
VP Performance Optimization - How to analyze and optimize the

speed of SystemC TLM models?

Authors:
Rocco Jonack; rocco.jonack@intel.com; +49 89998 8532 5061
Juan Lara Ambel; juan.lara.ambel@intel.com; +49 89998 8532 4732
Intel; Am Campeon, Neubiberg; Germany

Abstract
With the dramatic increase of complexity in modern SoC (System on Chip) design and the increased

time to market pressure, a critical need arises to make software architecture decisions early in the

stages of a SOC project in parallel with the hardware development process. These architectural

decisions can impact the market introduction and success of a product significantly. Software is,

more and more, the driving element of what defines the success of a product. This paper discusses

briefly approaches to enable early software development using virtual prototypes, and how SystemC

TLM2 models can be used for this purpose. Such an approach implies several requirements for

the development process and for the underlying modelling infrastructure. This paper will focus

on discussing the simulation speed requirements. This paper explains how and why speed is an

integral and fundamental requirement for Virtual Prototype (VP) modelling.

This paper includes several key topics, motivation and general approach for meeting a VP´s speed

requirements and how a VP must fit into the development flow. As in most areas of SoC development,

infrastructure, tools and IP play an important role for an efficient development process of VPs and for

speed analysis and optimization. This paper contains an overview over such tools and strategies, as

well as examples on how such tools can be used efficiently to ensure that the speed requirements

can be achieved.

The included examples show how speed analysis and optimization techniques are applied for

SystemC TLM-based VP models. VP models including a processor running an operating system and

different subsystems with and without their own processing units are used for performance

measurements. The optimization methods consist of several different strategies. The usage of

Quantum in SystemC TLM2 models stands out because it proved to achieve speed improvements in

orders of magnitude. The paper also discusses how different IPs and tools impact the VP

performance.

Finally the results and benefits are summarized and an outlook is provided for future work and

improvements.

1 Introduction
With software development becoming the fastest growing component of non-recurring engineering

costs for both SoC and final product development, the challenges of developing, integrating,

validating, and optimizing software dominates the embedded design process. Thus it has become a

necessity to make a fast, accurate, low cost simulation model of the hardware available to the

embedded software team very early in the design process. At the heart of the Virtual Prototyping

solution are two distinctive components: the creation of the transaction-level modelling (TLM) platform

and the usage of the virtual prototype. These typically correspond to two types of users: the TLM

platform creator (typically a SoC/system architect or a hardware designer/modeller) and the virtual

mailto:rocco.jonack@intel.com
mailto:juan.lara.ambel@intel.com

IA

OS running for
SW development

FW code
running

Subsystems, for
instance Audio,

Graphics,
Modem etc.

TLM2 ports

prototype end user (typically a software or firmware engineer). The work that leads to this paper was

done for a project where a TLM2-based subsystem was modelled and integrated into a platform

model. The user of the VP model often has a very different view of the system. Virtual prototypes are

a great vehicle to bridge the gap between hardware and software views of a SoC, but it can also

become the boundary where issues between the two views become apparent.

Providing a good VP model implies a number of different things. For instance

 Good debuggability of software contents

 Good feedback of important events and values (interrupts, register values)

 Functional correctness of the necessary features

 Appropriate speed of execution

While all of those features are important for a VP model and would deserve a dedicated discussion,

this paper will focus on the subject of speed of execution. In our experience the lack of execution

speed can lead to reduced acceptance and in many cases even to rejection of a VP model by users.

This is not to say speed is the only important feature of a VP model, but acceptable speed is typically

a necessary requirement. What an “acceptable” speed is can vary depending on the usage model.

2 VP modelling approaches

2.1 System Components
A VP is a model of a hardware

platform (or at least parts)

simulated on a different hardware.

