
VP Performance Optimization

Rocco Jonack

Juan Lara Ambel

Intel

1

Contents

Intel Confidential 2

• Overview

• VP development

• Runtime optimization for VP

• TLM2 LT

• Temporal decoupling

• Profiling

• Native execution

• Performance in heterogeneous SoC models.

• Measurement scenarios

• Results

VP Overview

• Virtual Platforms are software
models of hardware
architecture on which
software and firmware can be
executed

• Many factors have impact on
VP creation
• Functional correctness

• Debuggability/visibility

• Usage model

• Execution speed

• VP often crosses different
components and modeling
styles

3

IA

OS running for
SW development

FW code
running

Subsystems, for
instance Audio,

Graphics,
Modem etc.

TLM2 ports

VP runtime optimizations

• Usage of transaction level modeling reduces
runtime and modeling effort

• Using quantums consistently allows trade-off

between timing accuracy and runtime

• Profiling allows analysis and focus on hotspots

• Using native execution on host machine or
through virtualization can improve runtime

dramatically

4

TLM2 modeling

• Using TLM2 modeling allows a standardized modeling

approach

• Using LT modeling style reduces event overhead

• Reuse of existing components whether 3rd party or inhouse

• Many existing models are tested for simulation performance

• ISCTLM extends the available models with preverified

components for VP modeling

5

IA

OS running for

SW development

FW code

running

Subsystems, for

instance Audio,

Graphics,

Modem etc.

TLM2 ports

Quantum usage

• Temporal decoupling avoids
switching between simulation
threads
– Initiator threads are running

temporarily „out of sync“ with
respect to simulation time

• Fewer simulation events, but
also fewer synchronization points

• Different environements have
different implementations of
temporal decoupling
– Keep synchronization time

consistent

– TLM2 provides coherent
infrastructure which defines models
like a global time keeper etc.

6

0

5

10

15

20

25

30

35

40

45

1 10 100 1000

ISS runtime (in

sec)

Profiling

– Runtime bottlenecks typically come from well known
types of modeling constructs

• Streaming to IO devices

• Excessive memory allocation or inefficient memory access

• OS interaction like thread switching

– Profiling tools help expose bottlenecks
• Can be difficult to find in a complex model, developed across

teams and incorporating 3rd party models

• Functional profiling tools like gprof, vtunes, googleperf focus on
counting function calls during execution

• Thread profiling focused on analyzing the when and by which
thread a switch was introduced

7

Native execution

• Running code natively on host machine can dramatically

improve runtime

– With virtualization an OS can access devices through virtual

access points

– Subsystems often don‘t support virtualization, but ISS can optimize

code execution by executing code on the host system

8

IA

OS running a model of the IA

or directly on host machine

FW running on ISS model

Subsystems, for

instance Audio,

Graphics,

Modem etc.

© Accellera Systems Initiative 9

Performance in Heterogeneous SoC
Models

• A mobile platform SoC contains several subsystems executing
SW or FW, which can be modelled as individual VPs.

• Potentially, an integrated VP spans multiple modelling styles.

• Case study: platform´s CPU cluster modelled in Simics‘ DML
integrated with a TLM2/ SystemC model of the Audio Subsystem.

© Accellera Systems Initiative 10

Configuration

•Transaction-initiation patterns used in scenarios

 Used patterns span from maximum load to load in regular operation and

were estimated after specifications.

 Transaction-traffic at the Simics-Audio interface (if applicable):

 Audio initiated: 45K, 250K, 1500K and 4800K-accesses/sec.

 IA CPU initiated: 1K, 2K and 3K-accesses/sec.

 Transactions initiated by Audio DSP to Audio registers (if applicable):

 500 K-accesses/sec.

•Measurement Setup

• Simics running Viper VP including IA CPU model.

• Used Quantum: 10e4 cycles for Audio DSP (= 100 us), 100 us for Simics.

• Simulated on 1 execution threads, VMP disabled.

© Accellera Systems Initiative 11

Standalone scenarios

• A) Simics standalone: IA CPU boots Linux (busybox)

• B) SystemC-Audio standalone: splits into B1,B2 & B3 depending on
executed Audio DSP FW.
– B.1: FW endlessly does some math but there is no significant number of

accesses to either internal or external memories & registers.
– B.2: FW endlessly accesses a series of internal Audio-control-registers.

