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Abstract- Testcase bring-up on the ATE is often in the critical path to product sampling and release.  Virtual test can 

be used to fully validate scan and functional patterns before the arrival of silicon to reduce Time-To-Market.  This paper 
describes a SystemVerilog virtual testbench framework that is low cost, easy to re-use, has a low learning curve, and fast 
vector processing.  A product development case study is included to illustrate the benefits of using this approach. 

 
I. INTRODUCTION 

 
Reducing Time-To-Market (TTM) is a critical goal of most companies in the semiconductor industry.  Lower 

TTM results in faster time to revenue, higher lifetime product revenue and lower product development costs.  
Silicon bring-up on the ATE is often in the critical path to market.  Specifically, the level of effort required to bring-
up scan and functional testcases plays a large role in defining TTM for semiconductor products.   

 
To reduce the ATE silicon bring-up effort, it is desired to identify and correct as many testcase deficiencies as 

possible before the arrival of silicon.  Verification practices such as testbench force commands and memory preload 
can render a testcase unusable in silicon.  This often goes undetected until patterns are run across Process, Voltage, 
and Temperature (PVT) in silicon.  A methodology is required that generates and validates ATE testcases across 
PVT before getting on the tester with silicon.  This will prevent the consumption of valuable ATE time for 
debugging non-silicon related issues and speed the overall silicon bring-up task. 

 
The technique commonly used to accomplish this task is virtual test.  Commercial virtual test tools are available 

for purchase.  However, it has been the experience of the authors that these commercially available tools do not 
satisfy all of our requirements: 

 
• Low cost 
• Very small learning curve 
• Easy re-use from project to project 
• Fast vector processing throughput 

 
The Analog Devices, Inc. (ADI) design verification and product test teams co-developed a Virtual Test 

Framework in order to reduce the amount of time between first silicon and customer samples with these key 
requirements in mind.  This reusable framework enables the simulation of ATE patterns in a SystemVerilog 
testbench to identify any test-related functional or timing issues before first silicon arrives.   

 
This paper will describe the implementation of the tool and results achieved with the tool on recent development 

projects.  A simple Device Under Test (DUT) example will be used to demonstrate how the tool works.   
 

II.   IMPLEMENTATION 
 
The Virtual Test framework has two main components.  A diagram of the Virtual Test architecture is shown in 

Figure 1 below.   
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Figure 1. Virtual Test Framework 

 
A. VIRTUAL TEST TOOL 

 
The first component of the Virtual Test Framework is the Virtual Test Tool.  The Virtual Test Tool is a PERL 

script used to generate a VCD file from the ATE pattern and timing files.  Generation of the ATE patterns and 
timing file can be accomplished with commercially available or in-house tools and is beyond the scope of this paper.  
The Virtual Test Tool was developed inside ADI and required approximately 1 person-month of development effort. 

 
The Virtual Test Tool generates one VCD file per ATE pattern.  The VCD file is formatted per the IEEE-1364 

VCD standard [1] and contains 3 variables per DUT pin: 
 

1. Pin State.  Naming convention:  <pin_name> 
Value may be 1,0,or x.  Matches ATE pattern data. 
Time stamp of value change matches ATE timing file input edge timing. 

2. Pin Direction.  Naming convention:  oeb_<pin_name> 
1 when signal is output.  0 when signal is input or tristate. 

3. Pin Output Strobe Timing.  Naming convention:  stb_<pin_name> 
Pulse placed where tester strobe exists (per ATE timing file) for output compare.   
Negative going edge of pulse indicates edge strobe position. 

 
An example DUT is shown in Figure 2.  It is a simple asynchronously reset D-type flip-flop with 3 inputs (rstb, 

clock, and data) and 1 output (q).  An ATE pattern for this DUT is shown in Figure 3.   The Virtual Test Tool will 
process this ATE test pattern and generate a VCD file representation of the test pattern which includes signals for 
pin state, pin direction, and pin output strobe timing information.  See Figure 4 for the waveform representation of 
the output VCD file.  The file retains ATE timing for input drive edges, I/O switching, and output strobe placement.  
The full VCD file generated for the example test pattern is included as Appendix A.   
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Figure 2. Example Device Under Test 

 

 
 

Figure 3. Example Test Pattern (Tabular Representation) 
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Figure 4. Waveform Representation of Output VCD File 



B. VIRTUAL TEST TESTBENCH 
 
The second component of the Virtual Test Framework is the Virtual Test Testbench.  The Virtual Test Testbench 

is a SystemVerilog testbench with tasks that translate the previously generated test pattern VCD file to drive the 
input pins of the design under test with accurate ATE timing.  The testbench also compares the output pins to 
expected values at the strobe timing specified in the VCD file and reports a pass/fail result.  Waveforms can 
optionally be generated to support Virtual Test debug. 

