
Virtual PLATFORMS for complex
IP within system context

VP Modeling Engineer/Pre-Silicon
Platform Acceleration Group (PPA)

November, 12th, 2015
Rocco Jonack

2

Legal Notice
• This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS

SUMMARY.

• [BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel logo, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, InTru, the InTru logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium Inside, skoool, the
skoool logo, Sound Mark, The Journey Inside, vPro Inside, VTune, Xeon, and Xeon Inside] are trademarks of Intel Corporation
in the U.S. and other countries.

• *Other names and brands may be claimed as the property of others.

• Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the
United States and/or other countries.

• Java and all Java based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

• Bluetooth is a trademark owned by its proprietor and used by Intel Corporation under license.

• Intel Corporation uses the Palm OS® Ready mark under license from Palm, Inc.

• Copyright © 2015, Intel Corporation. All rights reserved.

SWPC COLLABORATE. INNOVATE.

ENRICH.

3

Agenda

 Problem Statement

 VPs for Different Integration Systems

 Development of Versatile VPs

 Validation of VPs

 Conclusions

SWPC COLLABORATE. INNOVATE.

ENRICH.

PROBLEM STATEMENT

5

 SoC consists of many
complex subsystems

 Tools for FW, driver and
SW development on
system level are needed

 Subsystems have to be
integrated with various
integration
environments

Problem Statement (1/2)

Example for heterogeneous SoC

architecture

6

Problem Statement (2/2)

• What is currently used for pre-silicon
development and validation?
 Virtual Platforms in many flavors  Does it support my

use model?

 N-1 hardware  Only works with minor HW changes

 FPGA  Only available with stable RTL

 Hardware accelerator (SLE)  Require significant setup

SWPC COLLABORATE. INNOVATE.

ENRICH.

Versatile VPs, usable for all required scenarios, are needed

VPS FOR DIFFERENT INTEGRATION
SYSTEMS

8

 Early validation of FW

 VP augments other
methods for pre-silicon
development

 Focus on subsystem
• Host and memory

environment is emulated

VP for FW Validation

FW running on ISS

9

 Development focus is
guest OS
 End user interacts with

guest OS
 Requires high

responsiveness and
error resilience

 Simics platform is
providing platform for
OS

 OS interacts with
subsystems
• Boot flow, power

scenarios, security, etc.

VP for Driver/SW Development
Simics platform

model running an OS

10

 Complex flows involving
several subsystems

 For example:
“listening to audio
stream over
bluetooth”

 Requires collaterals from
FW, driver and SW team

VP for Validation of System Level Flows

SWPC COLLABORATE. INNOVATE.

ENRICH.

Simics platform
model running an OS

FW running on ISS FW running on ISS

11

VP as Part of Development Flow

Executable Specification
Virtual Prototype

Architecture Design SW Development

Test SW Development
for System Verification

Chip Development &
Verification

DEVELOPMENT OF VERSATILE VPS

13

Infrastructure Requirements

• Versatile VP development needs:
 A library of base components for common functionality

 Appropriate 3rd party models

 Automatic generation of formally specified parts of SoC

 Standard interfaces for easy integration

 Efficient and versatile mechanisms to test and exchange
software components

 Unified build system ensures support for different
environments

SWPC COLLABORATE. INNOVATE.

ENRICH.

14

• VP development has
to be supported by a
productivity library
 ISCTLM contains

registers,
memories,
interconnects, etc.

