
VIP Shielding
Jeremy Ridgeway

LSI Corporation
Ph: +1 408-433-4257

Email: Jeremy.Ridgeway@lsi.com

Karishma Dhruv
LSI Corporation

Ph: +1 408-433-8292
Email: Karishma.Dhruv@lsi.com

Abstract—Third party verification intellectual property (VIP)
is often leveraged to achieve testing and coverage goals more
quickly. However, also in the interest of time, the verification
architecture is not sufficiently shielded from a particular VIP
vendor. VIP shielding delineates hard boundaries between the
in-house verification environment and the third party VIP. While
the acceptance of Universal Verification Methodology (UVM)
provides a springboard to VIP shielding, simply relying on the
common methodology is not enough. In this paper we show
how we incorporated a third party PCI-Express (PCIe) VIP
in our verification environment. We sufficiently shielded the
environment to enable swap-out should management deem it
necessary.

I. INTRODUCTION

Verification environment architecture should consider the
possibility of a vendor change when including third-party
VIP. A change could be required if, for example, budgets or
schedules change, the support relationship changes, or even
if the vendor is acquired or goes defunct. In fact, acquisition
must be considered whenever an independent vendor is chosen.
[7], [12], [11].1 Precisely where to instantiate third-party VIP
and how it should be utilized in the verification environment
is fraught with complication.

Starting with the device under test (DUT), a basic test bench
architecture connects to all DUT interfaces. Our experience
with a layered communication protocol guides the location of
VIP. In communication protocols, for example PCI-Express,
there is usually a clear delineation between data path and
control path interfaces. In figure 1, the vertical protocol stack
defines the data path while control tends to be sideband
signalling.

General Layered Protocol TestBench

Test

Bench

APP

TL

LNK

PHY

Test

Bench

APP
TL

LNK
PHY

Fig. 1. General test bench for layered DUT: physical (PHY), link (LNK),
transaction (TL), and application (APP) layers. The DUT may be a sub- or
super-set of the above.

1In other words, a vendor that is not Mentor Graphics, Cadence, or
Synopsys.

The test bench itself is also layered providing successively
coarse levels of abstraction, as in figure 2 [10], [4], [3], [8].
Signalling occupies the lowest layer of the test bench. This
layer contains the SystemVerilog interface and other constructs
to connect the test bench to the DUT. Next, the command or
harness layer manipulates the signals connected with the DUT
[10], [3]. In the universal verification methodology (UVM),
this layer contains the driver and monitor components within
an agent [2]. Tasks in the command layer and encapsulated
in components define the how and when to interface with
the DUT: stimulating the primary inputs and responding to
the primary outputs. The functional layer provides the means

General TestBench

Test

Bench
DUT

functional

command /

harness

DUT/VIP

Driver/Monitor

Checker

Scoreboard

signal / API

scenarioGenerator

testTest

Agent

Fig. 2. General layered verification environment.

for generation, scoreboards, and checkers. UVM sequencers
within UVM agents provide the means and connections for
data and control path stimulus generation. UVM scoreboards
and checker components implement verification environment
self-checking [4], [2]. The scenario layer contains a library
of sequences for random stimulus generation as well as coor-
dinates when and where the sequences operate. UVM virtual
sequencers and environments conduct the random verification
by initiating UVM sequences in the appropriate functional
layer sequencer [2]. The expansion of the random testing space
occurs in the scenario layer as virtual sequencers randomly
choose the order of stimulus generation. Finally, at the top of
the verification stack, the test layer constricts the random test-
ing space by (further) constraining random order and random
value generation throughout the environment [10]. Directed
testing in the constrained random verification environment is
achieved by constraining everything in a specific test.

In this paper we focus on the first three layers of the ver-
ification stack for testing a layered communication protocol,

see figure 3.
The missing point in the layered test bench is where and

how to implement third-party verification intellectual property
(VIP). In figure 3, scoreboards and checkers are used for
both ingress and egress data flow directions through the DUT.
Ingress path tests DUT correctness receiving data from some
external device while egress tests correctness transmitting.
Thus, scoreboards and checkers usually require detail about
both the highest and lowest level protocol layers.

Layers in Verification

APP

TL

LNK

PHY

Score

board

Score

board

Checker Monitor Driver Agent

Agent Driver Monitor Checker

functional functionalcommand / harness

APP
TL

LNK
PHY

Score

board

Score

board

Checker2 Monitor2 Driver2 Agent2

Agent1 Driver1 Monitor1 Checker1

functional functionalcommand / harness

Test bench

Fig. 3. A general layered verification environment connecting to a layered
communication protocol DUT; left arc represents ingress flow testing while
right is egress.

