
Weathering the Verification Storm:
Methodology Enhancements used on a Next Generation Weather
Satellite C&DH Program

Michael Donnelly
Lockheed Martin

michael.j.donnelly@lmco.com

Michael Horn

Mentor Graphics
mike_horn@mentor.com

Doug Krening
Verification Consultant
doug.krening@me.com

Abstract — In 2010–2011, Lockheed Martin Space Systems
designed and verified eight FPGAs for the Command and Data
Handling (C&DH) subsystem of the NOAA/NASA Geostationary
Operational Environmental Satellite R-Series (GOES-R),
scheduled to launch in 2015. Hardware validation and
integration of these FPGAs went smoothly. Perhaps the best
measure of the success: the FPGAs performed with almost no
functional failures during integration and test.

To help with this effort, Lockheed Martin created and introduced
three new parts to its verification methodology. While originally
developed in OVM, these techniques have subsequently been
ported to UVM. UVM versions of the enhancements will be
shown and discussed here. The three enhancements are:

1. Dramatically reducing agent development effort using a
highly parameterized base agent

2. Providing data rate controls in a driver that preserves
interesting transaction bursts and gaps while
maintaining a desired throughput using an interface
throttling class

3. Encapsulating, modifying and covering variations to an
interface’s pin-level timing using an interface timing
class

Keywords—UVM/OVM, FPGA, space, NASA

I. PARAMETERIZED BASE AGENT
When working with an agent-based UVM verification

environment (an agent is an encapsulation of code needed to
interact with a bus protocol), one thing becomes obvious: the
architecture of most agents adheres to a small number of
topologies. Though there is some variation depending on the
application, an agent generally contains a monitor, sequencer,
driver, configuration information and other various support
classes. In each agent these classes are interconnected
identically, pulling configuration and virtual interface
information from the configuration database and sharing much
common base code. Taking advantage of this commonality,
by using vendor-specific tools to auto-generate this code, helps
avoid duplication of effort.

However, these tools have two main drawbacks. First, their
cost can be prohibitive. Second, the tools are relatively
inflexible regarding agent architecture. That is, if an
organization wishes to utilize an agent that consists of more
than a sequencer, driver and monitor, it may be out of luck.

SystemVerilog’s capabilities can help with these issues.
Parameters combined with classes in SystemVerilog allow for
the creation of a set of base classes, which together form a
highly parameterized base agent. As a concrete example,
consider the agent shown in Figure 1. This agent has several
enhancements over the standard sequencer, driver and monitor
architecture:

1. A translator port to support incoming high-level
transactions in a layered protocol

2. An internal analysis block to support checking of low-
level protocol-related activity within the agent.

3. Two separate analysis ports allowing the agent to
separate stimulus and response transactions

4. A shared object to support variable sharing between
agent members

Figure 1:An ACTIVE agent architecture

Active Agent

Sequencer

Monitor

Driver

VI
F

Translator

StimulusStimulusStimulus stimulus

translator
port

VI
F

Shared Object

response
analysis

port

Analysis

response

Config

stimulus

stimulus
analysis

port

The additional functionality included in this agent most
likely eliminates the use of a code auto-generation tool, most of
which use standard templates. Creating a reusable base agent
capable of handling much of the low-level housekeeping
requires diving into the world of SystemVerilog parameterized
classes.

The problem at hand is to create a base class that takes
advantage of the common construction of any concrete child
class yet allows the types of the various class member objects
to vary among its children. For instance, an RS422 agent and
an AXI bus agent share the same basic architecture, yet the
RS422 driver class must have radically different functionality
than the AXI driver class. This problem is illustrated in Figure
2. In this figure, a base agent class attempts to declare and
create a driver object. But since the driver class type must be
specified in the base class, the base agent cannot instantiate a
driver in a generic fashion.

class agent_base extends uvm_agent;
 // members
 …
 <drv_class> drv

 function void build_phase(uvm_phase phase);
 …
 drv = <drv_class>::type_id::
 create("drv", this);
 endfunction : build_phase
 …
endclass : agent_base

Figure 2: Parameterized agent problem

The solution to this problem is to use the parameterized
class capabilities of SystemVerilog as illustrated in Figure 3.
In this figure, the type of the driver is passed into the agent as a
parameter.

class agent_base #(type DRV = agent_drv_base)
 extends uvm_agent;
 // members
 …
 DRV drv

 function void build_phase(uvm_phase phase);
 …
 drv = DRV::type_id::create("drv", this);
 endfunction : build_phase
 …
endclass : agent_base