 
SystemVerilog was chosen for implementation to take advantage of data structures such as associative arrays and 

SystemVerilog’s object oriented programming structure. The Virtual Test Testbench is based on a generic, re-usable 
template that is populated with DUT specific information.  The DUT specific information is auto-generated once at 
the start of a project by invoking the Virtual Test Tool Perl script (described in section II-A) with a special auto-
generate switch.  This facilitates fast bring-up and easy re-use from one project to the next. 

 
Figure 5 shows the Virtual Test Testbench block diagram.  A pin interface is defined and instantiated for each 

DUT pin.  The pin interface contains low level force and release functions used to control each DUT pin.  The DUT 
is connected to the testbench using these pin interfaces.  SystemVerilog tasks manage pin drive and check 
functionality in the testbench. 

 

Device
Under
Test

(Flip-flop)

Pin Drive Task

Virtual Test Testbench
Log File

(Mismatch Info)

Waveforms

Pin Check Task

Test 
Pattern 

VCD File

rstb

clock

data

q

Pin Interfaces

Drive State
Drive Edge Timing

Expected Value
Compare Timing

 
Figure 5.  Virtual Test Testbench Block Diagram 

 
The virtual test flow diagram is shown the Figure 6.  The test pattern VCD file is parsed to collect pin state, 

direction, and output strobe timing information at a given timestamp.  Once all data is collected for the timestamp, 
all pin states are updated by the testbench.  Inputs are driven and outputs are strobed.  Then the tool proceeds to the 
next timestamp in the VCD to collect and process the next set of pin data.  All output strobe mismatches are logged 
and strobe positions are marked in the optional waveform file for debug and analysis.  For the simple flip-flog DUT, 
an output delay fault was introduced that results in an output strobe failure on pin “q” at timestamp 4,810ns.  The 
resulting virtual test log file and waveforms are shown in Figures 7 and 8. 
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Figure 6.  Virtual Test Flow Diagram 

 
 

Figure 7.  Virtual Test Simulation Log File For Flip Flop DUT With Delay Fault Inserted 
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Figure 8.  Virtual Test Simulation Waveform For Flip Flop DUT With Delay Fault Inserted 

 

III.   RESULTS 
 
The virtual test methodology has been used to fully validate scan and functional patterns before the arrival of  

silicon at ADI with some very compelling results.   Performance benchmarks for two different products are shown in 
Table 1.  Benchmarks were measured for a single test pattern on a standard 64-bit workstation.  Simulations are 
done using gate level netlist with back annotated timing.  An in-house simulation wrapper script is typically used for 
parallel batch processing to achieve very good throughput when processing the chip’s entire testcase suite. 

 
TABLE 1 

BENCHMARKS:  PROCESSING A SINGLE TEST PATTERN 
Project Transistor 

Count 
Pin 

Count 
VCD Generation 

(vectors/sec) 
Testbench Sim Time 

(vectors/sec) 
1 - AMS 650K 32 1.2k 2.1k 
2 – SOC 100M 184 3731 401 

1Stuck-at-fault scan test pattern of 28k vector length.  This results in a vcd generation time of 40s and testbench 
simulation time of 714s. 

 
Virtual test simulations discovered multiple issues prior to tapeout that saved many weeks of debug time.  Table 2 

lists 3 categories of issues detected during one of the projects.   
 

TABLE 2 
CASE STUDY:  VIRTUAL TEST DISCOVERIES 

I. Silicon Bugs: prevented mask set revision 
Clock mux bug caused glitching, resulted in non-deterministic behavior for all functional tests 
Race condition in scan pattern at cold, FF silicon, high voltage 

II. Major Pattern Issues: required regeneration of ALL patterns 
Scan patterns fail because a bond option was included in ATPG constraints 
Start up sequence wrong 
Test clock period not integer multiple of tester period 
Inaccurate modeling of oscillator startup delay 

III. Minor Test Issues:  saved debug time 
Inputs floated in port testmode 
Longer than expected pad delays identified – adjusted tester output delay timing specs 
Communication port input timing needed adjustment 

 
Because one of the issues was a serious silicon bug that would have prevented ATE determinism on all functional 

test patterns, Virtual Test prevented a serious project delay and the added expense of a metal mask silicon revision.  
Virtual Test also identified test issues like incorrect startup sequences, inaccurate oscillator modeling, and scan 



patterns that were not valid due to a bond option that was not included in ATPG constraints.  These issues would 
have required complete pattern regenerations, using up valuable post-silicon schedule time.  Virtual Test also helped 
saved time by adjusting ATE specs before first silicon to account for very long pad delays and to improve ATE 
determinism. 