The physical layer, the PHY component in figure 3, usu-
ally connects the device to some external device, while the
application layer, APP, usually interfaces internally within
the device. While the PHY often implements a standard
communication protocol (to ensure interoperability), the ap-
plication usually does not. For example, PCI-Express devices
must strictly adhere to the physical requirements to ensure
communication with other PCI-Express devices. However, the
interface on an application layer tends towards a proprietary
interface depending on DUT features. Therefore, verification
components, as in figure 4, often are built in-house while
VIP connects to the standard interface. Figure 5 shows the
connected VIP encompassing signalling, command/harness,
and function verification layers. The VIP usually includes
scenario and test layers, as well. Basically, the VIP can act
as an autonomous external device transmitting stimulus to the
DUT and responding to received data.

Third Party VIP in Test bench

APP
TL

LNK
PHY

Score

board

Score

board

Custom Components

Third-party VIP

functional functionalcommand / harness

Test bench

PHY

Agent1 Driver1 Monitor1 Checker1

Third-party VIP

scoreboard scoreboard

APP

Checker2 Monitor2 Driver2 Agent2

Custom Components

scoreboard scoreboard

Fig. 4. Custom verification IP connecting to APP layer.

Third Party VIP in Test bench

APP
TL

LNK
PHY

Score

board

Score

board

Custom Components

Third-party VIP

functional functionalcommand / harness

Test bench

PHY

Agent1 Driver1 Monitor1 Checker1

Third-party VIP

scoreboard scoreboard

APP

Checker2 Monitor2 Driver2 Agent2

Custom Components

scoreboard scoreboard

Fig. 5. Third-party VIP connecting to PHY layer.

There is some disconnect in the verification environment
between third-party VIP and in-house custom components
when VIP is connected to one interface only. The functional
verification layer is impacted the most. Notice the connection
to the common scoreboard in figures 4 and 5. Precisely how
data enters a scoreboard is the root of the verification architec-
ture problem when combining in-house and VIP components.

In this paper we consider verification of a single data
path protocol with sideband configuration and control paths.
In section II we present considerations for VIP inclusion
in the verification environment architecture. We present VIP
shielding in section III followed by a case study of a recent
PCI-Express project in IV. Finally, we present results and
discuss conclusions in V and VI, respectively.

II. VIP CONSIDERATIONS

When implementing third-party VIP into the verification
architecture the following questions should be considered.

A. Full Data Path Testing

Can a VIP test the full DUT data path interface? (Q1)

If a VIP can fully test a DUT data path, and the project
budget allows, then this is the most expedient and efficient
course. The VIP will encompass both the highest and lowest
layer interfaces, as shown in the general test bench in figure 3,
and test the complete data path. Note that runtime-simulation
configuration may still require special handling to coordinate,
but the bulk of the testing may be directed by the VIP.

B. Partial Data Path Testing

When one extreme layer of the protocol stack conforms to
an industry standard interface while the other does not, then
the VIP is connected to one side only in the data path. This
is indicated in figure 6.

Third Party VIP in Test bench

APP
TL

LNK
PHY

Score

board

Score

board

Custom Components

Third-party VIP

functional functionalcommand / harness

Test bench

PHY

Agent1 Driver1 Monitor1 Checker1

Third-party VIP

scoreboard scoreboard

APP

Checker2 Monitor2 Driver2 Agent2

Custom Components

scoreboard scoreboard Fig. 6. Third-party VIP connects to the standard interface of a data path
while in-house components connect to the proprietary.

The VIP usually provides the full verification stack, from
command/harness layer to testing layer. With partial data path
testing, should the simulation utilize the full or partial VIP
verification stack? In the name of reuse, we often tend towards
the full stack, but each ought to be considered separately.

1) Full VIP verification stack: When the full VIP verifi-
cation stack is used in partial data path testing, VIP scenario
and possibly test layers are used to drive simulation.

Two questions are critical to implementation:

How to test DUT egress path? (Q2)

Who owns the functional layer scoreboard? (Q3)

These questions are interrelated and directly imply a verifica-
tion architecture.