 Code generation
helps with
productivity

 Using 3rd party IP
when applicable

ISCTLM Generic VP Development Flow

SpecificationFormal

Single-SourceCode Generation

ISCTLM Libs

TLM Stub

Model Functional Core

Host Emu CPU TB

Test

Case

IRQ

Handler

EMU CPU

tlm2_interconnect

DUTIRQ Latch

IF

DUT: Device Under Test

ISCTLM: Intel SystemC TLM Library – provided by ETS

TLM: Transaction Level Modeling

dttc-sctb.avi
dttc-dbg.avi

15

Simics Infrastructure and Platform

16

Generic SoC VP Setup

Using Host Based Emulation

• Alternative to running on ISS

– ISS provides detailed model,
but slow execution

– ISS may not always be
available

• Host based simulation

– Same interface for register
access and IRQ handling

– Instructions are executed on
host machine

17

emuCPU

TLM2 Initiator Socket

re
s
e
t

b
u
s
 c

lo
c
k

c
p
u
 c

lo
c
k

irq

SW

18

 Model development
starts with a simple
setup where host CPUs
are modeled simplified
without OS

 For host emulation a
ISCTLM emuCPU was
applied, running C code
test scenarios based on
adaptable bus access
macros

VP for FW Development

19

 Integration into the
Simics Platform with OS

 The previous test cases
can be reused through
OS drivers with
minimum functionality
bridging between user
and kernel space.

 Customer FW and
drivers can be
integrated

VP for Driver/SW Development

20

 Integration into Simics
Platform with OS

 OS is interacting with
multiple subsystems

 Complex synchronization
scenarios can be tested

VP for Validation of System Level Flows

VALIDATION OF VPS

22

Requirements for Test Cases in
Versatile Platforms

 Test cases have to be reused for all integration systems in
the course of development

 Some use cases might not be relevant, but status has to
be clear

 Test case description and execution requires common layer

 Using common formats and libraries as much as
possible

 Execution as part of regression has to be possible in
different environments

 Integration servers often only run in one particular
integration environment

SWPC COLLABORATE. INNOVATE.

ENRICH.

23

 Example of model types
for host representation:
• Windows on Simics / SVOS

on Simics
• emuCPU
• VboxWithUbuntu

 OS/driver layer with
common minimum
functionality:
• Support for physical

memory access and ISR
installation

• Test cases run in User
Space

Test Case Implementation by Unified
Scenarios (1/2)

Test case components for
host representation

24

 FW code for test scenarios
with hardware abstraction
layer (HAL)
• Interrupt installation, buffer

allocation, device mapping into
memory space (PNP), virtual-
physical address mapping, etc.

• Common file formats for any IO

– Test case
description/execution:
• XML format for test case

description
• Python parser used to derive

build and run scripts for
different integration systems

Test Case Implementation by Unified
Scenarios (2/2)

FW test case

25

Use Cases as Driver of Test Case
Development (1/2)

 Use cases are project specific

 N-1 FW as basis for next project

 Which components are planned to change during the
project

 Negotiation between groups about necessary features

 High-Level Architectural Specification (HAS) identifies
functionality that has to be supported

 Description can be insufficient

 More formal descriptions are needed

 Existing synthetic tests can become basis of use case
definition

 Traces from existing models

SWPC COLLABORATE. INNOVATE.

ENRICH.

26

Use Cases as Driver of Test Case
Development (2/2)

 There has to be a clear understanding about the
capabilities of the VP between user and developer

 Aligning development plans around clearly specified
use cases

 Use cases can and should evolve during the project
duration

 VP is software and can be updated relatively easily

SWPC COLLABORATE. INNOVATE.

ENRICH.

CONCLUSIONS

28

Conclusions
 Various teams actively use VPs:

 FW development → Early system integration

 SoC integration → Validation of interaction with OS
functionality

 Full platform VP → System-level validation, debug and
development

 A variety of integration systems is required

 Use cases align different integration systems

 VPs are an important strategy to parallelize FW and SW
development with HW development

SWPC COLLABORATE. INNOVATE.

ENRICH.

29

Next Steps

 Approach is currently applied by several IP and system level
integration teams and found beneficial

 We will extend it to more IP teams and also will address joint
IP scenarios.

SWPC COLLABORATE. INNOVATE.

ENRICH.

30

Acknowledgements

• Co-Authors
– Grit Christange

– Daniel Aarno

– Josef Eckmueller

SWPC COLLABORATE. INNOVATE.

ENRICH.

Questions

© Accellera Systems Initiative 31

