
Virtual Prototypes and Platforms
A Primer

Eyck Jentzsch, MINRES Technologies GmbH
Rocco Jonack, MINRES Technologies GmbH
Josef Eckmüller, Intel Deutschland GmbH

© Accellera Systems Initiative 1

FOUNDATIONS OF VP

© Accellera Systems Initiative 2

What are not virtual prototypes & platforms
• These are not virtualization solutions or virtual machines like VirtualBox

or VMWare
– A virtual machine (VM) is an emulation of a computer system (...) and provides

functionality of a physical computer (Wikipedia)
– A VM or virtual machine was originally defined by Popek and Goldberg as "an

efficient, isolated duplicate of a real computer machine."

• Although some concepts and mechanisms are also used in VPs

© Accellera Systems Initiative 3

What is a virtual prototype or platform
• Virtual platform is a hardware simulator executing embedded software

(eSW)
• Usually built on top of an instruction set simulator (ISS) of the

processor(s) connected via buses to memory and peripherals such as
timers, general I/O, communication interface, etc.

• While the VP is mostly implemented in SystemC the ISS may be
implemented in some other general purpose language.

© Accellera Systems Initiative 4

Differences between virtual prototype and platform

• Virtual prototype
– Is in development and does not have final structure and partitioning.
– Possibility to quickly change this
– Comprehensive analysis means
– Used to optimize SoC design wrt. power, area, speed, throughput, and/or latency

• Virtual platform
– Represents a SoC in its final shape,
– Aims at simulation speed as well as functional accuracy and completeness,
– Used for (e)SW development

© Accellera Systems Initiative 5

Alternatives to VPs
• Emulation

– high accuracy and speed
– needs Register-Transfer-Level (RTL) description, expensive to scale

• FPGA
– high accuracy and speed
– needs RTL implementation to do synthesis, place and route  long implement-

compile-debug loops

• Hardware in the loop (HIL)
– very high accuracy and speed (real-time)
– comes late in the design process, scalability challenge

© Accellera Systems Initiative 6

VP standards

• Focus on standards for VP development
− SW and FW running on VP may have different requirements/standards

• Usage of C++
− Performance requirements
− Compliance with existing models
− Most tools provide APIs
− Linking of scripting environments for dynamic control e.g. Python, TCL, Lua

• Standards are important for IP exchange
− Internal implementation might be different
− Standards often imply standard interfaces/APIs
− Standards typically allow easier tool deployment

• Tools can blur the line between standard and proprietary implementation
− Additional functionality provided that is vendor specific
− Model libraries may incur tool specific functionality

7© Accellera Systems Initiative

Modeling techniques
• Several modeling approaches are used to implement a VP and its

components
– Behavioral/untimed
– Functional/loosely timed
– Cycle-accurate/approximately timed
– Register-transfer-level

• A particular VP usually is a mix-and-match of these techniques

© Accellera Systems Initiative 8

Behavioral/untimed
• The untimed model is a functional

description having no notion of time
• A set of algorithmic blocks

communicating using function calls or
message pipes

• Keeps the causality and order of
invocation

© Accellera Systems Initiative 9

IF

F2

F1

Functional/loosely timed (LT)
• The loosely timed model is a structural

and behavioral refinement of the
functional model.

• Mapping of functional blocks to HW and
SW components and communication
interfaces in-between based on a chosen
architecture

• Subsystems can execute ‘ahead-of-time’
• Transactions at communication

interfaces correspond to a complete
read or write across a bus or network in
physical hardware and provide timing at
the level of the individual transaction

© Accellera Systems Initiative 10

CPU

ACCEL
(F1)

OS+SW
(IF, F2)

MEM I/O

Cycle-accurate/approximately timed (AT)
• Approximated timing on bus

communication and on hardware
resource access
– Interface communication time
– Average processing time in hardware IP

• Transactions are broken down into a
number of phases corresponding
much more closely to the phasing of
particular hardware protocols

© Accellera Systems Initiative 11

CPU

ACCEL
(F1)

OS+SW
(IF, F2)

MEM I/O

Register-transfer level (RTL)
• Models a block or SoC in terms of the flow of data between hardware

registers, and the logical operations performed on this data
• Starting point for physical implementation by synthesis, place, and route

© Accellera Systems Initiative 12

C++ class libraries for modeling

• SystemC is a class library on top of C++
− Structural description elements
− Data types
− Event driven simulation kernel

• TLM2 modeling allows for interoperability
− Reuse of existing components whether 3rd party or inhouse
− Tool environments support TLM2
− Interaction with more cycle-accurate models is well defined
– Even bridging into RTL simulators is well defined and supported by

(commercial) tools
• Productivity libraries enable faster modeling of common

components
− Registers, memories, infrastructure tasks
− Examples of libraries

− Propriatary: Synopsys SCML, Intel ISCTLM, ASTC Genesis
− Open Source: Greensocs Greenlib, MINRES SC Components

13

C++

SystemC

TLM2

SCML

© Accellera Systems Initiative

TLM2 based modeling

14

IA

Subsystems, for

instance Audio,

Graphics,

Modem etc.