Referring to (Q3), ownership of the scoreboard is relative.
If the VIP owns the scoreboard then either the VIP vendor
provides the scoreboard or the scoreboard is implemented
in-house with VIP-specific SystemVerilog classes. If the in-
house test bench owns the scoreboard, then the scoreboard is
implemented with in-house-specific SystemVerilog classes.

First, consider when VIP owns the scoreboard. In this case,
the custom components should also be implemented with VIP-
specific classes. This is the most natural configuration for
DUT ingress testing. Then, for DUT egress testing, third-
party VIP re-use should be maximized. In figure 7, the VIP
verification functional layer is separated from the command
layer. In its place, custom driver and monitor components are
implemented operating on VIP-specific SystemVerilog classes.
The scoreboard now is straightforward using the same classes
as the VIP-specific functional layers.

Third Party VIP in Test bench

APP

Monitor2 Driver2

Custom Components

scoreboard scoreboard

Checker2 Agent2
Partial third-party VIP

Third-party VIP

Driver1 Monitor1

Gasket

scoreboard

Agent1 Checker1

Partial Custom Components

PHY

scoreboard

Fig. 7. Re-using third-party VIP functional layer to support DUT egress
testing.

Now, consider when the test bench owns the scoreboard. In
this case, the custom components should not use VIP-specific
SystemVerilog classes. Instead of re-using the VIP compo-
nents, a translation sub-layer provides conversion between in-
house and VIP-specific SystemVerilog classes. Referring back
to figure 6, the translation sub-layer would exist between the
third-party VIP and the scoreboard.

This approach seems counter-intuitive. However, when the
test bench owns the scoreboard, then a change in third-party
VIP is possible within the confines of the existing verification
environment. Otherwise a new verification environment built
around a new VIP is required.

2) Partial VIP verification stack: When the full VIP veri-
fication stack is used in partial data path testing, VIP scenario
and possibly test functional layers are used to drive simulation.

When the partial VIP verification stack is used in partial
data path testing, VIP scenario and test layers are not used in
simulation. Instead, the in-house test bench employs UVM
sequences and virtual sequencers to direct the verification
environment. As such, both (Q2) and (Q3) is owned by the

in-house test bench. This is the most natural configuration for
DUT egress testing. To maximize reuse, stimulus generation
agents from the application layer side should also be used
for the physical side, as shown in figure 8 (and is essentially
the reverse of figure 7). Instead of using third-party VIP for
scenario test layers, the in-house custom components perform
the job to support DUT ingress testing.

Third Party VIP in Test bench

APP

Monitor2 Driver2

Custom Components

scoreboard scoreboard

Checker2 Agent2
Partial third-party VIP

Third-party VIP

Driver1 Monitor1

Gasket

scoreboard

Agent1 Checker1

Partial Custom Components

PHY

scoreboard

Fig. 8. Re-using custom component functional layer to support DUT ingress
testing.

Now, the scoreboard, application layer interface, and physi-
cal layer interface components all use in-house SystemVerilog
classes. The gasket shown in figure 8 implements necessary
translations between the VIP and in-house test bench. Further-
more, the gasket is fully in the command/harness verification
layer. As such, the full of the VIP instantiation is regulated to
the command/harness and signalling verification layers.

The verification environment at large, in figure 9, is shielded
from any specific VIP via the gasket.

Third Party VIP shielded in Test bench

APP
TL

LNK
PHY

Score

board

Score

board

Checker2 Monitor2 Driver2 Agent2

Agent1 VIP Checker1

functional functionalcommand / harness

Test bench

gasket

Fig. 9. Gasket shields the environment from the VIP.

III. VIP SHIELDING

VIP shielding insulates the verification environment from
changes in the third-party VIP. This is accomplished in dual
roles. First, shielding means separating the in-house test bench
from the third-party code. Hard boundaries must exist in
the test bench, ensuring no in-house code direct access to
third-party VIP. This is especially important for data path
components as they encompass the bulk of the functional
testing and coverage. Second, shielding defines a common
interface in which to interact with any specific third-party VIP.
The essential common interface is one or more abstract classes

that define a set of methods the in-house test bench interacts
with. These methods provide to the test bench the means, in
simulation, to:

A. configure the VIP, and
B. handle data.
If the vendor can meet the requirements of the abstract

interface then the VIP is guaranteed compatible with the test
bench. In figure 10, the gasket represents the abstract interface.
The solid arrows indicate represent method calls between
test bench components and the gasket. For example, driving
data from the test bench to the gasket could be achieved via
a function call to the gasket. In UVM, this could also be
a transaction level model (TLM) port such as an analysis
port. The dotted arrows represent the abstract methods that
must be implemented in the gasket to integrate with the VIP,
for example driving data to the VIP from the gasket. These
methods are the minimum test bench requirements for any VIP.
If the vendor can integrate with the environment only defining
these methods, thereby defining a VIP-specific gasket, then the
VIP is compatible.