The access rate can be modulated.

– B.3: FW endlessly accesses a memory block external to Audio-
subsystem.

© Accellera Systems Initiative 12

Measurements results - A,B.x

Average Real Time Factor (RTF):

• Defined as Wall-clock Time (WT) over Virtual Time (VT).

• Initialization time discounted.

• Measured when busybox booted (over 8,9 sec. VT), or over 1 sec. VT for Audio

standalone.

RTF (optim.) RTF

A, Simics standalone, booting busybox 2,7 n/a

B.1, Audio standalone, number crunching 1,6 415

B.2, Audio standalone, internal-reg. traffic 17,5 613

B.3, Audio standalone, Audiohost-mem traffic 1,3 (4,8 MAcc./

sec)

667

© Accellera Systems Initiative 13

Integration scenarios

• C) IA CPU boots Linux. No other transaction-traffic at all (~=B.1).

• D) IA CPU boots Linux. R/W transaction-traffic inside SystemC-Audio (Green)
(~=B.2).

• E.1) IA CPU boots Linux. SystemC-Audio initiates R/W transaction- traffic
through gasket to Host Memory (Red) (~=B.3).

• E.2) IA CPU boots Linux and accesses Audio-Memory through gasket.
SystemC-Audio initiates heavy R/W transaction-traffic through gasket. (Red +
blue)

© Accellera Systems Initiative 14

Measurements results -

C,D,E.1,E.2
Average Real Time Factor (RTF):

• Defined as Wall-clock Time (WT) over Virtual Time (VT).

• Initialization time discounted.

• Measured when busybox booted (over 8,9 sec. VT).

RTF

C, integration, number crunching in Audio 3

D, integration, internal Audio traffic 12

E.1, integration, Audio host-mem over gasket 3,1 (4,8 MAcc./sec)

E.2, integration, Audio host, traffic over gasket 3,9 (4,8 MAcc./sec, 3 KAcc./sec)

© Accellera Systems Initiative 15

Conclusions

• Applied transaction level modelling and temporal decoupling

techniques

• Result:

• RTF in integration scenario lies in range: 3 - 12.

• Linux (busybox) booting in integration scenario takes actually

approx. 30-35 seconds wall-clock time for traffic-representative

use-cases.

• Performance in integration scenario allows fast turn-around times

for SW & driver development.

Questions

© Accellera Systems Initiative 16

© Accellera Systems Initiative 17

Detailed results for B.2

0.001

0.01

0.1

1

10

100

1000

1 2 3 4

Lo
g

(
W

al
lC

lo
ck

 T
im

e
 [

se
c]

)

Simulated Time [10e(x-1) msec]

Tc 'RegAccess', for different access Speeds

q=10e5, 0.5 MAccess/sec

q=10e5, 4 MAccess/sec

q=1, 0.5 MAccess/sec

q=1, 4 MAccess/sec

Best RTF, 0.5 Maccess/sec

Best RTF, 4 Maccess/sec

© Accellera Systems Initiative 18

Detailed results for B.3

0.01

0.1

1

10

100

1000

1 2 3 4

Lo
g

(
W

al
lC

lo
ck

 T
im

e
 [

se
c]

)

Simulated Time [10e(x-1) msec]

Tc 'DSP Only'

q=1

q=10e3

q=10e4

q=10e5

Best RTF

© Accellera Systems Initiative 19

Measurement results - on E.2

• RTF oscillates among 3,3 and 3,9.

• Transaction traffic through gasket initiated by IA-CPU is much more

expensive than those initiated by Audio (Asymmetry of the gasket)

Average RTF for combinations of IA-CPU-initiated transaction traffic (color

code) versus Audio-initiated transaction traffic (x-axis)

© Accellera Systems Initiative 20

Simics Gasket

SC_THREAD

(on_transactio

n)

“b_transport”

Simics SystemC

“b_transport“ or

“get_direct_mem_ptr

”

MMIO::operation

memory_space_iface

