
Virtual Prototyping using SystemC

and TLM-2.0

John Aynsley, Doulos

© Accellera Systems Initiative

Virtual Prototyping using SystemC and TLM-2.0

2

• Introduction

• Development of TLM-2.0

• TLM-2.0 Sockets and Interfaces

• LT, AT, and CA

• Generic Payload and Extensions

• Interoperability

© Accellera Systems Initiative

What is SystemC?

3

Communicating

processes

• System-level modeling language

• Network of communicating processes (c.f. HDL)

• Supports heterogeneous models-of-computation

• Models hardware and software, digital and analog

• C++ class library

• Open source proof-of-concept simulator

• Owned by Accellera (previously OSCI)

© Accellera Systems Initiative

Architecture of SystemC

4

Primitive Channels

(signal, buffer, fifo, mutex, semaphore)

Core Language

(module, port, process,

channel, interface, event)

SystemC

Verification

Library SCV

C++ Language

Data Types IE
E

E
 1

6
6
6
 S

ta
n
d
a
rd

User Applications

TLM-1 and TLM-2.0 SystemC-AMS

© Accellera Systems Initiative

TLM Standardization

5

Apr 2005

• TLM-1.0

• Unidirectional

message-passing

interfaces

Jun 2008

• TLM-2.0

• Pass-by-reference

• Unified interfaces

• Generic payload

July 2009

• LRM

• TLM-2.0.1

2011

• TLM-1 and TLM-2.0

part of IEEE 1666

• TLM-2.0.2

Jan 2008

• SystemVerilog
OVM - UVM

• Beyond SystemC ...

© Accellera Systems Initiative

What can you do with SystemC?

6

• Discrete Event Simulation (events, time)

• Register Transfer Level (delta delays, bus resolution)

• Behavioral Modeling (functions, processes, parallelism)

• Transaction Level (communication using function calls)

• Kahn Process Networks (infinite fifos, reads block when empty)

• Dataflow (input-execution-output stages)

• CSP (rendezvous, blocking reads & writes)

• Analog at ESL (SystemC AMS)

• High-Level Synthesis (synthesis subset)

• NOT gate level

• NOT Spice level

• NOT software / RTOS modeling (process scheduling, priorities, preemption)

© Accellera Systems Initiative

What is SystemC Used For?

7

• Behavioral Modeling and Reference Models

• Virtual Platforms (aka Software Virtual Prototypes)

• Architectural exploration, performance modeling

• Software development

• Reference model for functional verification

• High-Level Synthesis (C/C++)

© Accellera Systems Initiative

Transaction-Level Modeling

8

RTL

Pin Accurate

Simulate every event!

RTL

Behavioral

Model

Behavioral

Model

100-10,000 X faster simulation!

Function Call

write(address,data)

© Accellera Systems Initiative

Transaction-Level Modeling

9

Functional models, e.g. C/C++ programs

Could be synthesized using a High-Level Synthesis tool?

Transaction

+ timing

Concurrent simulation environment
SystemC

© Accellera Systems Initiative

Use Model: SystemC as Glue!

10

VHDL

Verilog

Foreign

simulation

engine

ISS

• Transaction-level modeling is communication-centric

Transaction-Level

© Accellera Systems Initiative

Typical Use Case: Virtual Platform

11

CPU ROM DMA RAM

Interrupt Timer Bridge

Bridge

DSP ROM RAM

A/D Interrupt Timer I/O

Memory

interface
I/O DMA RAM

Custom

peripheral

Software

D/A

Software

Multiple software stacks

Digital and analog hardware IP blocks

Multiple buses and bridges

TLM-2.0

© Accellera Systems Initiative

Virtual Platform Characteristics

12

Instruction Set

Simulator or software

stubs

Transaction-Level Model RTL

Available early Available early Much later

Fast enough to run

applications

Fast enough to run

applications

Too slow to run

applications

Little or no hardware

detail

Register-accurate Register-accurate and

pin-accurate

No timing information Some timing information Cycle-accurate timing

© Accellera Systems Initiative

What is TLM Used For?

