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Abstract — In 2010–2011, Lockheed Martin Space Systems 
designed and verified eight FPGAs for the Command and Data 
Handling (C&DH) subsystem of the NOAA/NASA Geostationary 
Operational Environmental Satellite R-Series (GOES-R), 
scheduled to launch in 2015.  Hardware validation and 
integration of these FPGAs went smoothly. Perhaps the best 
measure of the success: the FPGAs performed with almost no 
functional failures during integration and test.  

To help with this effort, Lockheed Martin created and introduced 
three new parts to its verification methodology.  While originally 
developed in OVM, these techniques have subsequently been 
ported to UVM.  UVM versions of the enhancements will be 
shown and discussed here.  The three enhancements are: 

1. Dramatically reducing agent development effort using a 
highly parameterized base agent  

2. Providing data rate controls in a driver that preserves 
interesting transaction bursts and gaps while 
maintaining a desired throughput using an interface 
throttling class 

3. Encapsulating, modifying and covering variations to an 
interface’s pin-level timing using an interface timing 
class  

Keywords—UVM/OVM, FPGA, space, NASA  

I.  PARAMETERIZED BASE AGENT 
When working with an agent-based UVM verification 

environment (an agent is an encapsulation of code needed to 
interact with a bus protocol), one thing becomes obvious:  the 
architecture of most agents adheres to a small number of 
topologies.  Though there is some variation depending on the 
application, an agent generally contains a monitor, sequencer, 
driver, configuration information and other various support 
classes.  In each agent these classes are interconnected 
identically, pulling configuration and virtual interface 
information from the configuration database and sharing much 
common base code.   Taking advantage of this commonality, 
by using vendor-specific tools to auto-generate this code, helps 
avoid duplication of effort. 

However, these tools have two main drawbacks.  First, their 
cost can be prohibitive.  Second, the tools are relatively 
inflexible regarding agent architecture.  That is, if an 
organization wishes to utilize an agent that consists of more 
than a sequencer, driver and monitor, it may be out of luck. 

SystemVerilog’s capabilities can help with these issues.  
Parameters combined with classes in SystemVerilog allow for 
the creation of a set of base classes, which together form a 
highly parameterized base agent.  As a concrete example, 
consider the agent shown in Figure 1.  This agent has several 
enhancements over the standard sequencer, driver and monitor 
architecture: 

1. A translator port to support incoming high-level 
transactions in a layered protocol 

2. An internal analysis block to support checking of low-
level protocol-related activity within the agent. 

3. Two separate analysis ports allowing the agent to 
separate stimulus and response transactions 

4. A shared object to support variable sharing between 
agent members 

 
Figure 1:An ACTIVE agent architecture 
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The additional functionality included in this agent most 
likely eliminates the use of a code auto-generation tool, most of 
which use standard templates.  Creating a reusable base agent 
capable of handling much of the low-level housekeeping 
requires diving into the world of SystemVerilog parameterized 
classes. 

The problem at hand is to create a base class that takes 
advantage of the common construction of any concrete child 
class yet allows the types of the various class member objects 
to vary among its children.  For instance, an RS422 agent and 
an AXI bus agent share the same basic architecture, yet the 
RS422 driver class must have radically different functionality 
than the AXI driver class.  This problem is illustrated in Figure 
2.  In this figure, a base agent class attempts to declare and 
create a driver object.  But since the driver class type must be 
specified in the base class, the base agent cannot instantiate a 
driver in a generic fashion. 

class agent_base extends uvm_agent; 
  // members 
  … 
  <drv_class> drv 
 
  function void build_phase(uvm_phase phase); 
    … 
    drv = <drv_class>::type_id:: 
                          create("drv", this); 
  endfunction : build_phase 
  … 
endclass : agent_base 

Figure 2: Parameterized agent problem 

The solution to this problem is to use the parameterized 
class capabilities of SystemVerilog as illustrated in Figure 3.  
In this figure, the type of the driver is passed into the agent as a 
parameter.   

class agent_base #(type DRV = agent_drv_base) 
                            extends uvm_agent; 
   // members 
  … 
  DRV drv 
 
  function void build_phase(uvm_phase phase);  
    … 
    drv = DRV::type_id::create("drv", this); 
  endfunction : build_phase 
  … 
endclass : agent_base 

Figure 3: Parameterized agent solution 
This technique—demonstrated in Figure 4, which outlines a 

simplified build() method—allows for straightforward 
implementation of the agent base class. The agent’s 
configuration object is first queried to determine the “flavor” of 
the agent; whether it is ACTIVE, PASSIVE or one of the 
layered agent flavors.  Depending on the agent flavor, the 
correct components are then instantiated.  In this example the 
types DRV, MON, ANL and SQR are all class parameters 
specified when creating a concrete agent.  In similar fashion, 
all of the agent’s interconnections can be handled in the base 

agent connect() method.  In fact, all of the build and connect 
operations can be handled in the base agent, allowing the 
concrete agent designer to focus on functionality rather than 
housekeeping. 