Figure 3: Parameterized agent solution
This technique—demonstrated in Figure 4, which outlines a

simplified build() method—allows for straightforward
implementation of the agent base class. The agent’s
configuration object is first queried to determine the “flavor” of
the agent; whether it is ACTIVE, PASSIVE or one of the
layered agent flavors. Depending on the agent flavor, the
correct components are then instantiated. In this example the
types DRV, MON, ANL and SQR are all class parameters
specified when creating a concrete agent. In similar fashion,
all of the agent’s interconnections can be handled in the base

agent connect() method. In fact, all of the build and connect
operations can be handled in the base agent, allowing the
concrete agent designer to focus on functionality rather than
housekeeping.

function void agent_base::
 build_phase(uvm_phase phase);
 …
 // instantiate members based on agent type
 // defined in configuration object
 case (cfg.flavor)
 ACTIVE: begin
 resp_ap = new("resp_ap", this);
 stim_ap = new("stim_ap", this);
 mon = MON::type_id::create("mon", this);
 anl = ANL::type_id::create("anl", this);
 drv = DRV::type_id::create("drv", this);
 sqr = SQR::type_id::create("sqr", this);
 end
 PASSIVE: begin
 resp_ap = new("resp_ap", this);
 mon = MON::type_id::create("mon", this);
 anl = ANL::type_id::create("anl", this);
 end
 ACTIVE_LAYER: begin
 …
 end
 PASSIVE_LAYER: begin
 …
 end
 …
 endcase

endfunction : build_phase

Figure 4: Parameterized agent build() method

Prior to instantiating the agent’s member components, the
configuration object must be pulled from the configuration
space. Retrieving objects from the configuration database
requires using the path argument, which is part of the
uvm_config_db API.

When using the uvm_config_db API, two pieces of
information are used to get a piece of configuration
information. The first is configuration name. The second
piece is the UVM component path. Parameterized agents all
need to pull a configuration object from the configuration
database. This is handled in the base_agent code. To do this,
the base agent always uses the configuration name of “config”.
This allows it to do a simple call to the uvm_config_db::get()
as shown in Figure 5. To control which configuration object
the agent receives, the test (or whichever component places the
configuration object into the configuration database) must use
the correct UVM component path. For example, if a testbench
has an instance of a parameterized agent called “my_agent1”
instantiated in an environment called “my_env”, then the
uvm_test would route the configuration object to “my_agent1”
by performing a uvm_config_db::set() call with the path
argument specified as “my_env.my_agent1*” as shown in
Figure 6.

function void agent_base::
 build_phase(uvm_phase phase);
 super.build_phase(phase);

 // get config object
 if(!uvm_config_db #(CFG)::get(this, "",
 "config", cfg))
 `uvm_fatal(get_full_name(),
 "no config object available")

 // assign local VIF handle from
 // config object
 vif = cfg.vif;
 …
endfunction : build_phase

Figure 5: Getting the configuration object

function void test_base::
 build_phase(uvm_phase phase);
 …
 uvm_config_db#(my_agent_cfg)::set(this,
 "my_env.my_agent1*",
 "config",
 my_agent1_cfg);
 …
endfunction : build_phase

Figure 6: Test setting the configuration

We have shown that all the housekeeping functions
normally performed in a concrete top-level agent can instead
be performed in a parameterized agent base class. The
functions consist generally of configuration database access,
component instantiation and component interconnection. Since
this housekeeping is generally all that a top-level agent does, it
is usually possible to declare a concrete agent as a
specialization of the parameterized base agent class. This is
shown in Figure 7.

typedef agent_base #(
 .CFG (myagent_cfg),
 .VIF (virtual myagent_if),
 .TXN (myagent_txn),
 .ANL (myagent_analysis),
 .MON (myagent_monitor),
 .DRV (myagent_driver)
) myagent;

Figure 7: Declaring a concrete agent via typedef
Yet sometimes it is necessary to add either functionality or

additional member components to the concrete agent. In these
cases, it is necessary to extend the base agent in order to define
the concrete agent. Figure 8 shows a simple example of this
situation, where the agent needs to incorporate some reporting
at the end of simulation. We move now from the base agent
itself to the agent component classes.

class myagent extends agent_base #(
 .CFG (myagent_cfg),
 .VIF (virtual myagent_if),
 .TXN (myagent_txn),
 .ANL (myagent_analysis),
 .MON (myagent_monitor),
 .DRV (myagent_driver)
);
 `uvm_component_utils(myagent)

 // new
 function new(string name,
 uvm_component parent = null);
 super.new(name, parent);
 endfunction : new

 // report_phase
 function void report_phase(uvm_phase phase);
 …
 endfunction : report_phase

endclass : myagent

Figure 8: Defining a concrete agent via extension

It is also possible to perform a great deal of housekeeping
functions in the base agent component classes, especially the
driver. For example, we have already shown that using the
path argument allows for great flexibility in configuring the
parameterized base agent. This concept can be directly
extended for use in the agent component classes such as the
driver and monitor. As shown in Figure 9, a simple get will
succeed because of the wildcard at the end of the path name in
a set call.

function void agent_drv_base::
 build_phase(uvm_phase phase);
 super.build_phase(phase);

 // get the cfg
 if (!uvm_config_db #(CFG)::get(this, "",
 "config", cfg))
 `uvm_fatal(get_full_name(),
 "no config object available")
 end
 …
endfunction : build_phase

Figure 9: Driver's configuration database use

A very significant function that can be pushed into the
driver base class is the detailed driver side of the sequence /
sequencer / driver handshake. This is a constant source of
trouble since the sequence and driver must agree on the
protocol. If there is a mismatch between sequence and driver
protocol, mayhem nearly always results. By handling this
handshake in the base class, an organization can enforce code
standardization and eliminate a common source of error.
Figure 10 shows an implementation of both non-blocking and
blocking handshakes in the driver base class.