13

Accelerates product release schedule

TLM = golden model

Fast enough

Ready before RTL

© Accellera Systems Initiative

Virtual Prototyping using SystemC and TLM-2.0

14

• Introduction

• Development of TLM-2.0

• TLM-2.0 Sockets and Interfaces

• LT, AT, and CA

• Generic Payload and Extensions

• Interoperability

© Accellera Systems Initiative

TLM-2 Requirements

15

• Focus on memory-mapped bus modeling

• Not meant to exclude non-bus protocols

© Accellera Systems Initiative

Multiple Abstraction Levels

16

• Can mix-and-match

FUNCTIONAL VIEW

Algorithm developer

PROGRAMMERS VIEW

Software developer

ARCHITECTURE VIEW

Tuning the platform

VERIFICATION VIEW

Functional verification

RTL Implementation

Untimed

Approximately-timed Loosely-timed

Untimed through Cycle Accurate

© Accellera Systems Initiative

Use Cases, Coding Styles and Mechanisms

17

Blocking

interface

Non-blocking

interface
DMI Sockets Quantum

Generic

payload

Mechanisms (definitive API for TLM-2.0)

Use cases

Software

development

Architectural

analysis

Hardware

verification

Software

performance

Loosely-timed

Approximately-timed

TLM-2 Coding styles (just guidelines)

Phases

© Accellera Systems Initiative

Coding Styles

18

• Loosely-timed = as fast as possible

• Only sufficient timing detail to boot O/S and run multi-core systems

• Processes can run ahead of simulation time (temporal decoupling)

• Each transaction completes in one function call

• Uses direct memory interface (DMI)

• Approximately-timed = just accurate enough for performance modeling

• aka cycle-approximate or cycle-count-accurate

• Sufficient for architectural exploration

• Processes run in lock-step with simulation time

• Each transaction has 4 timing points (extensible)

• Guidelines only – not definitive

© Accellera Systems Initiative

The TLM 2.0 Classes

19

Interoperability layer for bus modeling

IEEE 1666™ SystemC

TLM-1 standard TLM-2 core interfaces:

Blocking transport interface

Non-blocking transport interface

Direct memory interface

Debug transport interface

Analysis interface

Initiator and target sockets

Analysis ports

Generic payload Phases

Utilities:

Convenience sockets

Payload event queues

Quantum keeper

Instance-specific extn

© Accellera Systems Initiative

Interoperability Layer

20

Target Initiator

1. Core interfaces and

sockets

2. Generic payload

Command

Address

Data

Byte enables

Response status

Extensions

3. Base protocol

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

• Maximal interoperability for memory-mapped bus models

© Accellera Systems Initiative

Utilities

21

• Productivity

• Shortened learning curve

• Consistent coding style

Core interfaces

Sockets

Generic payload

Base protocol

Initiator

Interoperability

layer

Target

Coding Style

Loosely- or Approximately-timed

Utilities

Convenience sockets

Quantum keeper (LT)

Payload event queues (AT)

Instance-specific extensions (GP)

© Accellera Systems Initiative

Virtual Prototyping using SystemC and TLM-2.0

22

• Introduction

• Development of TLM-2.0

• TLM-2.0 Sockets and Interfaces

• LT, AT, and CA

• Generic Payload and Extensions

• Interoperability

© Accellera Systems Initiative

Initiators and Targets

23

Initiator
Interconnect

component
Target

Initiator

socket

Target

socket

Initiator

socket

Target

socket

Forward

path

Backward

path

Forward

path

Backward

path

Transaction

object

References to a single transaction object are passed along the forward and backward paths

© Accellera Systems Initiative

TLM-2 Connectivity

24

Target/
Initiator

Target/
Initiator

Initiator Target

Target Initiator

Interconnect Target Interconnect Initiator

• Roles are dynamic; a component can choose whether to act as interconnect or target