function void agent_base:: 
                 build_phase(uvm_phase phase); 
  … 
  // instantiate members based on agent type 
  // defined in configuration object 
  case (cfg.flavor) 
    ACTIVE: begin 
      resp_ap = new("resp_ap", this); 
      stim_ap = new("stim_ap", this); 
      mon = MON::type_id::create("mon", this); 
      anl = ANL::type_id::create("anl", this); 
      drv = DRV::type_id::create("drv", this); 
      sqr = SQR::type_id::create("sqr", this); 
    end 
    PASSIVE: begin 
      resp_ap = new("resp_ap", this); 
      mon = MON::type_id::create("mon", this); 
      anl = ANL::type_id::create("anl", this); 
    end 
    ACTIVE_LAYER: begin 
      … 
    end 
    PASSIVE_LAYER: begin 
      … 
    end 
    … 
  endcase 
 
endfunction : build_phase 

Figure 4: Parameterized agent build() method 

Prior to instantiating the agent’s member components, the 
configuration object must be pulled from the configuration 
space.  Retrieving objects from the configuration database 
requires using the path argument, which is part of the 
uvm_config_db API. 

When using the uvm_config_db API, two pieces of 
information are used to get a piece of configuration 
information.  The first is configuration name.  The second 
piece is the UVM component path.  Parameterized agents all 
need to pull a configuration object from the configuration 
database.  This is handled in the base_agent code.  To do this, 
the base agent always uses the configuration name of “config”.  
This allows it to do a simple call to the uvm_config_db::get() 
as shown in Figure 5.  To control which configuration object 
the agent receives, the test (or whichever component places the 
configuration object into the configuration database) must use 
the correct UVM component path.  For example, if a testbench 
has an instance of a parameterized agent called “my_agent1” 
instantiated in an environment called “my_env”, then the 
uvm_test would route the configuration object to “my_agent1” 
by performing a uvm_config_db::set() call with the path 
argument specified as “my_env.my_agent1*” as shown in 
Figure 6. 
  



function void agent_base:: 
                 build_phase(uvm_phase phase); 
  super.build_phase(phase); 
 
  // get config object 
  if(!uvm_config_db #(CFG)::get(this, "", 
                               "config", cfg)) 
    `uvm_fatal(get_full_name(), 
               "no config object available") 
 
  // assign local VIF handle from 
  // config object 
  vif = cfg.vif; 
  … 
endfunction : build_phase 

Figure 5: Getting the configuration object 

function void test_base:: 
                 build_phase(uvm_phase phase); 
  … 
  uvm_config_db#(my_agent_cfg)::set(this, 
                          "my_env.my_agent1*", 
                          "config", 
                          my_agent1_cfg); 
  … 
endfunction : build_phase 

Figure 6: Test setting the configuration 

We have shown that all the housekeeping functions 
normally performed in a concrete top-level agent can instead 
be performed in a parameterized agent base class.  The 
functions consist generally of configuration database access, 
component instantiation and component interconnection.  Since 
this housekeeping is generally all that a top-level agent does, it 
is usually possible to declare a concrete agent as a 
specialization of the parameterized base agent class.  This is 
shown in Figure 7. 

typedef agent_base #( 
  .CFG (myagent_cfg), 
  .VIF (virtual myagent_if), 
  .TXN (myagent_txn), 
  .ANL (myagent_analysis), 
  .MON (myagent_monitor), 
  .DRV (myagent_driver) 
) myagent; 

Figure 7: Declaring a concrete agent via typedef 
Yet sometimes it is necessary to add either functionality or 

additional member components to the concrete agent.  In these 
cases, it is necessary to extend the base agent in order to define 
the concrete agent.  Figure 8 shows a simple example of this 
situation, where the agent needs to incorporate some reporting 
at the end of simulation.  We move now from the base agent 
itself to the agent component classes. 

class myagent extends agent_base #( 
  .CFG (myagent_cfg), 
  .VIF (virtual myagent_if), 
  .TXN (myagent_txn), 
  .ANL (myagent_analysis), 
  .MON (myagent_monitor), 
  .DRV (myagent_driver) 
); 
  `uvm_component_utils(myagent) 
 
  // new 
  function new(string name, 
               uvm_component parent = null); 
    super.new(name, parent); 
  endfunction : new 
 
  // report_phase 
  function void report_phase(uvm_phase phase); 
    … 
  endfunction : report_phase 

endclass : myagent 

Figure 8: Defining a concrete agent via extension 

It is also possible to perform a great deal of housekeeping 
functions in the base agent component classes, especially the 
driver.  For example, we have already shown that using the 
path argument allows for great flexibility in configuring the 
parameterized base agent.  This concept can be directly 
extended for use in the agent component classes such as the 
driver and monitor.  As shown in Figure 9, a simple get will 
succeed because of the wildcard at the end of the path name in 
a set call. 

function void agent_drv_base:: 
                 build_phase(uvm_phase phase); 
  super.build_phase(phase); 
 
  // get the cfg 
  if (!uvm_config_db #(CFG)::get(this, "", 
                               "config", cfg)) 
    `uvm_fatal(get_full_name(), 
               "no config object available") 
  end 
  … 
endfunction : build_phase 

Figure 9: Driver's configuration database use 

A very significant function that can be pushed into the 
driver base class is the detailed driver side of the sequence / 
sequencer / driver handshake.  This is a constant source of 
trouble since the sequence and driver must agree on the 
protocol.  If there is a mismatch between sequence and driver 
protocol, mayhem nearly always results.  By handling this 
handshake in the base class, an organization can enforce code 
standardization and eliminate a common source of error.  
Figure 10 shows an implementation of both non-blocking and 
blocking handshakes in the driver base class. 