The details of the blocking and non-blocking protocol are
beyond the scope of this paper. However, note the use of the
calls to the idle_cycle() and active_cycle() methods. These are
empty methods to be overridden in the concrete driver class
and provide the functionality of wiggling the interface pins to

either consume idle time or actively drive a transaction on the
bus. It is possible to make these “pure virtual” methods and to
make the driver an abstract class, thereby forcing the concrete
driver class to implement both methods. The driver’s run
phase typically calls either the blocking or non-blocking
version of the process_item() task from within a forever loop.

The sequence side of the sequence / sequencer / driver
handshake is much simpler but should still similarly be
implemented in a sequence base class to avoid any protocol
mismatch. This is illustrated in Figure 11.

// process_item_nb (non blocking)
task agent_drv_base::process_item_nb();
 TXN req_txn, rsp_txn;

 do begin
 seq_item_port.try_next_item(req_txn);
 if (req_txn == null) begin
 idle_cycle();
 end
 end while (req_txn == null);

 rsp_txn = TXN::type_id::create("rsp_txn");
 rsp_txn.set_id_info(req_txn);
 active_cycle(req_txn, rsp_txn);
 seq_item_port.item_done();
 seq_item_port.put(rsp_txn);

endtask : process_item_nb

// process_item (blocking)
task agent_drv_base::process_item();
 TXN req_txn, rsp_txn;

 seq_item_port.get_next_item(req_txn);
 rsp_txn = TXN::type_id::create("rsp_txn");
 rsp_txn.set_id_info(req_txn);
 active_cycle(req_txn, rsp_txn);
 seq_item_port.item_done();
 seq_item_port.put(rsp_txn);

endtask : process_item

// idle_cycle: drive idle on bus
task agent_drv_base::idle_cycle();
endtask : idle_cycle

// active_cycle: drive transaction on bus
task agent_drv_base::active_cycle(TXN req_txn,
 TXN rsp_txn);
endtask : active_cycle

Figure 10: Base driver side of SEQ/SQR/DRV handshake

task seq_base::put_item(REQ req_txn,
 ref RSP rsp_txn);
 start_item(req_txn);
 finish_item(req_txn);
 get_response(rsp_txn);
endtask : put_item

Figure 11: Base sequence side SEQ/SQR/DRV handshake

We have shown that significant driver functionality can be
implemented in a parameterized driver base class. This leaves

the concrete driver designer free to concentrate on functionality
alone. In general this consists of implementing the idle_cycle()
and active_cycle() methods.

While there is a considerable amount of mundane code to
be implemented in the agent and driver base classes, we have
not identified much that can be implemented in monitor or
analysis base classes. Primarily we pull objects out of the
configuration database in these base classes, but leave all other
functionality to the concrete classes.

There is one minor but significant problem that may trip up
an organization’s efforts to implement a parameterized agent
methodology. The issue arises if an organization chooses to
use a top-level analysis group that aggregates transactions
coming from various agents’ analysis ports. In this
methodology, the analysis group’s analysis exports must be
parameterized with a common base transaction type in order to
accept transactions of various types. In this case it is necessary
to parameterize all the agent’s analysis ports with the same
common base transaction. If instead the agents use their own
parameterized transaction type for the analysis ports, these
ports will not connect successfully with the base transaction
analysis exports.

As we have shown so far, there is a tremendous advantage
to deploying a parameterized agent methodology. Much
mundane, repetitive housekeeping code can be implemented
once in the base classes, leaving the designer free to
concentrate on functionality when designing concrete agent
classes. There is, however, a significant downside.
Parameterized classes are devilishly difficult to debug. Many
error messages normally caught during compilation are not
caught until elaboration or simulation time. When these errors
appear, the error messages are typically obscure.

When creating parameterized base classes the best
approach is to first develop and debug the classes without
parameterization. Only when you are very confident that you
have everything right should you carefully add the
parameterization.

Nonetheless, once developed, a parameterized agent
methodology offers significant benefits by pushing much
standard housekeeping code down into the agent base classes
and enforcing code standardization by ensuring all application-
specific agents inherit the same base code and adhere to
common design patterns.