• TLM2 ports are the interfaces between
modules
− Retain connection to architectural view of

SoC
− Allows for reuse of components
− Focus on interfaces, not on functionality

• Provides infrastructure for modeling
efficiency
− LT modeling allows optimization of events
− Direct-memory-interface (DMI) calls can

provide very high memory-access efficiency
− Temporal decoupling allows models to delay

synchronization with other components

TLM2 ports

Initiator
nb_transport_bw

invalidate_direct_mem_ptr

Slave
b_transport

nb_transport_fw
get_direct_mem_ptr

transport_dbg

© Accellera Systems Initiative

Modeling efficiency with TLM2 LT

15

ISS
IA

Subsystems, for

instance Audio,

Graphics,

Modem etc.

• LT (loosely timed) specifies different transport
mechanisms
− b_transport() as blocking access per transaction
− DMI calls to request memory access by pointer

• Design goals
− Minimizing synchronization with environment
− Localizing workload
− Allows for registration of callback functions

• Works well in conjunction with temporal
decoupling
− Avoid synchronization in blocking calls if possible
− Processor models can decide when to synchronize

RAM

© Accellera Systems Initiative

Productivity Libraries

• Common elements should be modeled on top
of common classes
• Registers, Memories, etc.
• Efficient for stubs or preliminary implementations

• Common infrastructure tasks should be
modeled on top of common classes
– Logging
– Parametrization
– Domain handling (Clock, reset, power)

• SCML, ISCTLM, and Genesis are examples of
(proprietary) productivity libraries
– Concepts and implementations might serve as

starting point for standardization

16

IA

Subsystems, for

instance Audio,

Graphics,

Modem etc.

© Accellera Systems Initiative

Register modeling

• Registers are one of the main interface between HW and SW
• Registers mean different things to HW and SW groups

− HW contains many registers, but only few are exposed to SW
− SW visible registers should be implemented, documented and

tested
• Consider automated code generation

− Large amount of registers
− changing requirements
− Meta data formats like IPXACT, RDL, RAL

• Having a model that allows consistent HW and SW access
modeling is important
− Access modes, reset and retention values
− Efficient access through callback functions
− Productivity layer provides register classes

17

registers

src_addr
dest_addr

control Write_start()

Write_finished()

Reset_values()

registers

enable
set
reset

© Accellera Systems Initiative

Model meta data

• Stitching models together is a recurring
and error prone task

• Using meta data is often useful
– Data visualization
– Data exchange

• IPXACT is a XML based schema for
interface descriptions
– Some tools can provide or read IPXACT

• XML parsing for simple tasks can be done
using Open source libraries

• Other examples for meta data
representations are RDL, RAL, sysML

18

IA

Subsystems, for

instance Audio,

Graphics,

Modem etc.

© Accellera Systems Initiative

Improvement of standards
• TLM2 provides a generic transport mechanism and extension

mechanisms
– Specific protocols are not described

• AMBA, PCI, MIPI are left to implementer

• Productivity libraries are not standardized
• More support for common infrastructure tasks

– Tracing
– Profiling
– Parallelization

19© Accellera Systems Initiative

Using IP for Virtual Platforms
• VP represents hardware

– SoC design typically contains a significant number of 3rd IP components
– Ideally all IP should come from same source (RTL, architecture, verification, VP models)

• Availability of IP for VP is improving, but still limited
– Availability of models often defines the usage
– Consider Co-simulation

• Processor-based models that execute SW
– User of VP is exposed to those models

• Peripheral models
– Execute functionality autonomously, but under control of SW

• Interconnect models
– Connecting different elements based on addresses

© Accellera Systems Initiative 20

Modeling processors
• Core functionality of VP
• Need support for high speed, good

debug interface, profiling, etc.
• Most embedded processor providers

also provide ISS models
– Speed versus timing accuracy

• Dynamically configurable to run in performance
mode or accuracy mode

– Links to debug environment and other SW
tools should be consistent with user
expectation

© Accellera Systems Initiative 21

ISS
IA

Subsystems, for

instance Audio,

Graphics,

Modem etc.