The details of the blocking and non-blocking protocol are 
beyond the scope of this paper.  However, note the use of the 
calls to the idle_cycle() and active_cycle() methods.  These are 
empty methods to be overridden in the concrete driver class 
and provide the functionality of wiggling the interface pins to 



either consume idle time or actively drive a transaction on the 
bus.  It is possible to make these “pure virtual” methods and to 
make the driver an abstract class, thereby forcing the concrete 
driver class to implement both methods.   The driver’s run 
phase typically calls either the blocking or non-blocking 
version of the process_item() task from within a forever loop. 

The sequence side of the sequence / sequencer / driver 
handshake is much simpler but should still similarly be 
implemented in a sequence base class to avoid any protocol 
mismatch.  This is illustrated in Figure 11. 

// process_item_nb (non blocking) 
task agent_drv_base::process_item_nb(); 
  TXN req_txn, rsp_txn; 
 
  do begin 
    seq_item_port.try_next_item(req_txn); 
    if (req_txn == null) begin 
      idle_cycle(); 
    end 
  end while (req_txn == null); 
 
  rsp_txn = TXN::type_id::create("rsp_txn"); 
  rsp_txn.set_id_info(req_txn); 
  active_cycle(req_txn, rsp_txn); 
  seq_item_port.item_done(); 
  seq_item_port.put(rsp_txn); 
 
endtask : process_item_nb 
 
// process_item (blocking) 
task agent_drv_base::process_item(); 
  TXN req_txn, rsp_txn; 
 
  seq_item_port.get_next_item(req_txn); 
  rsp_txn = TXN::type_id::create("rsp_txn"); 
  rsp_txn.set_id_info(req_txn); 
  active_cycle(req_txn, rsp_txn); 
  seq_item_port.item_done(); 
  seq_item_port.put(rsp_txn); 
 
endtask : process_item 
 
// idle_cycle: drive idle on bus 
task agent_drv_base::idle_cycle(); 
endtask : idle_cycle 
 
// active_cycle: drive transaction on bus 
task agent_drv_base::active_cycle(TXN req_txn, 
                                 TXN rsp_txn); 
endtask : active_cycle 

Figure 10: Base driver side of SEQ/SQR/DRV handshake 

task seq_base::put_item(REQ req_txn, 
                        ref RSP rsp_txn); 
  start_item(req_txn); 
  finish_item(req_txn); 
  get_response(rsp_txn); 
endtask : put_item 

Figure 11: Base sequence side SEQ/SQR/DRV handshake 

We have shown that significant driver functionality can be 
implemented in a parameterized driver base class.  This leaves 

the concrete driver designer free to concentrate on functionality 
alone.  In general this consists of implementing the idle_cycle() 
and active_cycle() methods. 

While there is a considerable amount of mundane code to 
be implemented in the agent and driver base classes, we have 
not identified much that can be implemented in monitor or 
analysis base classes.  Primarily we pull objects out of the 
configuration database in these base classes, but leave all other 
functionality to the concrete classes. 

There is one minor but significant problem that may trip up 
an organization’s efforts to implement a parameterized agent 
methodology.  The issue arises if an organization chooses to 
use a top-level analysis group that aggregates transactions 
coming from various agents’ analysis ports.  In this 
methodology, the analysis group’s analysis exports must be 
parameterized with a common base transaction type in order to 
accept transactions of various types.  In this case it is necessary 
to parameterize all the agent’s analysis ports with the same 
common base transaction.  If instead the agents use their own 
parameterized transaction type for the analysis ports, these 
ports will not connect successfully with the base transaction 
analysis exports. 

As we have shown so far, there is a tremendous advantage 
to deploying a parameterized agent methodology.  Much 
mundane, repetitive housekeeping code can be implemented 
once in the base classes, leaving the designer free to 
concentrate on functionality when designing concrete agent 
classes.  There is, however, a significant downside.  
Parameterized classes are devilishly difficult to debug.  Many 
error messages normally caught during compilation are not 
caught until elaboration or simulation time.  When these errors 
appear, the error messages are typically obscure. 

When creating parameterized base classes the best 
approach is to first develop and debug the classes without 
parameterization.  Only when you are very confident that you 
have everything right should you carefully add the 
parameterization. 

Nonetheless, once developed, a parameterized agent 
methodology offers significant benefits by pushing much 
standard housekeeping code down into the agent base classes 
and enforcing code standardization by ensuring all application-
specific agents inherit the same base code and adhere to 
common design patterns. 