Different techniques are being

currently used to achieve this. Very

often at the heart of a VP model is

one or several instruction set

simulators (ISS) supplied by the

processor vendor or some other

party which guarantees the

accurate software execution on

this model. One alternative can be

native execution of SW/FW

(software/firmware) on the host. A

third option is to develop models

for a system oneself. Very likely a

complex system will contain a mix of these approaches. When mixing different models it is important

to consider how to connect the different components. Last but not least tools and a good

infrastructure help to analyse and to improve simulation speed.

Figure 1 shows the principle structure of our VP models. There might be several components running

firmware (FW) and the structure of the main processor might heavily vary, but the shown structure is

representative.

2.1.1 Using 3
rd

 party models

Figure 1: Principle structure for VP model

If the hardware platform which should be modelled as VP contains a 3
rd

 party processor, the most

intuitive approach is to use an ISS model provided by the 3
rd

 party provider. Most vendors provide

such models for

various purposes

like architectural

analysis,

verification etc. It

is important to

verify that such a

model provides a

reasonable

performance and

usability for an

interaction into

an overall VP

model. This

means setting up

performance

tests in order to

check the

achievable

simulation speed

(will be

described in later chapters).

In our case the main processing units of the subsystem that has been modelled are using a standard

ISS. There is a tool chain, which allows the connection of our own models and to provide hooks to the

tool environment (debugger, profiler etc.) when needed.

Just like the ISS other components of a platform might also be used from 3
rd

 parties. Examples would

be DMA, memory, interconnect or peripheral models. Especially commodity models, which follow well

known standards, should be used as predefined units. For those models the speed also has to be

assessed carefully based on the requirements -ideally in individual test environments in order to pin

point potential issues early on-.

2.1.2 Modelling the OS

Figure 3: Structure of Simics platforms

Figure 3 ISS and tool chain

Figure 2: ISS model and tool chain

In order to model an operating system running on the VP the main processor has to be modelled.

Since the OS is requiring a lot of system resources it can be very challenging to also meet speed

requirements. Consider that for many VP use cases it is important to provide good reactivity to OS

input devices.

In order to satisfy those requirements we are using the Simics environment for the modelling of the

main processor, connectivity and other system components. The Simics environment allows

modelling of a processor efficiently and the resulting platform provides a good simulation performance

which allows running a complex OS like Windows8, various Linux distributions or Android. For our

project we use an existing Simics processor platform on top of which the guest OS (Linux) is running.

Simics is a simulation technology and framework built around a proprietary PV (programmers view)

modelling language called DML. The host platform elements are hence modelled after PV, but Simics

allows co-simulation with SystemC models. Simics has its own scheduler, with which it drives both the

PV models and the SystemC sub-module. In this situation basically we try to execute two independent

time simulation basis while keeping data consistency across domains.

2.1.3 Using Virtualization

Virtualization has become a mainstream technique to run an operating system on top of an already

running host operating system with the help of a hypervisor. Several software products use this

technique mainly to improve the efficiency with which users can access modern high performance

servers. One interesting usage model for VP development is running the OS of a SoC as a guest OS

in a hypervisor and to connect other parts of the VP to this guest OS.

This can be very interesting for a VP application where subsystems have to interact with the overall

platform (and hence with the OS, too). Virtualization provides OS interaction in real time, which

allows for very interactive usage scenarios. However interacting between such an OS running in a

hypervisor and models which are not part of the existing host hardware can be tricky. This is because

these models might fall short to model correctly all resources that the OS is using, as the OS is

running on the host machine and not on a full-blown model of the target SoC.

 Similarly to Virtualization, the technique of host-based simulation where the FW code would be

executed directly on the host machine can be an alternative. Such a simulation would allow typically

for better simulation performance and better integration with other models, since all parts of the

system would be in this case compiled by the same compiler for one host system. But on the other

side a host-based simulation requires a layer around the FW which translates calls to the VP platform

from something that executes on the host to something that executes on the VP platform (HAL layer

adaptation). That approach also doesn’t allow for connections to the 3
rd

 party debugging environment.

We decided not to invest in this approach for our project, since the ISS based simulation did allow for

sufficient simulation speed.