II. DRIVER-LEVEL DATA RATE CONTROLS
In many real systems accesses occur at random intervals.

To mimic this behavior, it is desirable to vary the gap between
transactions in order to verify that the DUT can handle
everything from back-to-back transactions to lengthy delays
between transactions. In addition, randomizing the gap
between transactions ensures that these transactions arrive at
varying times relative to other events occurring inside the
DUT. At the same time, it is often necessary to control the
aggregate throughput on an interface. Throughput control
allows the testbench to selectively over- or under-subscribe an
interface as needed to test conditions such as FIFO underflow
or overflow.

One method for simultaneously providing throughput
control while maintaining interesting bursts and gaps between
transactions is for the driver to utilize a throttle object to
calculate inter-transaction gaps. The throttle object is used to
record the number of cycles spent idling versus actively driving
a transaction on the bus. Then, when the driver receives a
transaction from its sequencer, the throttle object is queried in
order to generate a random number of idle cycles, which
should precede driving the transaction on the bus. The key
innovation here is that this “number of idles” determination is
made using a Poisson distribution and that the “mean” of the
Poisson function is dependent on how far the measured
throughput is from the desired throughput. Figure 12 through
Figure 16 illustrate how the driver should utilize a throttle
object.

Figure 12 shows the declaration of the throttle object in the
driver’s class declaration, while in Figure 13 the throttle is
created from the factory and initialized with the desired
throughput as specified in the agent’s configuration object
(cfg). It is convenient to specify throughput as an integer
between 0 and 100, representing the percent of maximum
interface throughput that the driver should target.

class my_drv extends uvm_driver #(my_txn);
 `uvm_component_utils(my_drv)

 // methods
 extern function new(string name,
 uvm_component parent);
 extern function void build_phase(
 uvm_phase phase);
 extern virtual task idle_cycle();
 extern virtual task active_cycle(
 my_txn req_txn,
 my_txn rsp_txn);
 extern virtual task process_item_nb();
 …

 // members
 throttle idle_gen;
 …
endclass : my_drv

Figure 12: Throttle object declaration

function void my_drv::build_phase(
 uvm_phase phase);
 idle_gen = throttle::type_id::
 create("idle_gen");
 idle_gen.set(cfg.throughput);
 …
endfunction : build_phase

Figure 13: Building the throttle object

The operational concept of the throttle requires that it be
called throughout a simulation in order to record the number of
active cycles and idle cycles consumed on the bus. This
requires the sequence-sequencer-driver handshake to be non-
blocking so that the driver can always track the passage of time
on the bus. Consequently the driver cannot use a get() or a
get_next_item() call as that would prevent the driver from
recording the passage of time. Instead the driver makes use of
the try_next_item() call, which does not block. An example of

this handshake is shown in Figure 14. When a sequence item
is not available, the driver’s call to try_next_item() returns
“null” and the driver calls idle_cycle() to consume one cycle of
time on the bus. In turn, the throttle object’s idle() method is
called in Figure 15, recording the fact that one idle cycle has
been consumed.

task my_drv::process_item_nb();

 my_txn req_txn, rsp_txn;

 do begin
 seq_item_port.try_next_item(req_txn);
 if (req_txn == null) begin
 idle_cycle();
 end
 end while (req_txn == null);

 …
 // wiggle pins
 active_cycle(req_txn, rsp_txn);
 seq_item_port.item_done();
 …
 seq_item_port.put(rsp_txn);

endtask : process_item_nb

Figure 14: Non-blocking Sequencer-Driver Handshake

task my_drv::idle_cycle();
 // record the idle cycle
 idle_gen.idle();

 // consume one cycle driving idle
 …
endtask : idle_cycle

Figure 15: Use of throttle object in idle cycles

If, on the other hand, the call to try_next_item() returns a
sequence item the driver calls the active_cycle() method to
handle the incoming transaction. As shown in Figure 16, the
active_cycle() method first calls the throttle object’s active()
method. This method performs two functions. First, it records
the number of active cycles the driver will consume in sending
the transaction on the bus. The active() method also calculates
the current throughput on the bus, compares this with the
desired throughput, and calculates the number of idle cycles the
driver should apply before sending the transaction. Following
the call to the throttle object’s active() method, the driver then
sends the required number of idles followed by the transaction
itself.

task my_drv::active_cycle(my_txn req_txn,
 my_txn rsp_txn);
 int idles;

 // Calculate bandwidth throttle and
 // record active cycles
 // The transaction can override this by
 // specifying a gap
 idles = idle_gen.active(req_txn.get_size());
 if (req_txn.gap >= 0)
 idles = req_txn.gap;

 // insert idle cycles
 repeat (idles) idle_cycle();

 // consume cycles driving the txn
 …
endtask :active_cycle

Figure 16: Use of throttle object in active cycles

It is worth noting that a sequence can override the operation
of the throttle class if it so desires. We use a base transaction
class containing a member called ‘gap’. This integer member
directly represents the inter-transaction gap the sequence would
like to apply before a transaction. This gap defaults to ‘-1’ to
indicate that the throttle class should determine the gap.
However, if the gap is set to a number greater than or equal to
zero, this number will be used directly rather than the throttle
calculation.