II. DRIVER-LEVEL DATA RATE CONTROLS 
In many real systems accesses occur at random intervals.  

To mimic this behavior, it is desirable to vary the gap between 
transactions in order to verify that the DUT can handle 
everything from back-to-back transactions to lengthy delays 
between transactions.  In addition, randomizing the gap 
between transactions ensures that these transactions arrive at 
varying times relative to other events occurring inside the 
DUT.  At the same time, it is often necessary to control the 
aggregate throughput on an interface.  Throughput control 
allows the testbench to selectively over- or under-subscribe an 
interface as needed to test conditions such as FIFO underflow 
or overflow. 



One method for simultaneously providing throughput 
control while maintaining interesting bursts and gaps between 
transactions is for the driver to utilize a throttle object to 
calculate inter-transaction gaps.  The throttle object is used to 
record the number of cycles spent idling versus actively driving 
a transaction on the bus.  Then, when the driver receives a 
transaction from its sequencer, the throttle object is queried in 
order to generate a random number of idle cycles, which 
should precede driving the transaction on the bus.  The key 
innovation here is that this “number of idles” determination is 
made using a Poisson distribution and that the “mean” of the 
Poisson function is dependent on how far the measured 
throughput is from the desired throughput.  Figure 12 through 
Figure 16 illustrate how the driver should utilize a throttle 
object.   

Figure 12 shows the declaration of the throttle object in the 
driver’s class declaration, while in Figure 13 the throttle is 
created from the factory and initialized with the desired 
throughput as specified in the agent’s configuration object 
(cfg).  It is convenient to specify throughput as an integer 
between 0 and 100, representing the percent of maximum 
interface throughput that the driver should target. 

class my_drv extends uvm_driver #(my_txn); 
  `uvm_component_utils(my_drv) 
 
  // methods 
  extern function new(string name,  
                      uvm_component parent); 
  extern function void build_phase( 
                             uvm_phase phase); 
  extern virtual task idle_cycle(); 
  extern virtual task active_cycle( 
                              my_txn req_txn, 
                              my_txn rsp_txn); 
  extern virtual task process_item_nb(); 
  … 
 
  // members 
  throttle idle_gen; 
  … 
endclass : my_drv 

Figure 12: Throttle object declaration 

function void my_drv::build_phase( 
                             uvm_phase phase); 
  idle_gen = throttle::type_id:: 
                           create("idle_gen"); 
  idle_gen.set(cfg.throughput); 
  … 
endfunction : build_phase 

Figure 13: Building the throttle object 

The operational concept of the throttle requires that it be 
called throughout a simulation in order to record the number of 
active cycles and idle cycles consumed on the bus.  This 
requires the sequence-sequencer-driver handshake to be non-
blocking so that the driver can always track the passage of time 
on the bus.  Consequently the driver cannot use a get() or a 
get_next_item() call as that would prevent the driver from 
recording the passage of time.  Instead the driver makes use of 
the try_next_item() call, which does not block.  An example of 

this handshake is shown in Figure 14.  When a sequence item 
is not available, the driver’s call to try_next_item() returns 
“null” and the driver calls idle_cycle() to consume one cycle of 
time on the bus.  In turn, the throttle object’s idle() method is 
called in Figure 15, recording the fact that one idle cycle has 
been consumed. 

task my_drv::process_item_nb(); 
 
  my_txn req_txn, rsp_txn; 
 
  do begin 
    seq_item_port.try_next_item(req_txn); 
    if (req_txn == null) begin 
      idle_cycle(); 
    end 
  end while (req_txn == null); 
 
  … 
  // wiggle pins 
  active_cycle(req_txn, rsp_txn); 
  seq_item_port.item_done(); 
  … 
  seq_item_port.put(rsp_txn); 
 
endtask : process_item_nb 

Figure 14: Non-blocking Sequencer-Driver Handshake 

task my_drv::idle_cycle(); 
  // record the idle cycle 
  idle_gen.idle(); 
 
  // consume one cycle driving idle 
  … 
endtask : idle_cycle 

Figure 15: Use of throttle object in idle cycles 

If, on the other hand, the call to try_next_item() returns a 
sequence item the driver calls the active_cycle() method to 
handle the incoming transaction.  As shown in Figure 16, the 
active_cycle() method first calls the throttle object’s active() 
method.  This method performs two functions.  First, it records 
the number of active cycles the driver will consume in sending 
the transaction on the bus.  The active() method also calculates 
the current throughput on the bus, compares this with the 
desired throughput, and calculates the number of idle cycles the 
driver should apply before sending the transaction.  Following 
the call to the throttle object’s active() method, the driver then 
sends the required number of idles followed by the transaction 
itself. 



task my_drv::active_cycle(my_txn req_txn, 
                          my_txn rsp_txn); 
  int idles; 
 
  // Calculate bandwidth throttle and 
  // record active cycles 
  // The transaction can override this by 
  // specifying a gap 
  idles = idle_gen.active(req_txn.get_size()); 
  if (req_txn.gap >= 0) 
    idles = req_txn.gap; 
 
  // insert idle cycles 
  repeat (idles) idle_cycle(); 
 
  // consume cycles driving the txn 
  … 
endtask :active_cycle 

Figure 16: Use of throttle object in active cycles 

It is worth noting that a sequence can override the operation 
of the throttle class if it so desires.  We use a base transaction 
class containing a member called ‘gap’.  This integer member 
directly represents the inter-transaction gap the sequence would 
like to apply before a transaction.  This gap defaults to ‘-1’ to 
indicate that the throttle class should determine the gap.  
However, if the gap is set to a number greater than or equal to 
zero, this number will be used directly rather than the throttle 
calculation. 