SW/FW

Processor modeling techniques
• Interpreting execution

– Slow but easy to implement and accurate

• Just-in-time (JIT) compiling/dynamic binary translation (DBT)
– Virtualization library converts target instructions to host instructions e.g. using

LLVM or QEMU right before executing them

• Host based/host compiled simulations
– Instead of running the target SW/FW binary on a target processor (model), run a

host-compiled representation interacting with the model of the platform
– Virtualization environments allow running the SW/FW binary

© Accellera Systems Initiative 22

ARM processor models
• ARM fast models

– LT based models for speed with debug interfaces

• Cycle accurate model based on Carbon tool
translation
– Cycle accuracy guaranteed

© Accellera Systems Initiative 23

Source: ARM support website

Tensilica processor models
• ISS from Tensilica is highly configurable

– Turbo mode (JIT) is using various
mechanisms to speed up simulation

– Non-turbo mode (interpreting) is
instruction accurate

• Models provide TLM2 based interfaces
• Tensilica provides extension to gdb for

debugging
• Integration into Tensilica tool

environment by attaching simulation
through TCP port

© Accellera Systems Initiative 24

Source: Cadence support website

Modeling peripherals
• Typical peripherals are UART, PCI, USB, timers

– May connect to the ‘real’ world by using the host
workstation resources

– Not main functionality, but important to get FW
contents right

– Synopsys DW library provides TLM2 based versions of
various IP

– Some vendors react on demand
• Various versions of peripherals are common

– Upgrading even to a new version may imply changes
in the interface

• Peripherals can have significant contribution to
system performance
– DMAs, peripherals sending video data, real-time

constraints

© Accellera Systems Initiative 25

Source: screen shot from PlatformCreator

Modeling interconnect
• The model that connects everything

– Mostly address map in VP context
– Consistent view of registers
– May contain some SW visible functionality like

firewalls, address shifting, domain crossings
• Some libraries and tools contain generic models

– Fast initial implementation
– High performance

• Some vendors provide TLM2 LT interconnect
model, e.g. NetSpeed
– Ensures consistency within design flow

© Accellera Systems Initiative 26

ISS
IA

Subsystems, for

instance Audio,

Graphics,

Modem etc.

Source: screenshot from NetSpeed NocStudio

Custom build models
• Custom models are necessary, for instance

– In house IP
– Important IP without any available 3rd party model
– Extensions to existing models

• Consider cost of maintenance
– Build based on productivity libraries
– Reuse existing models for instance untimed models

• Consider RTL co-simulation or translation like Carbon tools

© Accellera Systems Initiative 27

Commercial tools available for VP development
(exemplary list)

• Synopsys Processor Designer, Virtualizer
• Cadence Virtual System Platform
• Siemens Mentor Vista
• MathWorks Matlab, Simulink
• ASTC VLAB, Processor Modeling Studio
• Wind River Simics
• Xilinx Vivado
• ARM Carbon Model Studio, SoC Designer Plus

© Accellera Systems Initiative 28

DEMO
SystemRDL, IPXACT & SystemC

© Accellera Systems Initiative 29

DEVELOPMENT AND APPLICATIONS OF VP

© Accellera Systems Initiative 30

SoC/system & VP development phases
• Behavioral description of the SoC or

system
• Partitioning and Mapping to

Architecture (HW) and SW
• HW & FW development

• Functional, timing, power, ... validation

• SW development and further
optimization

© Accellera Systems Initiative 31

Definition/Specification

Architecture/Design

Implementation

Validation

Optimization

User roles in the VP dev phases
• Platform authors, IP authors

• Platform authors

• Platform authors, IP authors

• Platform authors, platform users (SoC
& system integrators)

• Platform users

© Accellera Systems Initiative 32

Definition/Specification

Architecture/Design

Implementation

Validation

Optimization

VP uses cases
• Architectural exploration and

performance analysis

• Functional verification
• FW development (driver, HAL,

OS)
• System performance validation
• Debug & analysis in FW/SW

development
• Continuous integration & test-

driven SW development
© Accellera Systems Initiative 33

Definition/Specification

Architecture/Design

Implementation

Validation

Optimization

Architectural exploration & performance analysis
• Mapping of a behavioral model to one or

more points in the architectural space
consisting of different HW
implementations

