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 SoC consists of many 
complex subsystems

 Tools for FW, driver and 
SW development on 
system level are needed

 Subsystems have to be 
integrated with various 
integration 
environments

Problem Statement (1/2)

Example for heterogeneous SoC

architecture



6

Problem Statement (2/2)

• What is currently used for pre-silicon 
development and validation?
 Virtual Platforms in many flavors  Does it support my 

use model?

 N-1 hardware  Only works with minor HW changes

 FPGA   Only available with stable RTL

 Hardware accelerator (SLE)  Require significant setup
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 Early validation of FW

 VP augments other 
methods for pre-silicon 
development 

 Focus on subsystem
• Host and memory 

environment is emulated

VP for FW Validation

FW running on ISS
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 Development focus is 
guest OS
 End user interacts with 

guest OS
 Requires high 

responsiveness and 
error resilience 

 Simics platform is 
providing platform for 
OS

 OS interacts with 
subsystems 
• Boot flow, power 

scenarios, security, etc. 

VP for Driver/SW Development
Simics platform 

model running an OS
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 Complex flows involving 
several subsystems

 For example: 
“listening to audio 
stream over 
bluetooth”

 Requires collaterals from 
FW, driver and SW team

VP for Validation of System Level Flows

SWPC     COLLABORATE. INNOVATE. 

ENRICH.

Simics platform 
model running an OS

FW running on ISS FW running on ISS
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VP as Part of Development Flow

Executable Specification
Virtual Prototype

Architecture Design SW Development

Test SW Development 
for System Verification

Chip Development & 
Verification
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Infrastructure Requirements

• Versatile VP development needs:
 A library of base components for common functionality

 Appropriate 3rd party models

 Automatic generation of formally specified parts of SoC

 Standard interfaces for easy integration

 Efficient and versatile mechanisms to test and exchange 
software components

 Unified build system ensures support for different 
environments
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• VP development has 
to be supported by a 
productivity library
 ISCTLM contains 

registers, 
memories, 
interconnects, etc.

 Code generation 
helps with 
productivity

 Using 3rd party IP 
when applicable

ISCTLM Generic VP Development Flow

SpecificationFormal 

Single-SourceCode Generation

ISCTLM Libs

TLM Stub 

Model Functional Core

Host  Emu CPU TB

Test 

Case

IRQ

Handler

EMU CPU

tlm2_interconnect
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IF
 

DUT: Device Under Test

ISCTLM: Intel SystemC TLM Library – provided by ETS

TLM: Transaction Level Modeling

dttc-sctb.avi
dttc-dbg.avi
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Simics Infrastructure and Platform 
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Generic SoC VP Setup



Using Host Based Emulation 

• Alternative to running on ISS

– ISS provides detailed model, 
but slow execution

– ISS may not always be 
available

• Host based simulation

– Same interface for register 
access and IRQ handling

– Instructions are executed on 
host machine
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 Model development 
starts with a simple 
setup where host CPUs 
are modeled simplified 
without OS

 For host emulation a 
ISCTLM emuCPU was 
applied, running C code 
test scenarios based on 
adaptable bus access 
macros

VP for FW Development 
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 Integration into the 
Simics Platform with OS

 The previous test cases 
can be reused through 
OS drivers with 
minimum functionality 
bridging between user 
and kernel space. 

 Customer FW and 
drivers can be 
integrated

VP for Driver/SW Development 
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 Integration into Simics
Platform with OS

 OS is interacting with 
multiple subsystems

 Complex synchronization 
scenarios can be tested

VP for Validation of System Level Flows 



VALIDATION OF VPS
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Requirements for Test Cases in 
Versatile Platforms

 Test cases have to be reused for all integration systems in 
the course of development

 Some use cases might not be relevant, but status has to 
be clear

 Test case description and execution requires common layer

 Using common formats and libraries as much as 
possible

 Execution as part of regression has to be possible in 
different environments

 Integration servers often only run in one particular 
integration environment
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 Example of model types 
for host representation:
• Windows on Simics / SVOS 

on Simics
• emuCPU
• VboxWithUbuntu

 OS/driver layer with 
common minimum 
functionality:
• Support for physical 

memory access and ISR 
installation

• Test cases run in User 
Space 

Test Case Implementation by Unified 
Scenarios (1/2)

Test case components for 
host representation
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 FW code for test scenarios 
with hardware abstraction 
layer (HAL)
• Interrupt installation, buffer 

allocation, device mapping into 
memory space (PNP), virtual-
physical address mapping, etc.

• Common file formats for any IO

– Test case 
description/execution:
• XML format for test case 

description
• Python parser used to derive 

build and run scripts for 
different integration systems

Test Case Implementation by Unified 
Scenarios (2/2)

FW test case 
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Use Cases as Driver of Test Case 
Development (1/2)

 Use cases are project specific

 N-1 FW as basis for next project

 Which components are planned to change during the 
project

 Negotiation between groups about necessary features

 High-Level Architectural Specification (HAS) identifies 
functionality that has to be supported

 Description can be insufficient

 More formal descriptions are needed

 Existing synthetic tests can become basis of use case 
definition

 Traces from existing models 
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Use Cases as Driver of Test Case 
Development (2/2)

 There has to be a clear understanding about the 
capabilities of the VP between user and developer

 Aligning development plans around clearly specified 
use cases 

 Use cases can and should evolve during the project 
duration

 VP is software and can be updated relatively easily
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Conclusions
 Various teams actively use VPs:

 FW development → Early system integration

 SoC integration → Validation of interaction with OS 
functionality

 Full platform VP → System-level validation, debug and 
development

 A variety of integration systems is required

 Use cases align different integration systems

 VPs are an important strategy to parallelize FW and SW 
development with HW development
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Next Steps

 Approach is currently applied by several IP and system level 
integration teams and found beneficial

 We will extend it to more IP teams and also will address joint 
IP scenarios.
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