Now we turn to the details of the throttle class itself.  The 
key to understanding its operation is the Poisson distribution, 
used by the throttle object to calculate the number of idles to 
apply before a transaction.  However, the mean of the 
distribution used is adjusted based on how far the actual 
throughput is from the target throughput.  For reference the 
Poisson distribution with various values for the mean is 
illustrated in Figure 17. 

If the actual throughput is less than the target the driver has 
been applying too many idles.  In this case the throttle class 
uses a mean of 1 and in all likelihood the resultant number of 
idles will be less than 5.  In fact the number of idles selected in 
this case is most likely to be either 0 or 1. 

In contrast, if the actual throughput is greater than the 
target, the driver needs to apply more idles to decrease the 
throughput.  In this case, the mean is chosen to equal the 
difference between the actual number of active cycles so far 
and the target number of active cycles.  So, for example, if the 
driver has generated 20 more active cycles than desired, the 
mean selected is 20.  On average, the throttle object will return 
20 and the actual throughput at the interface will decrease 
accordingly. 

 
Figure 17: Example of Poisson distributions 

Figure 18 shows the declaration of the throttle class.  The 
main three class members are ‘throughput’, ‘idles’ and 
‘actives’.  These are the target throughput and the running 
count of idle cycles and active cycles applied during a 
simulation.  The class also contains a random seed for the 
Poisson distribution.  This is randomized in the new() method 
and is updated with every call to the distribution function. 

class throttle extends uvm_object; 
  `uvm_object_utils(throttle) 
 
  // methods 
  extern function new(string name = ""); 
  extern virtual function void set( 
                              int throughput); 
  extern virtual function void reset( 
                         int throughput = -1); 
  extern virtual function void idle( 
                               int count = 1); 
  extern virtual function int  active( 
                                   int count); 
  extern virtual function int  report(); 
 
  // members 
  rand int seed; 
 
  int idles = 0; 
  int actives = 0; 
  int throughput = 50; 
 
endclass : throttle 

Figure 18: Throttle class declaration 
Figure 19 and Figure 20 demonstrate some of the necessary 

housekeeping methods.  The set() method is called when the 
throttle object is first created and sets the target throughput that 
the object will use in its calculations going forward.  Recall 
that the target throughput specified here is a percentage of the 
interface’s maximum possible throughput.  The reset() method 
is not always needed.  But if the bus spends significant time 
idling due to lack of sequencer input, this method may be used 
to reset the running ‘idle’ and ‘active’ counts when stimulus 
begins.  This condition often occurs, for instance, when the bus 
is idling while the DUT is configured via a different interface.  
The reset() method may also be used to change the target 
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throughput during a simulation.  It is often convenient to add 
an API method to the agent which calls the reset() method.  

function void throttle::set(int throughput); 
  // initialize the target throughput 
  this.throughput  = throughput; 
endfunction : set 

Figure 19: Throttle set( ) method 

function void throttle::reset( 
                         int throughput = -1); 
  // conditionally set the target throughput 
  if (throughput >= 0) 
    this.throughput = throughput; 
 
  // reset idle and active counts to '0' 
  idles   = 0; 
  actives = 0; 
endfunction : reset 

Figure 20: Throttle reset( ) method 

Finally, Figure 21 and Figure 22 show the heart of the 
throttle class, the idle() and active() methods.  As described 
earlier the idle() method simply records idle cycles while the 
active() method records the active cycles but also calculates the 
inter-transaction idle count based on the Poisson distribution.  
Note that the seed argument to the $dist_poisson() method is of 
type ‘inout’ and is updated with each call to $dist_poisson(). 

function void throttle::idle(int count = 1); 
  // record idle cycle(s) 
  idles += count; 
endfunction : idle 

Figure 21: Throttle idle( ) method 

function int throttle::active(int count); 
  int target; 
  int mean; 
  int cycles; 
 
  // record active cycle(s) 
  actives += count; 
 
  // calculate the target number of 
  // active cycles 
  target = throughput * (actives+idles) / 100; 
 
  // calculate the mean of the 
  // Poisson distribution 
  mean = (actives > target) ? 
                       (actives - target) : 1; 
 
  // randomize the number of idle 
  // cycles needed 
  return ($dist_poisson(seed, mean)); 
endfunction : active 

Figure 22: Throttle active( ) method 

Using this methodology, a realistic flow of transactions 
may easily be created that features both throughput control and 
burstiness.  But the traffic characteristics using this technique 
are shared by all sequences using a particular driver.  What 
about modeling different traffic characteristics for different 
sequences operating on the same driver? 