2.1.4 Developing models

Typically there are a number of models which have to be modelled by development teams during a

SoC project. Those are for instance new units or units which have significantly changed compared to

previous platform versions. It is very important to consider speed implications when designing such

models right from the start. In our experience using a standard framework like TLM2 and strictly

following the TLM2 methodology allows the developer to design models which can be very fast. It is

important to be aware of the modelling techniques and their impact on simulation speed, for instance

the differences between AT and LT modelling and how to apply a quantum.

Traditionally, in VP modelling there is the ubiquitous trade-off between abstraction and computational

effort. Time can be abstracted out in several ways giving as a result different timing granularities. In

general, the higher the granularity the higher the computation effort while simulating. Several

modelling styles have been evolved and some of them form part of industry standards as e.g. TLM2.

For our purpose we can classify some of these popular styles with respect to timing granularity as

follows:

 PV (programmer´s view) or SV (SW´s view): typically, a master advances its local time line
ahead of global simulation time by a given amount (known as “quantum“). An example would
be a CPU model executing a number of instructions in a row. The transactions issued by the
master towards HW peripherals are pure functional calls and have a non-blocking character.
The possibility of synchronization among masters, or between the HW back to the master is
constrained to happen at the endpoints of these “time-slices”.

 Loosely-timed (LT) as defined in the TLM2 standard: transactions issued by the master can
be potentially blocking depending on slave implementation because delay is allowed to be
consumed in the slaves. Simulation can be speeded-up by means of the temporal decoupling
mode, wherein transactions become pure functional calls and slaves are not allowed to
consume any delay. Instead, slaves annotate back to master in the transaction object how
much time the master shall consume. Once consumed time by master reaches the quantum
threshold, the master hands simulation control over to other masters. Hence, as in PV,
synchronization among masters is only allowed at the end of a quantum. A speed-up add-on
of TLM2-LT is also the Direct Memory Interface (DMI), whereby a master gets a pointer to a
slave´s memory and thus can manipulate it directly by-passing e.g. complex interconnection-
networks.

 Approximately-timed (AT) as defined in the TLM2 standard. This style interface is not used in
our VPs even though many components would support such transfers, which would be
important when a model is later refined for other applications, as design space exploration.

The usage of temporal decoupling in SystemC Audio, as defined in TLM2-LT, helps reducing the

number of context switches between SystemC processes during the simulation. If a slave accessed

by a master is not advancing simulation time but returns immediately the access as a pure functional

call the efficiency is significantly improved. The mechanism of the slave returning the delay back-

annotated to the master and the master advancing its local time only when the quantum has been

exceeded minimizes the number of context switches at the master side to one per quantum. If this

practice is enforced at all masters in the SystemC model this leads to a dramatic speed-up, to an

extent that temporal decoupling becomes mandatory.

It is paramount to plan for test cases to verify the speed. Once a system is assembled, it becomes

more and more difficult to find bottlenecks. Planning and testing components first individually can

significantly reduce the effort. Also reusing existing components, for instance from infrastructure

libraries, typically reduces the risk to introduce speed bottlenecks. Nevertheless even reused

components should be checked for simulation performance.

2.1.5 Model connections

We are using TLM2 connections throughout our VP model development. Nevertheless some models

or tools have different requirements and gaskets have to be introduced to gap differences. Those

gaskets have to be carefully designed in order to provide sufficient functionality, but at the same time

fast performance. The gaskets that have been used in our project are mainly around connecting the

Simics platform (DML to TLM2) and the ISS model.

When putting a SoC model together it is best to have a single executable for simulation performance.

This is only possible if all models in a system use a consistent compiler and library dependencies. It is

unfortunately very common to have one or several models which do not allow such a linking

approach. In this case an alternative can be socket based connections. Sockets are very flexible and

easy to establish. The drawback however is that socket connections use operating system calls,

which implies a pretty significant runtime overhead whenever data has be transferred over such a

socket. It is very important to plan carefully where such connections make sense. If the amount of

data or better the frequency of communication through a socket is too high, the simulation speed will

be defined by the socket connection alone. We were able to avoid such connections in our VP model.