Gasket

VIP

gasket

Fig. 10. Abstract gasket interface. Test bench components use methods
depicted as solid arrows; VIP-specific gasket implements abstract methods
depicted as dotted arrows.

Each of the configuration and data paths is described in
more detail in this section. Following, a reference gasket class
hierarchy is presented.

A. Configuration Path
A simple example of VIP shielding on the configuration or

control path is the register abstraction layer (RAL) model in
UVM, refer to figure 11. The verification environment does not
need to know whether the actual CPU bus model exercising
register reads and writes is from Synopsys, Cadence, or any
other vendor. As long as the VIP conforms to the requirements
of the RAL model, it will work in the verification environment.

Gasket Layers

The command layer becomes a back door

component for the VIP RAL model.

Translation occurs when: (a) VIP read/write

addresses are not aligned properly, and

(b) to coordinate read/write between

differing VIP vendors.

functional

command /

harness
translation

VIP

back door

RAL Model

signal / API

Fig. 11. Gasket layers in the configuration path.

The RAL model front door or back door access to registers
is the gasket shielding the test bench in the configuration

and/or control path. In figure 11, the RAL model exists in
the functional layer because it encapsulates the agents and
checkers required to drive and respond to command/harness
layer operations. When test code requests a register read, the
RAL model instructs the appropriate door to execute a register
transaction and return results.

The generic RAL model gasket to VIP are the abstract UVM
classes that define the back door interface, uvm reg backdoor
[1]. With VIP shielding, the RAL model should contain all
configuration parameters that the test bench can modify. In
the vendor-specific back door gasket code, a translation from
in-house parameter to vendor parameter occurs. This could
be an address translation (one register to another) or a value
translation. VIP shielding delineates a hard boundary between
the in-house test bench configuration and VIP configuration
that operates transparent to test code.

B. Data Path

Data path VIP shielding tends to be more complicated than
RAL because it is more tightly integrated to the verification
environment. In figure 9, we have isolated the third-party VIP
within the boundaries of a gasket. The gasket is a collection
of abstract classes that define an interface which the in-house
test bench must use. Test bench components or sequences that
require VIP access shall use this interface. The gasket contains
both an application programming interface (API) as well as
necessary UVM transaction level modeling (TLM) ports and
implementation ports. Gasket Layers

Command layer is UVM port attached to

a general API to interface to a VIP. The API

defines desired functionality.

Two paths are defined. Agent drives the TB

to VIP path while gasket drives VIP to TB path.

This is through callbacks from the VIP.

Agent is reused from application layer through

UVM factory overriding TLM connection. Instead

connecting to APP layer driver, agent connects

to appropriate gasket command layer TLM port.

functional

command /

harness
translation

VIP

command

Agent1 Checker1

Scoreboard

signal / API

PHY

Fig. 12. Gasket layers in the data path.

In figure 12, the agents re-used from custom components
handle scenario and random stimulus generation on the trans-
mit path as well as checking on the receive path. The gasket
defines methods for the functional layer to transmit and receive
data packets. The agent shown drives data transmission. The
gasket reacts by translating the packet to VIP-specific classes
and forwarding to the VIP via API. Simultaneously, the VIP
drives data reception through callbacks to the gasket. The
gasket reacts again by translating the packet to in-house-
specific classes and forwarding to the checkers.