 
  Virtual Test can also help determine the root cause of issues found during silicon evaluation by providing a 

simulation environment with full waveform dumping that replicates the ATE test.  For example, one new product 
had unexpected scan pattern yield loss at cold temperature, high voltage.  Virtual test was used to reproduce the 
failure and expose a race condition that escaped detection in the design flow.   

 
It should be noted that this testbench implementation assumes a digital interface between the ATE and the DUT 

which can be modeled in a VCD file.  Embedded analog DUT functionality can be simulated in the environment 
with a co-simulation approach.  However, there may be limitations when verifying DUTs with analog pins. 

 
 

IV.   CONCLUSIONS 
 
In general, virtual test is an important component of any modern product development flow.  There are many 

benefits of virtual test: 
 

• Achieve faster TTM 
• Prevent wasting valuable ATE system time 
• Verify that testbench “shortcuts” are not masking testability issues 
• Vector validation is accomplished prior to silicon while the design and verification resources are still 

allocated to the project.   
 

The approach described in this paper is a low cost, short learning curve solution that has demonstrated the 
capability to improve product time to market.    It has been successfully used on three ADI projects to date and will 
be used for all ATE-tested projects going forward.   The framework is easily re-usable across projects.   

 
Because virtual test is implemented in a familiar SystemVerilog environment, simulated with standard verilog 

simulators, and analyzed with common waveform viewers, all members of the design and product test teams can 
collaborate to debug and solve problems.  Unlike commercially available virtual test solutions, there is no large 
learning curve required to work with the Virtual Test framework.  All members of the team can be up and running 
quickly. 

 
As all new product development teams know, there is very high visibility when first silicon arrives.  Upper 

management is often literally looking over the shoulder of the bring-up team.  They want real quick results, not 
testcase conversion issues that delay silicon evaluation and sampling to customers.  Validating product patterns 
ahead of silicon with this Virtual Test Framework will greatly increase the likelihood of having real silicon results to 
report soon after silicon arrives. 
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APPENDIX A – VCD FILE GENERATED BY VIRTUAL TEST TOOL FOR EXAMPLE TEST PATTERN 
$date 
    Dec 17, 2012 12:16:53 
$end 
 
$version 
    Signalscan 6.8s6 
$end 
 
$timescale 
    1ps 
$end 
 
 
$scope module aff_top $end 
 
$scope module PE_module0 $end 
$var wire 1 R rstb  $end 
$var wire 1 r oeb_rstb  $end 
$var wire 1 1 stb_rstb  $end 
$var wire 1 C clock  $end 
$var wire 1 c oeb_clock  $end 
$var wire 1 2 stb_clock  $end 
$var wire 1 D data  $end 
$var wire 1 d oeb_data  $end 
$var wire 1 3 str_data  $end 
$var wire 1 Q q  $end 
$var wire 1 q oeb_q  $end 
$var wire 1 4 str_q  $end 
 
$upscope $end 
 
$upscope $end 
 
$enddefinitions $end 
#0 
$dumpvars 
0R 
1r 
01 
1C 
1c 
02 
0D 
1d 
03 
0q 
0Q 
04 
$end 
#1000 
1R 
1r 
01 
0C 
1c 
02 
0D 
1d 
03 
0q 
0Q 



04 
#1800 
14 
#1810 
04 
#2000 
1R 
1r 
01 
1C 
1c 
02 
0D 
1d 
03 
0q 
0Q 
04 
#2800 
14 
#2810 
04 
#3000 
1R 
1r 
01 
0C 
1c 
02 
1D 
1d 
03 
0q 
0Q 
04 
#3800 
14 
#3810 
04 
#4000 
1R 
1r 
01 
1C 
1c 
02 
1D 
1d 
03 
0q 
1Q 
04 
#4800 
14 
#4810 
04 
#5000 
1R 
1r 
01 
0C 
1c 



02 
0D 
1d 
03 
0q 
1Q 
04 
#5800 
14 
#5810 
04 
#6000 
1R 
1r 
01 
1C 
1c 
02 
0D 
1d 
03 
0q 
0Q 
04 
#6800 
14 
#6810 
04 

 
 
 