2.2 Heterogeneous models
In a typical mobile platform-SoC several subsystems execute SW or FW, which thus lend themselves

to be modelled as individual VPs. A typical example would be the OS or application SW running in a

general purpose CPU and the FW for an integrated multimedia device incorporating one (or many)

special purpose processors, as DSPs.

A VP adjusts its degree of abstraction to the target SW or FW, and hence also its modelling style.

Generally, systems running SW are more complex and span much more peripherals than those

running FW. Hence, for the former higher abstraction levels are necessary in order to meet a

simulation speed requirement while for the later, lower abstraction -higher granularity- levels are

affordable. Consequently, a platform-(SoC-wide) VP can be also heterogeneous in terms of modeling

styles. This poses extra performance challenges related to the data synchronization between domains

belonging to different styles, and extra care has to be taken at the realization of the interfaces at the

boundary between domains.

2.3 Infrastructure and tools
In order to model a VP efficiently it

is very important to use a strong

infrastructure. Such an

infrastructure must provide base

classes for debugging and error

logging, tracing and configuration.

Also a number of common

functional units like memories and

interconnect structures should be

provided in base libraries. Such

base models can significantly

improve the efficiency of modelling

and provided those models are well

tested can also help avoiding runtime issues. Examples for such libraries are SCML or ISCTLM (Intel

SystemC TLM library).

There are a number of tools which support VP modelling. There are many aspects which are

addressed by such tools, but we will focus on the simulation speed in this paper. Most SystemC

based tools do not significantly boost the simulation speed compared to the equivalent OSCI

simulation. However there are analysis tools available which help analyse the simulation

performance. The profiling capabilities have been used in our project and can significantly improve

simulation speed especially when 3
rd

 party components are used. We have used the SystemC

profiling tool. Classical function profiling tools like vtune, valgrind or gperf are also useful. However

the SystemC-aware profiling provided more significant information in terms of speed analysis.

3 Speed analysis and optimization
In this section we apply the techniques described in previous sections, first on the component level

and later in a case study of a real-life, integrated VP. For the later a measurement setup is described

and the obtained results are displayed.

3.1 Methodology for analysis
Before analyzing the speed of the entire VP system it is useful to break a model into subsystems and

analyse their speed independently. This divide and conquer approach allows elimination of

Figure 4: ISCTLM Library hierarchy

bottlenecks early on. Such individual test cases can also be useful for other purposes, for instance

testing certain specific features in a standalone

environment or testing interoperability of 3
rd

 party

components in the target system.

For the VP that has been the basis for this paper we

tested 3 different types of subsystems:

- The part of the system which runs the OS, in our
case a Simics model running Linux

- The part of the system which runs the FW, in our
case a ISS (Figure 5)

- The rest of the system, in our case various
SystemC TLM2 based models partially reused
from earlier projects and partially developed
specifically for this project (variations of figure 6)

Running tests for the first 2 subsystems

requires the definition of reasonable and

pertinent test cases. It is very important to

consider carefully the kind of test cases,

because in case the results show speed

bottlenecks a discussion with the

responsible groups/companies has to

focus on finding a reasonable solution.

Such discussions have to be based on

reasonable requirements otherwise a lot of

time can be wasted in this step. On the

other side it is very important to understand

the fundamental limitations of a model in

order to avoid bad surprises when running

the full system.

During our project we found, that both the

Simics as well as the ISS model, were able

to run the required test scenarios

with sufficient speed, but in some

cases it is necessary to use specific

modes (e.g. internal host-based

optimizations). Several test

scenarios were developed in order

to test such settings.

For the models which were either

reused or developed for the project,

we also developed test scenarios.

For those models we were able to

optimize the speed ourselves since

all sources are available. The TLM2

library already contains a lot of

infrastructure and documentation

about the subject, which was useful as reference and common development basis.