C. Gasket

Conceptually, the gasket looks complicated, but implemen-
tation is generally straightforward. The internal facing side of
the gasket is a lightweight set of APIs the test bench requires
to interact with the VIP. These functions are fully defined. For

gasket_intf #(type vip_datum=int)
Functions

+ virtual pure vip_datum convert_int2vip (dat : int_datum)
+ virtual pure vip_datum convert_vip2int (dat : vip_datum)
+ virtual pure void drv_vip_egress (dat : vip_datum)

vip_impl #(type vip_datum=VIP_PKT_TYPE)
Functions

+ vip_datum convert_int2vip (dat : int_datum)
+ vip_datum convert_vip2int (dat : vip_datum)
+ void drv_vip_egress (dat : vip_datum)

gasket_base #(type vip_datum=int)
Variables

+ drv2vip_port : uvm_analysis_imp_vip_drv #(int_datum,mytype)
+ datum_egr_ap : uvm_analysis_port #(int_datum)
+ datum_ingr_ap : uvm_analysis_port #(int_datum)

Functions

+ virtual void write_drv2vip_port (dat : int_datum)
+ virtual void drv_datum2egr_env (dat : vip_datum)
+ virtual void drv_datum2ingr_env (dat : vip_datum)

Fig. 13. General data type gasket architecture.

example, in figure 13, gasket base has three ports:
• drv2vip port is the data transmit path from test bench to

the VIP,
• datum egr ap is an analysis port passing transmit data to

the test bench scoreboard (expected data),
• datum ingr ap is an analysis port passing receive data to

the test bench scoreboard (observed data).
Each port connects to a test bench component. The internal
facing side of the gasket remains unchanged between VIP
vendors.

The gasket external facing side interacts with the VIP. These
functions are abstract (pure and virtual in SystemVerilog),
gasket intf from figure 13, and must be defined for a specific
vendor. Essentially, they determine what needs to be imple-
mented for test bench communication with the VIP. Then,
they are defined for a specific VIP in some vip impl extension
class.

Once the initial gasket architecture is completed, the task
to change between vendors involves implementing a new VIP-
specific gasket, new vip impl. The test bench at large remains
separate and unchanged.

IV. CASE STUDY: PCI-EXPRESS PROJECT

In a recent PCI-Express project, we were tasked with
developing an approach for VIP shielding in the data path.
This was because we anticipated a transition after starting
the project from an older version to a newer version of the

same Vendor’s VIP. The versions were not strictly compatible
because the vendor itself was transitioning to native UVM
classes.

Our DUT consisted of PCI-Express transaction and link lay-
ers. The connection from link layer to physical layer adhered
to standard PIPE interface [9]. The application layer interface
was proprietary. Any VIP chosen could partially test the data
path only, as in section II-B. We chose the Cadence PCI-
Express VIP to fill the role in a partial VIP verification stack
and focused our work on application layer custom components
[6]. A gasket layer was placed between the VIP and the re-used
custom components to handle data transmission and reception
with the DUT, as in figure 9.

A. Gasket Architecture

The gasket is an abstract class that defines an interface for
the test bench at large. The diagram in figure 14 shows the
necessary connections between the gasket and other custom
components. Finally, the class hierarchy for our PCI-Express

Gasket Environment Connections

GasketEgress Agent

Egress

Scoreboard

Ingress

Processor

Error

Injection

VIP

drv_vip_egress callback

command / harness functionalfunctional

Fig. 14. Gasket connections to verification environment custom components:
xmt ap analysis port to egress scoreboard, rcv ap to ingress processor, and
errinj ap for error injection .

project implementing Cadence VIP is in figure 15. The base
class, pcie gasket has two parts, UVM TLM port connections
and translation services.

First, the connections are all analysis ports. After a
data packet is randomly generated, it passes to the gasket
through its egress implementation port, vip drv, and defined
in write vip drv . Upon entering the gasket, the in-house-
specific packet class is translated to VIP-specific class via the
convert pcie2vip function. Then, it’s passed to the VIP via the
drv write egress abstract function. This function is the main
transmit data path, as shown in 14. Next, upon a VIP callback,
the packet passes from the VIP into the gasket and out to
the requisite functional layer component. The callback type
indicates the destination component.

To support the data path connections, the VIP must support
an API to drive all data traffic for transmission to the DUT.
Also, the VIP must support distinguishing types of callbacks
with data traffic that the gasket passes on to upper layer
components. Note that both transmit and receive path callbacks
must be supported. Finally, the VIP must have an open class
definition to allow appropriate translation between in-house
test bench and VIP-specific data packet classes.

pcie_cdn_gasket
Variables

m_cdn_cb_handler : cdn_callbacks
Functions

+ vip_pkt convert_pcie2vip (pkt : pcie_pkt)
+ pcie_pkt convert_vip2pcie (pkt : vip_pkt)
+ void drv_vip_egress (pkt : vip_pkt)
+ void build_phase (phase : uvm_phase)

pcie_gasket #(vip_pkt=int)
Variables

+ vip_drv : uvm_analysis_imp_vip_drv #(pcie_pkt,mytype)
+ pkt_xmt_ap : uvm_analysis_port #(pcie_pkt)
+ pkt_rcv_ap : uvm_analysis_port #(pcie_pkt)
+ pkt_errinj_ap : uvm_analysis_port #(pcie_pkt)