Although we have not implemented it, the throttle class 
concept could be directly applied at the sequence abstraction 
level.  Multiple sequences, each with its own throttle object, 
could easily model real world traffic patterns.  For instance, 
one sequence could model VoIP traffic with a constant sample 
rate while other sequences could represent bursts of low-
priority traffic.  All sequences would then use the “gap” 
member of the base sequence item class to override the throttle 
class in the driver.  Using this technique a testbench could 
readily measure the effects of bursty, low-priority traffic on the 
latency jitter of steady, high-priority flows. 

III. TIMING CONTROLS 
Frequently varying the timing parameters of an interface at 

the pin-level is critical to ensure the DUT meets functional 
requirements.  In many cases, this includes not only legal 
interface timing but also off-nominal cases to ensure the DUT 
rejects and/or recovers from illegal/invalid interface timing or 
sequencing.   

All interfaces, no matter the level of complexity, can be 
described by a set of timing parameters and the dependencies 
between these parameters.  Functional verification of the 
interface timing is considered complete when the DUT 
responds correctly to all required values (or ranges of values) 
and important timing sequences as well as gracefully handles 
situations where off-nominal and/or illegal cycles occur. 

An interface timing class encapsulates the timing 
parameters, constraints and coverage model associated with an 
interface into one self-contained object.  The advantages of this 
construct are numerous: 

1. Interface timing can be modified (randomized) at any 
desired interval  

2. Constraint-based timing definition generates legal or 
illegal cycle timing, upon request, for interdependent 
specs 

3. Weighted distributions associated with these 
constraints ensure interesting values are generated 
frequently 

4. Resulting agent driver code is highly succinct, 
readable and maintainable 

5. Applicable to a broad range of interfaces, both 
asynchronous and synchronous 

For the purpose of illustration, this paper will discuss a 
parallel bus with the following characteristics: 

1. Active low chip select control signal 

2. Read / write control signal 

3. 8-bit address bus 

4. 8-bit bidirectional data bus 

Figure 23 shows the timing diagram for both read and write 
cycles on this bus.  The remainder of this paper, including code 
snippets, will provide examples using the write functionality of 
this bus. 



 

 
Figure 23: Bus cycle timing 

Generically, an interface timing class object is comprised of 
four components: 

1. Timing specs 

2. Timing constraints 

3. Timing distribution 

4. Coverage model 

This first component of an interface timing class is the 
timing parameters themselves.  These typically consist of two 
groups of members: constants defining the bounds of each 
individual spec and random members utilized by the driver to 
perform the cycle.  Figure 24 shows the declaration of the 

timing parameter specs and members, assigning arbitrary 
values to the limits of each parameter.  

Two coding styles exist: the use of SystemVerilog 
parameters (or localparams) and the use of constant ints.  Using 
parameters is more efficient from the perspective of memory 
footprint, but introduces the possibility of conflicts if a generic 
naming convention is reused across multiple timing classes.  
The provided example makes use of constant ints to avoid 
these potential namespace issues. 

//============================================ 
// write cycle timing specs, in ns 
//============================================ 
const int W1_MIN    = 100; 
const int W1_MAX    = 200; 
 
const int W2_MIN    = 150; 
const int W2_MAX    = W2_MIN*2; 
 
const int W3_MIN    = 100; 
const int W3_MAX    = W3_MIN*2; 
 
const int W4_FIXED  = 300; 
 
const int W5_MAX    = 200; 
const int W5_MIN    = W5_MAX/2; 
 
const int W6_MAX    = 200; 
const int W6_MIN    = W6_MAX/2; 
 
//============================================ 
// timing specs, randomized each cycle 
//============================================  
rand int w1, w2, w3, w4, w5, w6; 

Figure 24: Timing parameter definition 

The second component of an interface timing class is the 
constraints defining the bounds and interdependencies between 
parameters.  Figure 25 shows the declaration of the timing 
constraints for the write cycle parameters.  The majority of the 
constraints bound the individual timing specifications within 
their legal ranges.  The last two constraints define 
dependencies between two or more parameters.  In this 
example, there are two cases where overlapping ranges require 
additional definition.  First, the chip select signal must assert 
before the write/read control signal asserts, described by the 
w1_w2_phase constraint.  At the end of the cycle, the 
write/read control must deassert before chip select deasserts, 
described by w5_w6_phase. 

Note that the timing variables, w1 through w6, are type int 
in order to mesh with the functional coverage model.  Neither 
real nor time types can be directly sampled in coverage and 
must be converted.  To avoid this step, the timing variables 
themselves are unitless members of type int.  Both the 
coverage model and agent driver are written to scale the integer 
values as needed to provide the required level of resolution. 
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//============================================ 
// write cycle timing constraints 
//============================================  
constraint w1_range 
           { w1 inside {[W1_MIN : W1_MAX]}; }; 
constraint w2_range 
           { w2 inside {[W2_MIN : W2_MAX]}; }; 
constraint w3_range 
           { w3 inside {[W3_MIN : W3_MAX]}; }; 
constraint w4_fixed 
           { w4 ==  W4_FIXED; }; 
constraint w5_range 
           { w5 inside {[W5_MIN : W5_MAX]}; }; 
constraint w6_fixed 
           { w6 inside {[     0 : W6_MAX]}; }; 
 
constraint w1_w2_phase  { w1 < w2; }; 
constraint w5_w6_phase  { w5 < w6; }; 