• Transaction memory management needed

© Accellera Systems Initiative

Convergent Paths

25

Target

Interconnect

Initiator

Initiator

• Paths not predefined; routing may depend on transaction attributes (e.g. address)

• Whether arbitration is needed depends on the coding style

Target

© Accellera Systems Initiative

Initiator and Target Sockets

26

Initiator Target

Target

socket

class tlm_bw_transport_if<>

nb_transport_bw()

invalidate_direct_mem_ptr()

Initiator

socket class tlm_fw_transport_if<>

b_transport ()

nb_transport_fw()

get_direct_mem_ptr()

transport_dbg()

• Sockets provide fw and bw paths, and group interfaces

Interface methods

© Accellera Systems Initiative

Sockets, Ports and Exports

27

Target

socket

Initiator

socket

Port

Export

Initiator or
Interconnect

Export

Port

Target or
Interconnect

Forward path

Return path

Backward path

Return path

© Accellera Systems Initiative

Socket Binding and Interfaces

28

Target

socket

Initiator

socket

Port

Export

Initiator or
Interconnect

Export

Port

Target or
Interconnect

Forward path

Return path

Backward path

Return path

bind

bind

bind

Backward interface

implements

Forward interface

implements

Interface

method calls

© Accellera Systems Initiative

Virtual Prototyping using SystemC and TLM-2.0

29

• Introduction

• Development of TLM-2.0

• TLM-2.0 Sockets and Interfaces

• LT, AT, and CA

• Generic Payload and Extensions

• Interoperability

© Accellera Systems Initiative

Software Execution and Simulation

30

Binary

executable

Interpreted

Dynamic translation / JIT

Binary

executable

Cross-compiled Native execution

Native execution

© Accellera Systems Initiative

Software Execution without Sync

31

Executing software

Initiator model
does not yield

Other initiators do
not get to run

© Accellera Systems Initiative

Software Execution with Sync

32

Executing software

Sync

Explicit synchronization
between software threads

Synchronization is
independent of
platform timing

© Accellera Systems Initiative

Software Execution with a Quantum

33

Executing software

Initiators use a time quantum Resources consume
simulation time

Each initiator gets a time slice

© Accellera Systems Initiative

Causality with b_transport

34

Initiator Target Interconnect Interconnect

b_transport

return

b_transport

return

b_transport

return

Initiator sets

attributes

Target

modifies

attributes

Initiator

checks

response

Modifies

address

Modifies

address

© Accellera Systems Initiative

Loosely-Timed Components

35

• Each initiator should generate transactions in non-decreasing time order

• Incoming transactions may be out-of-order (from different initiators)

• Out-or-order transactions can be executed in any order

• Targets usually return immediately (don't want b_transport to block)

• b_transport is re-entrant

• Arbitration is typically inappropriate (and too slow)

Target

Interconnect

Initiator

Initiator Target

200us

210us

100us

110us

250us

© Accellera Systems Initiative

Approximately-Timed

36

Process 1

Process 2

Process 3

0 10 20 30 40 50

Annotated delays

• Inter-process communication is annotated with delays

• Each process is synchronized using the SystemC scheduler

• Delays can be accurate or approximate

© Accellera Systems Initiative

AT and CA

37

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

• No running ahead of simulation time; everything stays in sync

AT CA

Wake up at significant

timing points

Wake up every cycle

© Accellera Systems Initiative

Virtual Prototyping using SystemC and TLM-2.0

38

• Introduction

• Development of TLM-2.0

• TLM-2.0 Sockets and Interfaces

• LT, AT, and CA

• Generic Payload and Extensions

• Interoperability

© Accellera Systems Initiative

The Generic Payload

39

• Typical attributes of memory-mapped busses

• reads, writes, byte enables, single word transfers, burst transfers, streaming

• Off-the-shelf general purpose payload

• for abstract bus modeling

• ignorable extensions allow full interoperability

• Used to model specific bus protocols

• mandatory static extensions

• compile-time type checking to avoid incompatibility

• low implementation cost when bridging protocols

Specific protocols can use the same generic payload machinery

© Accellera Systems Initiative

Generic Payload Attributes

40

Attribute Type Modifiable?