• Evaluation based on performance
characteristics for different system
architectures, such as a HW/SW split,
communication system, or system
components

• Typical use case for platform authors
• Important properties: accuracy wrt. to

performance metrics i.e. timing, latency,
throughput, power

© Accellera Systems Initiative 34

Functional verification
• Behavioral model allows early

development of system and
integration test thus validating
the specification

• Refined VP with final
architecture and HW/SW
partitioning serves as executable
specification for hardware
implementation

© Accellera Systems Initiative 35

Functional verification
• Can be used as a reference model

for the SoC implementation as well
as for component development
(RTL block verification)
– Replace (IP-)blocks by their RTL

counterpart and validate in system
context

– VP as part of the block test bench
• Reuse of stimuli from VP to RTL,

component to system
– E.g. using portable stimuli (Accellera

standard)

© Accellera Systems Initiative 36

FW development (driver, HAL & OS)
• Use the VP as a vehicle to execute target SW by

simulating HW behavior
• Allows shift-left by starting SW development early

in the design process
• Used by platform authors and system integrators
• Important properties: balance between speed vs.

accuracy
• Comprehensive analysis, visibility and debug

means needed
– Logging of HW and SW events (e.g. via host I/O)
– Signal & transaction tracing
– Non-intrusive debugger integration

© Accellera Systems Initiative 37

Implement

Build

Debug

System performance validation
• Validate performance of platform and SW in application scenarios

within target environments
– Reception of data at wireless modems
– Event response time in realtime critical systems

• Used by system integrators

© Accellera Systems Initiative 38

Debug & analysis in FW/SW development
• Similar to FW development
• Used by system integrators
• Focus even more on speed as not only

the platform is being simulated rather
also the target environment e.g.
cellular base stations, entire motor
controller including the control loop
containing actuators and sensors

© Accellera Systems Initiative 39

Debug & analysis in FW/SW development
• Comprehensive analysis, visibility,

tracing, and debug enables non-
intrusive observation and debug of
behavior thus easing the
debugging

• Tools like Eclipse Trace Compass or
impulse allow to fuse HW and
FW/SW events to ease debugging
system behavior

© Accellera Systems Initiative 40

Continuous integration & test-driven SW
development

• The all-in-software approach allows to deploy modern SW development
techniques like continuous integration (CI) and test-driven design (TDD)

• Each feature is being (unit-) tested so that functionality regressions can
be detected early

• Each SW change is tested before propagating to the main line of
development

• Allows close monitoring of the eSW development progress
• Maximum benefits in situations where one software system addresses

multiple hardware variants in different system contexts
• Used by system integrators

© Accellera Systems Initiative 41

DEMO
FW debugging in Eclipse using VP as target.

© Accellera Systems Initiative 42

ADVANTAGES, LIMITATIONS, AND CHALLENGES

© Accellera Systems Initiative 43

Advantages
• Early availability & easy reconfiguration
• Observability
• System fault injection & fault simulation
• Simulation speed and accuracy
• Scalability
• Enabler of agile eSW development methodology

© Accellera Systems Initiative 44

Limitations
• Simulation speed vs. accuracy
• Limited multi-threading capabilities in SystemC

– advantageous for sub-system integration and multi-core simulations

• Missing standards for runtime configuration, inspection, logging and
tracing
– integration of IPs from different vendors still very tedious

© Accellera Systems Initiative 45

Challenges
• Simulation speed vs. accuracy
• Use case broadening (FW/SW performance validation, dynamic power estimation)
• Integration of sub-system and systems

– happens at at different levels (sub-component, component, sub-system, system)
– re-use of test infrastructure between levels
– multi-core debugging, SMP, AMP
– efficient sub-system integration process – dynamic routing and linking
– availability of lower FW/SW layer required to integrate higher layer SW

• Conflict of interest between platform authors, tool and IP vendors
– platform author need maximal flexibility in terms of IP selection and tool support
– IP and tool vendor aims to lock-in platform author and user

• Exchange of VP platforms between platform authors and platform users
– legal and IP protection challenges

© Accellera Systems Initiative 46

Simulation speed vs. accuracy
• Simulation speed is crucial for the adoption of VPs
• Modern ISS reach several tens or hundreds of MIPS depending on the

complexity of the processor
• Modeling the entire platform slows down esp. If components or

communication interfaces need to be modeled in more detail and/or
with higher accuracy