Xtensa ISS

Memory

Test FW

TLM2 ports

Initiator/Test
emulation

Slave/Memory

Test
scenarios

TLM2 ports

Figure 5: Setup for ISS speed tests

Figure 6: Generic setup for speed test of SystemC
components with TLM2 ports

0

10

20

30

40

50

1 10 100 1000

ISS runtime (in sec)

ISS runtime
(in sec)

Figure 7: Results for runtime (y-axis) over quantum setting (x-
axis)

Initial tests showed quickly that

significant speed bottlenecks were

introduced by context switching (wait()

statements or switching between

methods). By using LT function calls

of TLM2 ports it was possible to

minimize the number of context

switches when transferring data. In

order to further reduce context

switching we strictly avoided wait()

statements in the slave calls, which

handle the b_transport() calls and

rather used timing annotation. Even

though this is not enforced by the

standard, in practice it can be very

important to adhere to such a style.

Otherwise applying a quantum may not yield the expected speed up, because the context switch in

the slave interrupts the quantum of the accessing master.

Besides using known speed optimized coding techniques it is also useful to apply profiling in order to

see where simulation time is spend. Classical profiling tools like VTune, valgrind, gprof or gperftools

are able to analyse function calls. This type of profiling generated some useful information about

bottlenecks. However if context switches between SystemC threads have the biggest impact on

simulation speed, the above mentioned profiling tools are not very useful to analyse those effects. For

the analysis of SystemC events in a simulation we found the profiling with commercially available

event profiling tools very useful. This tool allows you to analyse and visualize when events and

context switches happen on which thread. Very often even a quick analysis of event hot spots yielded

very useful results. Especially in conjunction with predefined scenarios, where one can form a clear

expectation of what events are

expected, the profiling results turned

out to be very useful.

Even though some aspects of

simulation speed optimization are

pretty obvious, it makes sense to

review typical bottleneck introducing

functions, for instance system calls

(file IO, inefficient memory

allocation, debug messages) and

compile settings (all parts of the

system shall be compiled with the

proper compiler optimizations turned

on). In a bigger project where

different developers contribute it can

be quite tricky to ensure that those

optimization aspects are consistently applied. Also the usage of 3
rd

 party IP often requires a careful

review which debug messages are being produced as such mechanisms might be different from other

models. Good infrastructure as a coherent build system and efficient base classes for logging can

help tremendously.

3.2 Simics and SystemC Integration
As in previous sections stated, a VP can be very heterogeneous in terms of building blocks,

subsystems, and modelling styles. Indeed, at the level of a platform-SoC VP, this possibility is the

Figure 8: Results for simulation runtime (y-axis) over quantum
(x-axis) comparing b_transport() and DMI access

0

50

100

150

200

runtime in sec

runtime in
sec

Figure 9: Results for simulation runtime (y-axis) over
bandwidth transmitted (x-axis; in transfers per sec)

0

20

40

60

80

100

120

140

1 10 100 1000

runtime
without slave
wait(in sec)

runtime with
slave wait(in
sec)

runtime with
DMI (in sec)

default situation. This heterogeneity in modelling styles is yet another dimension that has an influence

in VP-execution-speed. When data transactions go over the boundaries of one domain using one

modelling style into a different domain, speed-up techniques as the quantum are not so effective

anymore and a performance penalty might occur. Therefore it is crucial to understand better this

scenario.

As an example consider the system in Figure 10 below, where a SystemC model for Audio subsystem

(LT modelling style) is co-executed with a mobile host platform model inside a Simics simulator. The

host platform model includes a CPU model and several peripherals. The Audio subsystem includes

one or more DSPs, and local peripherals for storage and transport of audio data.

In the next sections we will discuss the system speed optimizations and quantify the above

conjectured performance penalties for this case-study.