Functions

+ virtual pure vip_pkt convert_pcie2vip (pkt : pcie_pkt)
+ virtual pure pcie_pkt convert_vip2pcie (pkt : vip_pkt)
+ virtual void write_vip_drv (pkt : pcie_pkt)
+ virtual pure void drv_vip_egress (pkt : vip_pkt)
+ virtual void drv_pkt2egr_env (pkt : vip_pkt)
+ virtual void drv_pkt2ingr_env (pkt : vip_pkt)
+ virtual void drv_pkt2errinj_env (pkt : vip_pkt)

uvm_component

Fig. 15. Gasket interface class.

The Cadence PCI-Express VIP did support all connections.
A single entry point into the Cadence VIP was a user transmit
queue access via API. In figure 15, all callbacks were encap-
sulated in the handler class noted. The callbacks used were:

1) User queue exit to transaction layer,
2) Start transmitting packet,
3) Packet received.

When a test bench generated packet is ready for transmission
by the VIP, it exits the user queue. This is the callback used
for passing ingress traffic to the scoreboard. The received
packet callback connects to the egress scoreboard. Finally,
the callback just prior to transmission enables verification
environment error injection.

B. Connecting the Custom Components

We re-used the egress path data generators on the ingress
path. Figure 16 shows how the egress agent connects to the
DUT application layer. In the figure, the driver maintains a
local reference to the virtual interface connected to the DUT.
Thus, this driver in the command/harness verification layer
manipulates DUT primary IOs.

Our test bench handled random traffic generation on both
the egress and ingress data paths. Therefore, we re-used the
egress agent in the ingress data path. This was accomplished
by replacing only the driver class instantiation in the egress
agent with one that connects to the gasket implementation port,
a protocol layering technique described in [5].

Note that while it is not shown in the figures, the monitor
class was also replaced for the gasket connection. However,

Gasket Connecting through Factory

functional

Egress Agent

Driver

DUT

APP

Interface

D

U

T

Sequencer

command /

harness
signal / API

Egress Env

functional

Egress Agent

Gasket

Driver
Sequencer

command /

harness
signal / API

Egress Env

Gasket VIP

Fig. 16. Egress agent connecting to DUT application layer interface.

Gasket Connecting through Factory

functional

Egress Agent

Driver

DUT

APP

Interface

D

U

T

Sequencer

command /

harness
signal / API

Egress Env

functional

Egress Agent

Gasket

Driver
Sequencer

command /

harness
signal / API

Egress Env

Gasket VIP

Fig. 17. Egress agent modified to connect to VIP through gasket interface.

it was not required because VIP callbacks were used instead.
The monitor class override provided no functionality; it was
a stub.

pcie_egress_gasket_driver
Functions

+ void build_phase (phase : uvm_phase)
Tasks

+ main_phase (phase : uvm_phase)

pcie_egress_driver

Fig. 18. Gasket driver extension class.

Referring to figure 18, the extended egress driver only
contains functionality in the main phase.

(It also uses the UVM automation macros for the factory to
be aware of the class). In the parent UVM environment class
that instantiates the egress agent on the gasket interface, we
override the driver instance through the UVM factory.

/ / O v e r r i d e d r i v e r t o c o n n e c t t o g a s k e t
f a c t o r y . s e t i n s t o v e r r i d e b y t y p e (

p c i e e g r e s s d r i v e r : : g e t t y p e () ,
p c i e e g r e s s g a s k e t d r i v e r : : g e t t y p e () ,
{ g e t f u l l n a m e () , ” .∗ ” }) ;

/ / Cr ea t e t h e e g r e s s env t h r o u g h f a c t o r y
e g r e s s e n v = p c i e e g r e s s e n v : : t y p e i d : :

c r e a t e (” e g r e s s e n v ” , t h i s) ;

At runtime, the physical layer egress agent connected to the
gasket, see figure 17, uses the same scenario sequences as in
the application layer interface. Instead of passing the generated
data packets to the DUT, however, it passed them to the VIP
for transmission to the DUT.