Now we turn to the details of the throttle class itself. The
key to understanding its operation is the Poisson distribution,
used by the throttle object to calculate the number of idles to
apply before a transaction. However, the mean of the
distribution used is adjusted based on how far the actual
throughput is from the target throughput. For reference the
Poisson distribution with various values for the mean is
illustrated in Figure 17.

If the actual throughput is less than the target the driver has
been applying too many idles. In this case the throttle class
uses a mean of 1 and in all likelihood the resultant number of
idles will be less than 5. In fact the number of idles selected in
this case is most likely to be either 0 or 1.

In contrast, if the actual throughput is greater than the
target, the driver needs to apply more idles to decrease the
throughput. In this case, the mean is chosen to equal the
difference between the actual number of active cycles so far
and the target number of active cycles. So, for example, if the
driver has generated 20 more active cycles than desired, the
mean selected is 20. On average, the throttle object will return
20 and the actual throughput at the interface will decrease
accordingly.

Figure 17: Example of Poisson distributions

Figure 18 shows the declaration of the throttle class. The
main three class members are ‘throughput’, ‘idles’ and
‘actives’. These are the target throughput and the running
count of idle cycles and active cycles applied during a
simulation. The class also contains a random seed for the
Poisson distribution. This is randomized in the new() method
and is updated with every call to the distribution function.

class throttle extends uvm_object;
 `uvm_object_utils(throttle)

 // methods
 extern function new(string name = "");
 extern virtual function void set(
 int throughput);
 extern virtual function void reset(
 int throughput = -1);
 extern virtual function void idle(
 int count = 1);
 extern virtual function int active(
 int count);
 extern virtual function int report();

 // members
 rand int seed;

 int idles = 0;
 int actives = 0;
 int throughput = 50;

endclass : throttle

Figure 18: Throttle class declaration
Figure 19 and Figure 20 demonstrate some of the necessary

housekeeping methods. The set() method is called when the
throttle object is first created and sets the target throughput that
the object will use in its calculations going forward. Recall
that the target throughput specified here is a percentage of the
interface’s maximum possible throughput. The reset() method
is not always needed. But if the bus spends significant time
idling due to lack of sequencer input, this method may be used
to reset the running ‘idle’ and ‘active’ counts when stimulus
begins. This condition often occurs, for instance, when the bus
is idling while the DUT is configured via a different interface.
The reset() method may also be used to change the target

0 5 10 15 20

0.1

0.2

0.3

0.4
mean = 1

mean = 4

mean = 10

Poisson Distribution with Varying Means

throughput during a simulation. It is often convenient to add
an API method to the agent which calls the reset() method.

function void throttle::set(int throughput);
 // initialize the target throughput
 this.throughput = throughput;
endfunction : set

Figure 19: Throttle set() method

function void throttle::reset(
 int throughput = -1);
 // conditionally set the target throughput
 if (throughput >= 0)
 this.throughput = throughput;

 // reset idle and active counts to '0'
 idles = 0;
 actives = 0;
endfunction : reset

Figure 20: Throttle reset() method

Finally, Figure 21 and Figure 22 show the heart of the
throttle class, the idle() and active() methods. As described
earlier the idle() method simply records idle cycles while the
active() method records the active cycles but also calculates the
inter-transaction idle count based on the Poisson distribution.
Note that the seed argument to the $dist_poisson() method is of
type ‘inout’ and is updated with each call to $dist_poisson().

function void throttle::idle(int count = 1);
 // record idle cycle(s)
 idles += count;
endfunction : idle

Figure 21: Throttle idle() method

function int throttle::active(int count);
 int target;
 int mean;
 int cycles;

 // record active cycle(s)
 actives += count;

 // calculate the target number of
 // active cycles
 target = throughput * (actives+idles) / 100;

 // calculate the mean of the
 // Poisson distribution
 mean = (actives > target) ?
 (actives - target) : 1;

 // randomize the number of idle
 // cycles needed
 return ($dist_poisson(seed, mean));
endfunction : active

Figure 22: Throttle active() method

Using this methodology, a realistic flow of transactions
may easily be created that features both throughput control and
burstiness. But the traffic characteristics using this technique
are shared by all sequences using a particular driver. What
about modeling different traffic characteristics for different
sequences operating on the same driver?