Command tlm_command No

Address uint64 Interconnect only

Data pointer unsigned char* No (array – yes)

Data length unsigned int No

Byte enable pointer unsigned char* No

Byte enable length unsigned int No

Streaming width unsigned int No

DMI hint bool Yes

Response status tlm_response_status Target only

Extensions (tlm_extension_base*)[] Yes

Try DMI !

Array owned by initiator

Array owned by initiator

Ignored if ptr = 0

Must be > 0

• There are defaults, but transaction objects are typically pooled

• Initiator must set all attributes except byte enable length and extensions

© Accellera Systems Initiative

Extensions

41

Target

Base
Protocol
Router

Initiator

Initiator Target

Generic

Payload

Extension

Interconnect

Generic

Payload

Extension

Generic

Payload

Extension

Generic

Payload

Extension

Generic

Payload

Extension

© Accellera Systems Initiative

The Extension Mechanism

42

Attributes

0

Array of

pointers

0

0

0

0

0

Extension

object

Extension

object

• Every generic payload has an array-of-extension-pointers

• One pointer per extension type, initialized by the constructor

Constructed

as needed

Generic

Payload

© Accellera Systems Initiative

Using a Memory Manager

43

nb_transport_fw

Return nb_transport_fw

nb_transport_fw Call

Return nb_transport_fw

Allocate transaction object

nb_transport_bw Return

Call nb_transport_bw

nb_transport_bw Return

Call nb_transport_bw

acquire()

acquire()

release()

release()

acquire()

release()

free()

0 1 2 3

refs

© Accellera Systems Initiative

Example Topology

44

Multi-sockets

Data

© Accellera Systems Initiative

Virtual Prototyping using SystemC and TLM-2.0

45

• Introduction

• Development of TLM-2.0

• TLM-2.0 Sockets and Interfaces

• LT, AT, and CA

• Generic Payload and Extensions

• Interoperability

© Accellera Systems Initiative

First Kind of Interoperability

46

• Use the full interoperability layer

• Use the generic payload + ignorable extensions

• Obey all the rules of the base protocol. The LRM is your rule book

tlm_initiator_socket<32, tlm_base_protocol_types> my_socket;

• Functional incompatibilities are still possible (e.g. writing to a ROM)

© Accellera Systems Initiative

Second Kind of Interoperability

47

• Create a new protocol traits class

• Create user-defined generic payload extensions and phases as needed

• Make your own rules!

• One rule enforced: cannot bind sockets of differing protocol types

• Recommendation: keep close to the base protocol. The LRM is your guidebook

• The clever stuff in TLM-2.0 makes the adapter fast

tlm_initiator_socket<32, my_protocol> my_socket;

© Accellera Systems Initiative

Bridges

48

tlm_*_socket< 32, protocol_A > tlm_*_socket< 32, protocol_B >

Generic

Payload

Extension

Extension

Generic

Payload

Extension

Extension

deep_copy_from()

Extension

Extension

Generic

Payload

Extension

Extension

Extension

Extension

Generic

Payload

Extension

Extension

update_original_from()

Could pass the same transaction if their lifetimes allow

© Accellera Systems Initiative

Levels of Use

49

© Accellera Systems Initiative

Missing from TLM-2.0?

50

• Interrupts

• Other wire-level interfaces

• Register address maps

• Parameterization of TLM IP

• TL power models

© Accellera Systems Initiative

Associated Standards and Activities

51

• Accellera Configuration, Control and Inspection (CCI) Working Group

• Synopsys Virtualizer & SCML, Mentor Vista, Cadence VSP

ARM FastModels, Carbon, Sonics, Arteris, OVP, ...

• TLM Central www.dr-embedded.com/tlmcentral

Questions?

http://www.doulos.com/knowhow/systemc/tlm2

For Further Information