Figure 25: Timing constraint definition 

The third component of an interface timing class is a set of 
weighted distributions to shape randomization outputs.  Figure 
26 shows the weighted distributions associated with the timing 
constraints.  Although these distributions are optional from a 
purely functional viewpoint, they ensure that interesting / 
bounding values are generated at a relatively high rate.  In 
practice, explicitly defined min/max bins correspond to those 
timing specs with explicitly defined bounds.  Derived bounds, 
such as W2_MAX = 2*W2_MIN, are not assigned specific 
bins.  Note that this example uses hard-coded weights for all 
distributions.  More complex interfaces may require the 
flexibility of variable-controlled weights; in practice, however, 
hard-coded weights produce an acceptably diverse variety of 
timing. 

//============================================ 
// write cycle timing distribution 
//============================================  
constraint sc_w1_dist  { w1 dist { 
                      W1_MIN := 10, 
                      [W1_MIN : W1_MAX] :/ 80, 
                      W1_MAX := 10 }; } 
constraint sc_w2_dist  { w2 dist { 
                      W2_MIN := 10, 
                      [W2_MIN : W2_MAX] :/ 80, 
                      W2_MAX := 10 }; }  
constraint sc_w3_dist  { w3 dist { 
                      W3_MIN := 10, 
                      [W3_MIN : W3_MAX] :/ 80, 
                      W3_MAX := 10 }; }  
// w4 is fixed, no dist necessary 
constraint sc_w5_dist  { w5 dist { 
                      W5_MIN := 10, 
                      [W5_MIN : W5_MAX] :/ 80, 
                      W5_MAX := 10 }; }  
constraint sc_w6_dist  { w6 dist { 
                      [0 : W6_MAX] :/ 75,  
                      W6_MAX := 25 };} 

Figure 26: Timing Constraint Distributions 

The final component of an interface timing class is the 
coverage model.  Figure 27 shows the coverage model for the 
write cycle of the 8-bit example bus.  The coverage model 
looks nearly identical to the weighted distributions described 

previously.  The covergroup explicitly defines min/max for 
those timing parameters with explicit bounds.  Range bins are 
then defined for all non-fixed parameters to ensure a variety of 
values are tested for each parameter.  Cross coverage can be 
added, as required, to cover timing occurrences between 
interdependent specs/signals. 

//============================================ 
// write cycle timing coverage 
//============================================  
covergroup wr_cvg(); 
  w1_cvp: coverpoint w1 { 
   bins min             = {W1_MIN};  
   bins range[RNG_BINS] = {[W1_MIN : W1_MAX]}; 
   bins max             = {W1_MAX}; } 
  w2_cvp: coverpoint w2 { 
   bins min             = {W2_MIN};  
   bins range[RNG_BINS] = {[W2_MIN : W2_MAX]}; 
   bins max             = {W2_MAX}; } 
  w3_cvp: coverpoint w3 { 
   bins min             = {W3_MIN};  
   bins range[RNG_BINS] = {[W3_MIN : W3_MAX]}; 
   bins max             = {W3_MAX}; } 
  // no cvp for w4, it is fixed 
  w5_cvp: coverpoint w5 { 
   bins min             = {W5_MIN};  
   bins range[RNG_BINS] = {[W5_MIN : W5_MAX]}; 
   bins max             = {W5_MAX}; } 
  w6_cvp: coverpoint w6 { 
   bins min             = {W6_MIN};  
   bins range[RNG_BINS] = {[W6_MIN : W6_MAX]}; 
   bins max             = {W6_MAX}; } 
endgroup: wr_cvg 

Figure 27: Write cycle coverage model 

Now that the interface timing class is complete, let’s 
examine the resulting agent driver code that takes advantage of 
it.  Figure 28 shows the driver’s task for executing a write 
cycle.  Note that this code skips over the instantiation and 
creation of the timing class object as well as assignment of the 
virtual interface handle.  By exploiting an interface timing 
class, the agent driver code is extremely easy to code and 
“reads” like a description of the timing diagram.  This 
simplifies code development and maintenance.  Modification 
of the interface timing can be performed as frequently as 
desired, typically once per cycle as shown.  After randomizing 
the timing for a given cycle, the driver merely executes a 
sequence of waits and signal assignments to drive the cycle to 
the DUT.  The coverage model is sampled at the same rate of 
timing class randomization to cover the permutations executed. 

As previously discussed, this example uses unitless timing 
variables of type int.  The agent driver code interprets the 
timing variables and “scales” them as needed.  In this example, 
the scale of the timing variables is assumed to be the same as 
the timescale of the driver itself.  If required, additional 
resolution can be provided by enlarging the int values in the 
timing class itself, then scaling the values within the agent 
driver using local members of type real or time. 



