja.pocoo.org/docs/dev/

• A Jinja2 template contains variable and/or expressions,
which get replaced with values coming from a context
dictionary in Python during rendering
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Example of Template mechanism
<!DOCTYPE html> 
<html lang="en"> 
<head> 

<title>My Webpage</title> 
</head> 
<body> 

<ul id="navigation"> 
{% for item in navigation %} 

<li><a href="{{ item.href }}">{{ item.caption }}</a></li> 
{% endfor %} 
</ul> 
<h1>My Webpage</h1> 
{{ a_variable }} 

{# a comment #} 
</body> 
</html> 
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Unrolls the content based on 

the information of “navigation” 

variable 

Each item from navigation list 

include an href and a caption

The content of variable is 

represented with {{ }} 

Supported tags are {% if %}, 

{%macro%}, {%filter%}, {% set %}, 

{%include%}, {% import %},.. 



Templates in the SOC context

• Our proposal is to apply the Jinja2 template
mechanism in the context of a SoC verification

• The templates are used to generate a SW view and a
HVL view in a consistent manner based on high level
descriptions of a platform expressed in a JSON
format
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Why JSON?

• JSON is a language independent open format using 
human-readable text. 

• The choice of using JSON w.r.t. other formats more 
common in the SOC context (e.g. XML) is due to a list of 
benefits:
– Python comes with a standard library to easily convert a JSON 

file into a dictionary
• Jinja2 uses the dictionary to directly render a Template

– JSON is extremely more compact than XML, aspect that 
simplifies the insertion and the manipulation of data

– Typically IPXACT data targets register map and pin-level 
connectivity not addressed by the platform description
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1) Read and convert the JSON 

into a dictionary

Template Engine
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def generate_template(data,templ_tb,gen_tb):

f=open(gen_tb,'w')

template=env.get_template(templ_tb)

sv=template.render(data)

f.write(sv)

f.close()

def main():

def converthex2dec(n,fmt=None):

return int(n,16)

env.filters['converthex2dec']=converthex2dec

parser = argparse.ArgumentParser(description='Template generator') 

parser.add_argument('--cfg',"-f", action="store", dest="cfg", 

help="specify the configuration file in JSON",default="platform.json") 

parser.add_argument('--otb',"-o", action="store", dest="otb", 

help="define the file name of the generated file") 

parser.add_argument('--itb',"-i", action="store", dest="itb", 

help="define the file name of the template file") 

parser.add_argument('--extval',"-e", action="store", dest="extval", 

help="pass value to the template file", default="0")

args = parser.parse_args() 

cfg_h = open(os.path.join(PATH,".",args.cfg),"r") 

data = json.load(cfg_h) 

generate_template(data,args.itb,args.otb) 

2) Read the input template and 

create a template object

3) Render the template based 

on the content of the dictionary

Example of user defined filter



Example of Template file

11

#ifndef _MEMORY_MAP_H_

#define _MEMORY_MAP_H_

/* ATTENTION this file is automatic generated! DO NOT MODIFY BY HAND!   */

/*  ESRAM MEMORY MAP  */

{% for esram in platform.memory_map.esram %}

#define {{ esram.name }}_BASE_ADDR             0x{{ esram.base_addr }}

#define {{ esram.name }}_SOC_COMMON_BASE_ADDR  0x{{ esram.base_addr }}

#define {{ esram.name }}_CUT_SIZE              0x{{ esram.cut_size }}

{% for cut in range(esram.n_cut) %}

{% if loop.first %}

#define {{ esram.name }}_CUT{{ cut }}_BASE_ADDR  {{ esram.name }}_BASE_ADDR

{% else %}

#define {{ esram.name }}_CUT{{ cut }}_BASE_ADDR  ({{ esram.name }}_CUT{{ cut-1 }}_BASE_ADDR + {{ esram.name }}_CUT_SIZE)

{% endif %}

{% endfor %}

{% endfor %}

...

/*  IPs MEMORY MAP  */

{% for ip in platform.ip %}

{% if (ip.n_instance > 1) %}

{% for n_inst in range(ip.n_instance) %}

{% if loop.first %}

#define   {{ ip.name.upper() }}_{{ n_inst }}_BASE_ADDR 0x{{ ip.base_addr }}

{% else %}

#define {{ ip.name.upper() }}_{{ n_inst }}_BASE_ADDR  ({{ ip.name.upper() }}_{{ n_inst-1 }}_BASE_ADDR + 0x{{ ip.instance_offset }})

{% endif%}

{% endfor %}

{% else %}

#define   {{ ip.name.upper() }}_BASE_ADDR 0x{{ ip.base_addr }}

{% endif%}

{% endfor %}

#endif // _MEMORY_MAP_H_



Template flow applied to a SOC
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Template flow applied to a SOC (2)
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Template flow applied to a SOC (3)
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Platform Description File Format 

• The platform description file is characterized by the
following structure of information:

– Details on IPs (e.g. base address, INT lines, DMA lines,..)

– Static RAM and Memory regions

– Testbench details with information regarding:
• Clocks

• Resets

• Timers

• VAL front-ends each them connecting a set of UVM env
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Platform at LVP level
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Platform at SOC level

17
Clocks/Resets/Timers

VAL FE

ESRAMs

Regions

T
B

VAL FE

UVM Env

IP info
IP info

IP info At SOC level the 

platform is a set of 
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Conclusions

• The Web Template Mechanism allow to separate the
data (Platform configuration file) from the way they
are used in the layers representing SW
implementation of functionalities (c-code) and HDL
verification infrastructures (System Verilog – UVM).

• The Platform configuration file contains high level
descriptions of the scenario developed at LVP that
can be reusable at SOC level, hiding differences to
the test developer and reducing porting overhead.
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