3.2.1 Optimization for speed in Simics and SystemC Integration

The DSP model in the Audio subsystem plays a major role both in functionality and in simulation

complexity. Therefore we will deal here in more details with how it handles temporal decoupling. The

DSP model is basically an instruction set simulator (ISS) wrapped with SystemC interfaces. It can

work either in a cycle-accurate mode or in “fast functional mode” (FFM). FFM is a sort of temporal

decoupling mode where the DSP model executes as many instructions (and cycles) as a certain

quantum encompasses, without returning simulation control until the end of such quantum, and

without considering the delays back-annotated by slaves. Hence it differs from the temporal

decoupling as defined in TLM2 standard.

3.2.2 Fast access modi

The proprietary DSP TLM defines mechanics for the DSP model to poll slaves about their ability to

support some sort of fast access. A slave can support two flavors of fast-access recognized by the

DSP model: pure functional calls that by-pass any delay (peek/poke) and Direct Memory Interface

(DMI). The DSP model ports are augmented with adaptors converting the DSP specific TLM format

accesses into fully compliant TLM2-format accesses, and vice-versa. The adaptor translates

peek/pokes accesses into TLM2-transport_dbg() calls and translates direct memory accesses into its

equivalents in TLM2 standard supported by the TLM2 DMI.

When set to work in FFM the DSP model can prematurely leave the quantum under a number of

conditions, most commonly if it performs an access to any slave port where fast access has been

denied. Leaving prematurely the quantum jeopardizes the benefits of FFM and therefore all slaves

shall accept some form of fast access.

In the case of memory arrays the option-of-choice is using DMI. This provides the DSP model a

pointer to the actual software object modelling the memory and enables the first to manipulate the

Figure 10: Audio-VP integrated with platform-VP in Simics Simulator

contents of the later without traversing the bus and routing infrastructure. This modality represents the

absolute minimum in computational burden for moving data across the VP. In the case of accessing

registers the possibility of generating side-effects as well as other functional artifacts (as the masking

of incoming accesses) must be supported. This precludes the DMI option. As a solution, the

peek/poke call (converted into TLM2-transport_dbg()) was used instead.

Hence a fraction of the memory space addressable by the DSP model is to be fast-accessed via DMI,

others via transport_dbg(). Observe that the memory arrays modelled in DML within the host platform

also have to support DMI fast-access. This memory space split can be accomplished by the

combination of a router model and two differently configured adapters, one for each memory space.

The Router contains a detailed description of the memory space that shall be addressed in each

modality.

3.3 Measurements for Simics SystemC integration

3.3.1 Measurement scenarios definition

DML- and SystemC-based models are both co-scheduled within the Simics simulation. Because the

timing assumptions of each side are broken when interacting with its counterpart, performance

degradation can happen. In this section measurement scenarios are defined to capture and quantify

that degradation, as well as the factors that contribute to it. Basically the scenarios are split in a first

level into stand-alone and integration scenarios. On a second level there is a further split depending

on the traffic patterns exercised within each simulated system constellation.

The comparison of performance for the integrated VP solution against that of stand-alone VPs is of

outmost practical interest, since it can determine the weapon-of-choice for use-cases not requiring

both Audio and the host platform. Hence, it shall be compared:

 Stand-alone Audio-VP operation against Audio-VP operation when integrated in Simics.

 Stand-alone operation of host platform-VP in Simics against same platform-VP with the Audio
SystemC VP attached.

3.3.2 List of scenarios

Scenario A): Platform-VP stand-alone simulation in Simics where an Intel Architecture (IA) CPU is

booting Linux (BusyBox). This scenario aims at providing a reference measurement for a later

comparison with the integration scenario.

Scenario B): SystemC Audio-VP stand-alone simulation. Splits into B1, B2 and B3 depending on

executed Audio DSP FW. B-scenarios also aim at providing a reference for comparison with the

integration scenario.

 B.1: The DSP FW test-case ("DSP Only") executes an infinite loop but there is no significant
number of accesses to either internal or external memories or registers. This scenario aims at
providing a fastest-possible performance reference.

 B.2: The DSP FW test-case ("DSP RegAccess") executes an infinite loop accessing a series
of Audio-internal control registers. The access rate can be modulated. This scenario aims at
measuring performance when transaction traffic is circumscribed to Audio Subsystem.