//============================================ 
// wr_cycle 
// translate write txn to pin wiggles 
//============================================ 
task drv::wr_cycle(); 
  //Randomize timing for this cycle 
  if(!t.randomize()) 
    `uvm_error("time spec object", 
                        "randomization error") 
  //initiate cycle 
  vif.cs_n = 'b0; 
  #(t.w1); 
  vif.wr_rd_n = 'b1; 
  #(t.w2); 
   
  //send addr and data 
  vif.addr = req_txn.addr; 
  #(t.w3); 
  vif.data = req_txn.data; 
  #(t.w4); 
   
  //terminate cycle 
  vif.wr_rd_n = 'b0; 
  #(t.w5); 
  vif.cs_n = 'b1; 
  #(t.w6); 
   
  //collect coverage 
  t.wr_cvg.sample(); 
endtask :wr_cycle 

Figure 28: Driver Utilizing Interface Timing Class 

All examples up to this point illustrate an interface timing 
class generating legal cycle timing and sequencing.  This 
technique can be extended to generate illegal timing in order to 
ensure the DUT appropriately handles off-nominal cases.  
Depending on the complexity of the interface, two coding 
styles exist for generating illegal timing.   

Both legal and illegal timing can be described in a single 
interface timing class.  Using this approach, one or more flags 
are created to control which timing parameter(s) or sequencing 
will be generated illegally.  The timing constraints and 
distributions shown in Figure 25 and Figure 26 are modified to 
use a conditional constraint format that is dependent on the 
appropriate flag.  A new covergroup for illegal timing is 
written and the driver samples this covergroup when using 
illegal timing instead. 

More complex interfaces may require a second interface 
timing class for illegal timing and sequencing.  Using this 
approach, the constant timing parameter specs will likely need 
to be moved to a common package that both the legal and 
illegal timing classes can access.  The illegal class then mirrors 
the structure of its legal counterpart but updates the constraints, 
distributions and coverage to describe off-nominal cases.  The 
driver instantiates both a legal and illegal timing class, then 
randomizes, uses and samples the appropriate one as dictated. 

Using either approach, the same updates must be made and 
the resulting amount of new code is approximately the same.  
The user is trading off the convenience of having all timing 
information, both legal and illegal, in a single, self-contained 
object against code readability and total lines of code per class.  

Depending on the ordering, the driver may need specialized 
tasks to execute cycles with an illegal order of events. 

The advantages of using an interface timing class are 
numerous: 

1. Interface timing can be modified (randomized) at any 
desired interval 

2. Constraint-based timing definition generates legal or 
illegal cycle timing, upon request, for interdependent 
specs 

3. Weighted distributions associated with these 
constraints ensure interesting values are generated 
frequently 

4. Resulting agent driver code is highly succinct, 
readable and maintainable 

5. The technique is applicable to a broad range of 
interfaces, both asynchronous and synchronous 

First, the frequency at which the interface timing is 
modified is easily controlled and can be set to any desired 
interval.  Depending on the interface being modeled, timing 
can be modified mid-cycle, once per cycle, once per simulation 
or anything in between.  This adds tremendous flexibility to the 
test environment and ensures the DUT sees a robust mixture of 
timing on each interface. 

Second, describing the interface using a complete set of 
constraints ensures that legal (or illegal, if desired) timing and 
sequencing is generated for interdependent specs.  A single 
randomization call in the agent driver is all that is required to 
modify the behavior of the interface, regardless of its 
complexity. 

Third, utilizing weighted distributions ensures that 
bounding or corner case values are generated with relatively 
high frequency.  Typically hard-coded weights provide 
acceptable coverage, but the technique can be extended to 
exploit variable-controlled weights if the complexity of the 
interface requires.  Generating absolute min/max values often 
likewise ensures the DUT meets requirements for these explicit 
bounds. 

Fourth, the agent driver code which utilizes the timing class 
is highly succinct, readable and maintainable, as shown 
previously in Figure 28.  An interface timing class helps 
logically separate the generation of timing information from 
the execution of bus cycles.  As a result, both code for the 
timing class as well as the driver is specific and 
compartmentalized, adhering to good OOP principles.  Agent 
driver code for wiggling pins is very straightforward and 
“reads” like a timing diagram.  This code is easy to write and, 
perhaps more importantly, easy to maintain. 

Finally, interface timing classes apply to a broad range of 
interfaces, both synchronous and asynchronous.  The example 
illustrated in this paper focused on a simple asynchronous 
interface.  Though beyond the scope of this paper, it is not 
difficult to extend the same example to demonstrate 
synchronous interface behavior.  An interface clock is added to 
the timing shown in Figure 23.  Existing timing parameters can 



be modified or redefined as timing relative to clock edges.  In 
addition, new parameters can be added to specify setup and 
hold criteria relative to the clock, if necessary. 

IV. CONCLUSION 
With parameterized agents, driver level data rate controls 

and timing controls in addition to utilizing the broad 
capabilities of OVM and UVM, the GOES-R C&DH team 
produced FPGAs that performed admirably in the lab.  This 
resulted in overall reduced schedule time and happy program 
managers.  The three techniques outlined above have a wide 
application space and hopefully will save other engineers and 
programs some time and effort. 
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