Although we have not implemented it, the throttle class
concept could be directly applied at the sequence abstraction
level. Multiple sequences, each with its own throttle object,
could easily model real world traffic patterns. For instance,
one sequence could model VoIP traffic with a constant sample
rate while other sequences could represent bursts of low-
priority traffic. All sequences would then use the “gap”
member of the base sequence item class to override the throttle
class in the driver. Using this technique a testbench could
readily measure the effects of bursty, low-priority traffic on the
latency jitter of steady, high-priority flows.

III. TIMING CONTROLS
Frequently varying the timing parameters of an interface at

the pin-level is critical to ensure the DUT meets functional
requirements. In many cases, this includes not only legal
interface timing but also off-nominal cases to ensure the DUT
rejects and/or recovers from illegal/invalid interface timing or
sequencing.

All interfaces, no matter the level of complexity, can be
described by a set of timing parameters and the dependencies
between these parameters. Functional verification of the
interface timing is considered complete when the DUT
responds correctly to all required values (or ranges of values)
and important timing sequences as well as gracefully handles
situations where off-nominal and/or illegal cycles occur.

An interface timing class encapsulates the timing
parameters, constraints and coverage model associated with an
interface into one self-contained object. The advantages of this
construct are numerous:

1. Interface timing can be modified (randomized) at any
desired interval

2. Constraint-based timing definition generates legal or
illegal cycle timing, upon request, for interdependent
specs

3. Weighted distributions associated with these
constraints ensure interesting values are generated
frequently

4. Resulting agent driver code is highly succinct,
readable and maintainable

5. Applicable to a broad range of interfaces, both
asynchronous and synchronous

For the purpose of illustration, this paper will discuss a
parallel bus with the following characteristics:

1. Active low chip select control signal

2. Read / write control signal

3. 8-bit address bus

4. 8-bit bidirectional data bus

Figure 23 shows the timing diagram for both read and write
cycles on this bus. The remainder of this paper, including code
snippets, will provide examples using the write functionality of
this bus.

Figure 23: Bus cycle timing

Generically, an interface timing class object is comprised of
four components:

1. Timing specs

2. Timing constraints

3. Timing distribution

4. Coverage model

This first component of an interface timing class is the
timing parameters themselves. These typically consist of two
groups of members: constants defining the bounds of each
individual spec and random members utilized by the driver to
perform the cycle. Figure 24 shows the declaration of the

timing parameter specs and members, assigning arbitrary
values to the limits of each parameter.

Two coding styles exist: the use of SystemVerilog
parameters (or localparams) and the use of constant ints. Using
parameters is more efficient from the perspective of memory
footprint, but introduces the possibility of conflicts if a generic
naming convention is reused across multiple timing classes.
The provided example makes use of constant ints to avoid
these potential namespace issues.

//==
// write cycle timing specs, in ns
//==
const int W1_MIN = 100;
const int W1_MAX = 200;

const int W2_MIN = 150;
const int W2_MAX = W2_MIN*2;

const int W3_MIN = 100;
const int W3_MAX = W3_MIN*2;

const int W4_FIXED = 300;

const int W5_MAX = 200;
const int W5_MIN = W5_MAX/2;

const int W6_MAX = 200;
const int W6_MIN = W6_MAX/2;

//==
// timing specs, randomized each cycle
//==
rand int w1, w2, w3, w4, w5, w6;

Figure 24: Timing parameter definition

The second component of an interface timing class is the
constraints defining the bounds and interdependencies between
parameters. Figure 25 shows the declaration of the timing
constraints for the write cycle parameters. The majority of the
constraints bound the individual timing specifications within
their legal ranges. The last two constraints define
dependencies between two or more parameters. In this
example, there are two cases where overlapping ranges require
additional definition. First, the chip select signal must assert
before the write/read control signal asserts, described by the
w1_w2_phase constraint. At the end of the cycle, the
write/read control must deassert before chip select deasserts,
described by w5_w6_phase.

Note that the timing variables, w1 through w6, are type int
in order to mesh with the functional coverage model. Neither
real nor time types can be directly sampled in coverage and
must be converted. To avoid this step, the timing variables
themselves are unitless members of type int. Both the
coverage model and agent driver are written to scale the integer
values as needed to provide the required level of resolution.

CS_N

ADDR

DATA

A1

D1

t2
t3

t1

t4

WR_RD_N

READ CYCLE

CS_N

WR_RD_N

ADDR

DATA

A1

D1

t3

t1
t2

t5
t6

t4

WRITE CYCLE

//==
// write cycle timing constraints
//==
constraint w1_range
 { w1 inside {[W1_MIN : W1_MAX]}; };
constraint w2_range
 { w2 inside {[W2_MIN : W2_MAX]}; };
constraint w3_range
 { w3 inside {[W3_MIN : W3_MAX]}; };
constraint w4_fixed
 { w4 == W4_FIXED; };
constraint w5_range
 { w5 inside {[W5_MIN : W5_MAX]}; };
constraint w6_fixed
 { w6 inside {[0 : W6_MAX]}; };

constraint w1_w2_phase { w1 < w2; };
constraint w5_w6_phase { w5 < w6; };