 B.3: The DSP FW test-case ("DSP Host") executes an infinite loop accessing a memory block
external to Audio subsystem. The access rate can be modulated. This scenario aims at
measuring performance when transaction traffic travels outside boundaries of Audio
Subsystem.

Scenario C): Simics simulation with IA-CPU booting Linux (BusyBox) integrated with SystemC Audio.

Audio DSP-FW runs DSP Only. The comparison point for this scenario is B.1.

Scenario D): Simics simulation with IA-CPU booting Linux (BusyBox) integrated with SystemC Audio.

Audio DSP-FW runs DSP RegAccess, which generates heavy transaction traffic within the Audio

Subsystem. The comparison point for this scenario is B.2.

Scenario E.1): Simics simulation with IA-CPU booting Linux (BusyBox) integrated with SystemC

Audio. Audio DSP-FW runs DSP Host, which generates heavy transaction traffic through the

boundaries of Audio Subsystem.

Scenario E.2): Identical to E.1 but in this case IA-CPU additionally accesses Audio Subsystem

internal memories.

A common factor in all scenarios involving IA-CPU is that IA-CPU boots Linux (BusyBox). This has

the advantage of show-casing performance for a real setup. It has the disadvantage of masking any

performance degradation due to Simics-Audio transactions, if it is little. However, since we would be

concerned about and analyze the causes for this degradation only if it was large, this is not a concern.

The traffic patterns used for exercising the simulated system constellations span a range from typical

to worst-case system utilization. The actual values for this range are derived from architecture

specifications describing the communication needs and data transport mechanisms between the host

platform and the Audio subsystem, yielding following rates for transactions:

 Incoming into Audio: rate spans 10
3
 to 3*10

3
 transactions per simulated second.

 Outgoing from Audio: rate span from 45*10
3
 to 4.8*10

6
 transactions per simulated second.

3.3.3 Results

Figure 11: measurement scenarios for stand-alone and integration cases.

This section shows the measured

results that were achieved for the

above described scenarios. The

presented Real Time Factor (RTF)

values are defined as Wall-clock

Time (WT) over Virtual Time (VT).

The initialization wall-clock time

(construction of SW objects before

simulation time 0.00) is discounted

when doing the measurement. RTF

is measured over a long enough

span in order to ensure its statistical

representativeness: over whole

BusyBox boot (over 8.9 sec. VT), or

over 1 sec. VT for Audio

standalone.

Figure 12 shows the results for

scenario B.3. The diagram plots the

measured wall clock time for

different simulation times. The

different curves show the impact of

the quantum setting (q stands for

different quantum settings). The

interesting effect is that at some

point increasing the quantum does

not yield any more speed

improvement. Since the quantum

also introduces other effects, using a

value which is large enough to

improve performance but also

small enough to avoid

introducing synchronization

issues, is crucial.

Figure 13 shows the results for

scenario B.2. The test is

focusing on accessing registers

within the audio subsystem by

its embedded DSP. Similarly to

previous one, this figure plots

the measured wall clock time of

the target system over

simulated time, which allows

the calculation of the RTF.

Results are plotted for quantum

values of 1 and 10
5
 (as

multiples of 10 ns cycles). The

various curves show how the

work load variants impact the

simulation speed.

0.001

0.01

0.1

1

10

100

1000

1 2 3 4

L
o

g
 (

 W
a

ll
C

lo
c
k

T

im
e

 [
s

e
c

]
)

Simulated Time [10e(x-1) msec]

Tc 'RegAccess', for different access
Speeds

q=10e5, 0.5
MAccess/sec

q=10e5, 4
MAccess/sec

q=1, 0.5
MAccess/sec

q=1, 4
MAccess/sec

Best RTF, 0.5
Maccess/sec

Best RTF, 4
Maccess/sec

0.01

0.1

1

10

100

1000

1 2 3 4

L
o

g
 (

 W
a

ll
C

lo
c
k

T

im
e

 [
s

e
c

]
)