• Single-threaded SystemC kernel

© Accellera Systems Initiative 47

Simulation speed and accuracy
• Ways to address this:

– Mix-n-match approach (coarse and fine grain modeled components)
– use case adapted VPs (variants)
– Multi-threading and simulation partitioning
– Simulation check-pointing
– Faster host hardware 😉😉

© Accellera Systems Initiative 48

Early availability & easy reconfiguration
• Earlier system availability by agile development

– Implementing only functionality that is needed for the use case (software
development, performance analysis)

– Incremental extension until completion with intermediate deliveries

• As communication is abstracted, a VP can easily be re-partitioned
– Graphical tools are available to ease this

• By using software build mechanisms or runtime configuration
mechanisms it’s easy to create and maintain variants or derivatives to
suit different requirements

© Accellera Systems Initiative 49

Observability
• Simulation can be stopped upon occurrence of important or interesting

events
• State of the platform (both the hardware and the software state) is

frozen and can be examined e.g. using debuggers
• Non-intrusive debugging: other than ‘real’ hardware the system cannot

determine that it has been stopped
• Same or better debugger access than hardware
• Extensive logging and tracing e.g. VCD or transaction recording allows

comprehensive post-simulation analysis

© Accellera Systems Initiative 50

Observability
• Combining hardware traces and logs with SW events and traces gives

even more insight
• Detailed analysis of system w/o

– Expensive on-chip measurement
– Slow HDL simulation

© Accellera Systems Initiative 51

Scalability
• The all-in-software approach executes target code on standard

hardware
• No dependencies on special hardware

– Other than FPGA, Emulation or HIL

• Each developer has its own target system to debug the code
• Easy scalability by adding off-the-shelf hardware like workstations or

servers

© Accellera Systems Initiative 52

Enabling agile eSW development methodology
• The all-in-software approach allows to deploy modern SW development

techniques like continuous integration (CI) and test-driven design (TDD)
• It can be easily scaled to meet developers demand and computing

requirements for CI
• Allows close monitoring of the eSW development progress and provides

benefits:
– Better code structure and quality by frequent checking and extracting software metrics
– Easier debug and less impact (less code to roll-back)
– Fewer major integration bugs (detected early and easy to track)
– Constant availability of a "current" build for testing, demo, or release purposes

© Accellera Systems Initiative 53

References
• IP-XACT, RDL, SystemC/TLM 2.0: http://www.accellera.org
• ASTC VLAB: http://vlabworks.com/
• ARM support website: http://infocenter.arm.com
• Tensilica support website: https://ip.cadence.com/support
• GreenSocs Greenlib: https://www.greensocs.com/docs
• MINRES SC-Components: https://www.minres.com/#opensource
• Eclipse Trace Compass: http://tracecompass.org/
• impulse: http://toem.de/index.php/projects/impulse

© Accellera Systems Initiative 54

Questions

© Accellera Systems Initiative 55

	Virtual Prototypes and Platforms�A Primer
	Foundations of VP
	What are not virtual prototypes & platforms
	What is a virtual prototype or platform
	Differences between virtual prototype and platform
	Alternatives to VPs
	VP standards
	Modeling techniques
	Behavioral/untimed
	Functional/loosely timed (LT)
	Cycle-accurate/approximately timed (AT)
	Register-transfer level (RTL)
	C++ class libraries for modeling
	TLM2 based modeling
	Modeling efficiency with TLM2 LT
	Productivity Libraries
	Register modeling
	Model meta data
	Improvement of standards
	Using IP for Virtual Platforms
	Modeling processors
	Processor modeling techniques
	ARM processor models
	Tensilica processor models
	Modeling peripherals
	Modeling interconnect
	Custom build models
	Commercial tools available for VP development�(exemplary list)
	Demo
	Development and applications of VP
	SoC/system & VP development phases
	User roles in the VP dev phases
	VP uses cases
	Architectural exploration & performance analysis
	Functional verification
	Functional verification
	FW development (driver, HAL & OS)
	System performance validation
	Debug & analysis in FW/SW development
	Debug & analysis in FW/SW development
	Continuous integration & test-driven SW development
	Demo
	Advantages, Limitations, and Challenges
	Advantages
	Limitations
	Challenges
	Simulation speed vs. accuracy
	Simulation speed and accuracy
	Early availability & easy reconfiguration
	Observability
	Observability
	Scalability
	Enabling agile eSW development methodology
	References
	Questions