Figure 25: Timing constraint definition

The third component of an interface timing class is a set of
weighted distributions to shape randomization outputs. Figure
26 shows the weighted distributions associated with the timing
constraints. Although these distributions are optional from a
purely functional viewpoint, they ensure that interesting /
bounding values are generated at a relatively high rate. In
practice, explicitly defined min/max bins correspond to those
timing specs with explicitly defined bounds. Derived bounds,
such as W2_MAX = 2*W2_MIN, are not assigned specific
bins. Note that this example uses hard-coded weights for all
distributions. More complex interfaces may require the
flexibility of variable-controlled weights; in practice, however,
hard-coded weights produce an acceptably diverse variety of
timing.

//==
// write cycle timing distribution
//==
constraint sc_w1_dist { w1 dist {
 W1_MIN := 10,
 [W1_MIN : W1_MAX] :/ 80,
 W1_MAX := 10 }; }
constraint sc_w2_dist { w2 dist {
 W2_MIN := 10,
 [W2_MIN : W2_MAX] :/ 80,
 W2_MAX := 10 }; }
constraint sc_w3_dist { w3 dist {
 W3_MIN := 10,
 [W3_MIN : W3_MAX] :/ 80,
 W3_MAX := 10 }; }
// w4 is fixed, no dist necessary
constraint sc_w5_dist { w5 dist {
 W5_MIN := 10,
 [W5_MIN : W5_MAX] :/ 80,
 W5_MAX := 10 }; }
constraint sc_w6_dist { w6 dist {
 [0 : W6_MAX] :/ 75,
 W6_MAX := 25 };}

Figure 26: Timing Constraint Distributions

The final component of an interface timing class is the
coverage model. Figure 27 shows the coverage model for the
write cycle of the 8-bit example bus. The coverage model
looks nearly identical to the weighted distributions described

previously. The covergroup explicitly defines min/max for
those timing parameters with explicit bounds. Range bins are
then defined for all non-fixed parameters to ensure a variety of
values are tested for each parameter. Cross coverage can be
added, as required, to cover timing occurrences between
interdependent specs/signals.

//==
// write cycle timing coverage
//==
covergroup wr_cvg();
 w1_cvp: coverpoint w1 {
 bins min = {W1_MIN};
 bins range[RNG_BINS] = {[W1_MIN : W1_MAX]};
 bins max = {W1_MAX}; }
 w2_cvp: coverpoint w2 {
 bins min = {W2_MIN};
 bins range[RNG_BINS] = {[W2_MIN : W2_MAX]};
 bins max = {W2_MAX}; }
 w3_cvp: coverpoint w3 {
 bins min = {W3_MIN};
 bins range[RNG_BINS] = {[W3_MIN : W3_MAX]};
 bins max = {W3_MAX}; }
 // no cvp for w4, it is fixed
 w5_cvp: coverpoint w5 {
 bins min = {W5_MIN};
 bins range[RNG_BINS] = {[W5_MIN : W5_MAX]};
 bins max = {W5_MAX}; }
 w6_cvp: coverpoint w6 {
 bins min = {W6_MIN};
 bins range[RNG_BINS] = {[W6_MIN : W6_MAX]};
 bins max = {W6_MAX}; }
endgroup: wr_cvg

Figure 27: Write cycle coverage model

Now that the interface timing class is complete, let’s
examine the resulting agent driver code that takes advantage of
it. Figure 28 shows the driver’s task for executing a write
cycle. Note that this code skips over the instantiation and
creation of the timing class object as well as assignment of the
virtual interface handle. By exploiting an interface timing
class, the agent driver code is extremely easy to code and
“reads” like a description of the timing diagram. This
simplifies code development and maintenance. Modification
of the interface timing can be performed as frequently as
desired, typically once per cycle as shown. After randomizing
the timing for a given cycle, the driver merely executes a
sequence of waits and signal assignments to drive the cycle to
the DUT. The coverage model is sampled at the same rate of
timing class randomization to cover the permutations executed.

As previously discussed, this example uses unitless timing
variables of type int. The agent driver code interprets the
timing variables and “scales” them as needed. In this example,
the scale of the timing variables is assumed to be the same as
the timescale of the driver itself. If required, additional
resolution can be provided by enlarging the int values in the
timing class itself, then scaling the values within the agent
driver using local members of type real or time.