Simulated Time [10e(x-1) msec]

Tc 'DSP Host', 4,8 MAccesses/sec.

q=1

q=10e3

q=10e4

q=10e5

Best RTF

Figure 12: Wall-clock times and RTF values for scenario B.2

Figure 13: Wall-clock times and RTF values for scenario B.3

Despite the use of quantum, the increase in performance over cycle-accurate operation (q=1) is not

as high in this case as it was for scenario B.3. This is due to the fact that in B.2 the accesses are

done to registers, where DMI techniques cannot be applied and hence buses and interconnection

networks cannot be by-passed, while for B.3 accesses took place over a memory model supporting

DMI. This gives a quantitative measure on DMI´s importance.

Table in Figure 14 shows a summary of the average RTF values for the different scenarios (under

column “RTF Optimized”). The measured RTFs previous to applying optimization techniques (i.e. for

quantum equal to 1) are also exemplary displayed for standalone scenarios B.1 to B.3. Integration

scenarios were not simulated for quantum equal to as it was already concluded from standalone

scenarios that applying an aggressive quantum became indispensable for VP operation.

Figure 14: RTFs summary for the different scenarios

Finally, the Table in Figure 15 is comparing numbers before and after integrating the audio

subsystem. RTF for Simics booting BusyBox worsens from 2,7 (A) to between 3 - 3,9 (C, E.1, E.2) by

including the Audio model running traffic-representative FWs. RTF for Audio worsens from 1,3 (B.3) to

Figure 15: Comparison of stand-alone and integration scenarios

3,2 (E.1) by including Simics booting BusyBox. Hence it can be concluded that the addition of a

complex SystemC model do not hinder significantly the overall simulation performance if this model

has been optimized for speed.

 RTF

(Optimized)

 RTF

A, Simics standalone, booting BusyBox 2,7 -

B.1, Audio standalone, number crunching 1,6 415

B.2, Audio standalone, internal-reg. traffic 17,5 613

B.3, Audio standalone, Audiohost-memory traffic (4,8 MAccess/sec) 1,3 667

C, integration, number crunching in Audio 3 -

D, integration, internal Audio traffic: 12 -

E.1, integration, Audiohost-memory traffic (4,8 MAccess/sec Uplink) 3,1 -

E.2, integration, Audio host traffic (4,8 MAccess/sec Uplink, 3 KAccess/sec Downlink) 3,9 -

 Audio idle Traffic over Audio boundaries

Outgoing Out-/Ingoing

Audio SA - 1,3 (B.3) -

Simics SA 2,7 (A) - -

Integration (w/ Busybox Boot) 3 (C) 3,2 (E.1) 3,9 (E.2)

3.3.4 Results conclusion

Results show how important is the quantum usage when optimizing the design for speed and the

impact of supporting DMI-based techniques. This applies for both, standalone as well as integration

scenarios in heterogeneous platform-VPs. Once optimized, RTFs in the integration scenario lay in the

range of 3 to 12 and the booting of Linux (BusyBox) in integration scenario takes approximately 30-35

seconds wall-clock time for traffic-representative use-cases. These performance figures allow fast

turn-around times for SW & driver development.

4 Summary
The project has shown that it is possible to integrate SystemC TLM2 based subsystems into a VP

model, which models the SoC and runs an OS and FW on top. The resulting model can be used as a

software development tool meeting performance and turn-around requirements. It has also been

shown that it is necessary to apply different optimization techniques in order to achieve high

performance. Specifically minimizing context switches by applying a quantum approach proved to be

crucial. The quantum approach also allows performing a trade-off between accuracy and speed. Our

project has not tried to apply the same SystemC subsystem in more simulation environments with

more accurate timing, for instance for architectural analysis. But in principle this would be possible

and can become a topic for future work.

5 References
 Wind River Simics; Model Builder User Guide, version 4.8

 IEEE Standard for Standard SystemC Language Reference Manual.

 IEEE Std 1666-2011. Jan. 2012, ISBN 978-0-7381-6802-9.