//==
// wr_cycle
// translate write txn to pin wiggles
//==
task drv::wr_cycle();
 //Randomize timing for this cycle
 if(!t.randomize())
 `uvm_error("time spec object",
 "randomization error")
 //initiate cycle
 vif.cs_n = 'b0;
 #(t.w1);
 vif.wr_rd_n = 'b1;
 #(t.w2);

 //send addr and data
 vif.addr = req_txn.addr;
 #(t.w3);
 vif.data = req_txn.data;
 #(t.w4);

 //terminate cycle
 vif.wr_rd_n = 'b0;
 #(t.w5);
 vif.cs_n = 'b1;
 #(t.w6);

 //collect coverage
 t.wr_cvg.sample();
endtask :wr_cycle

Figure 28: Driver Utilizing Interface Timing Class

All examples up to this point illustrate an interface timing
class generating legal cycle timing and sequencing. This
technique can be extended to generate illegal timing in order to
ensure the DUT appropriately handles off-nominal cases.
Depending on the complexity of the interface, two coding
styles exist for generating illegal timing.

Both legal and illegal timing can be described in a single
interface timing class. Using this approach, one or more flags
are created to control which timing parameter(s) or sequencing
will be generated illegally. The timing constraints and
distributions shown in Figure 25 and Figure 26 are modified to
use a conditional constraint format that is dependent on the
appropriate flag. A new covergroup for illegal timing is
written and the driver samples this covergroup when using
illegal timing instead.

More complex interfaces may require a second interface
timing class for illegal timing and sequencing. Using this
approach, the constant timing parameter specs will likely need
to be moved to a common package that both the legal and
illegal timing classes can access. The illegal class then mirrors
the structure of its legal counterpart but updates the constraints,
distributions and coverage to describe off-nominal cases. The
driver instantiates both a legal and illegal timing class, then
randomizes, uses and samples the appropriate one as dictated.

Using either approach, the same updates must be made and
the resulting amount of new code is approximately the same.
The user is trading off the convenience of having all timing
information, both legal and illegal, in a single, self-contained
object against code readability and total lines of code per class.

Depending on the ordering, the driver may need specialized
tasks to execute cycles with an illegal order of events.

The advantages of using an interface timing class are
numerous:

1. Interface timing can be modified (randomized) at any
desired interval

2. Constraint-based timing definition generates legal or
illegal cycle timing, upon request, for interdependent
specs

3. Weighted distributions associated with these
constraints ensure interesting values are generated
frequently

4. Resulting agent driver code is highly succinct,
readable and maintainable

5. The technique is applicable to a broad range of
interfaces, both asynchronous and synchronous

First, the frequency at which the interface timing is
modified is easily controlled and can be set to any desired
interval. Depending on the interface being modeled, timing
can be modified mid-cycle, once per cycle, once per simulation
or anything in between. This adds tremendous flexibility to the
test environment and ensures the DUT sees a robust mixture of
timing on each interface.

Second, describing the interface using a complete set of
constraints ensures that legal (or illegal, if desired) timing and
sequencing is generated for interdependent specs. A single
randomization call in the agent driver is all that is required to
modify the behavior of the interface, regardless of its
complexity.

Third, utilizing weighted distributions ensures that
bounding or corner case values are generated with relatively
high frequency. Typically hard-coded weights provide
acceptable coverage, but the technique can be extended to
exploit variable-controlled weights if the complexity of the
interface requires. Generating absolute min/max values often
likewise ensures the DUT meets requirements for these explicit
bounds.

Fourth, the agent driver code which utilizes the timing class
is highly succinct, readable and maintainable, as shown
previously in Figure 28. An interface timing class helps
logically separate the generation of timing information from
the execution of bus cycles. As a result, both code for the
timing class as well as the driver is specific and
compartmentalized, adhering to good OOP principles. Agent
driver code for wiggling pins is very straightforward and
“reads” like a timing diagram. This code is easy to write and,
perhaps more importantly, easy to maintain.

Finally, interface timing classes apply to a broad range of
interfaces, both synchronous and asynchronous. The example
illustrated in this paper focused on a simple asynchronous
interface. Though beyond the scope of this paper, it is not
difficult to extend the same example to demonstrate
synchronous interface behavior. An interface clock is added to
the timing shown in Figure 23. Existing timing parameters can

be modified or redefined as timing relative to clock edges. In
addition, new parameters can be added to specify setup and
hold criteria relative to the clock, if necessary.

IV. CONCLUSION
With parameterized agents, driver level data rate controls

and timing controls in addition to utilizing the broad
capabilities of OVM and UVM, the GOES-R C&DH team
produced FPGAs that performed admirably in the lab. This
resulted in overall reduced schedule time and happy program
managers. The three techniques outlined above have a wide
application space and hopefully will save other engineers and
programs some time and effort.

V. ACKNOWLEDGEMENTS
Thank you to Don Hewitt for being a sounding board for

many of these ideas and to Geoff Koch for editing and
formatting help.

VI. REFERENCES
[1] IEEE Standard for SystemVerilog: Unified Hardware Design,

Specification and Verification Language, IEEE Std. 1800-2009.
[2] Universal Verification Methodology (UVM),

http://www.accellera.org/activities/committees/vip/

	EE29A735-7082-48FC-A5BB-C0C073118C4E: On