C. Connecting the RAL model

We instantiated a RAL model for VIP configuration. The
VIP parameters that were pertinent to our simulation runtime
setup were listed as registers in the RAL model. Then, as
shown in figure 19, the back door access acted as gasket code
for our environment.

RAL Model Connections

functional

Backdoor

access
RAL

command /

harness
signal / API

VIP

Fig. 19. RAL connects to VIP configuration; translation, if necessary, occurs
in the back door class.

The RAL back door gasket fulfilled two roles. First, it
connected the UVM RAL model to the API provided by the
VIP for configuration. Second, it provided address translation
to align the RAL model registers with what the VIP expected.
In figure 20, the base back door class, pcie reg backdoor,

pcie_reg_backdoor
Functions

+ virtual pure void addr_transl (offset : uvm_addr_t)
+ virtual void write_func (rw : uvm_reg_item)
+ virtual void read_func (rw : uvm_reg_item)

Tasks

+ virtual write (rw : uvm_reg_item)

pcie_reg_cdn_backdoor
Functions

+ void addr_transl (offset : uvm_addr_t)
+ void write_func (rw : uvm_reg_item)
+ void read_func (rw : uvm_reg_item)

uvm_reg_backdoor

Fig. 20. RAL back door gasket for VIP configuration.

implements the write function only, as required by UVM.
The VIP specific back door gasket implements the address
translation as well as connecting the read and write functions
to Cadence provided APIs to configure the VIP. Note that a
reference to the register being operated on is available in the
provided uvm reg item. This allowed our back door access to
include non-traditional parameters like a time unit string.

The RAL model is general enough to handle most zero-
time configuration methods. However, because configuration
is non-standard between vendors, we do anticipate this step
taking some time in the case of VIP vendor change.

V. RESULTS

Our verification environment supports VIP vendor change
when they conform to the requirements of both the PCI-
Express standard as well as the gaskets. First, the VIP

is directly connected to the DUT via the standard PCI-
Express physical layer interface. Any PCI-Express vendor
should support this connection. In the test bench, only the
VIP command/harness and signalling layers are utilized. We
have regulated connections to the VIP through two gasket
points, one for data path and one for configuration, as in
figure 21. Any considered VIP vendor must conform to gasket
requirements in order to integrate well in our test bench.

1) The VIP must support callbacks when:
a) data is queued for transmission,
b) data is ready for transmission, and
c) data is received.

2) The VIP must accept user generated data for transmis-
sion, and:

a) must allow user data to transmit as-is (no checking
and no changes),

b) must allow user to modify transmit data,
c) modified data must be transmitted as-is (no check-

ing and no changes).
3) The VIP must support dynamic configuration via func-

tion call(s).
The verification architecture was designed to support swap-

out. However, as the version of the VIP was released prior
to full environment implementation, a true swap-out was
not required. We are not concerned with acquisition and do
have requisite assurances on the existing VIP support model.
The variable, as verification engineers, exists with upper-
management business decisions. To that end, the test bench
is able to withstand a vendor change within the confines of
the current verification environment.

pcie_cdn_gasket

pcie_reg_backdoor

pcie_reg_cdn_backdoor pcie_reg_vndr_backdoor

pcie_vndr_gasket

pcie_gasket

Fig. 21. Supporting multiple vendors simultaneously.

Referring to figure 21, integration into the full verification
environment of a new VIP requires only gasket implemen-
tation. Once the VIP is instantiated and statically configured
properly, dynamic configuration would be debugged at simula-
tion start. Finally, full constrained random simulation occurs.

We found the effort required to implement the gasket itself
to be minimal as only a few functions were required. For
the VIP vendor chosen, most of our time was spent scouring
documentation and contacting their support to understand how
to define the gasket data path functions. Once determined,

implementation was straightforward. The configuration path,
however, was more complicated in that it was not immediately
obvious how to compose the RAL model and connect to the
VIP. For expediency, we settled on using the vendor’s register
set as our model. However, moving to another vendor will
require a register mapping from one address set to another.
We feel that VIP configuration will remain the greatest time
requirement in swap-out.

VI. CONCLUSION

We presented an approach to VIP inclusion in verification
architecture that allows for vendor or major revision change
through VIP shielding. We found that a gasket is sufficient to
shield the verification environment from the specificities of the
VIP. Furthermore, implementation of the gasket is relatively
straightforward utilizing features of UVM and SystemVerilog.

However, a trade-off in effort and responsibility does exist.
With partial data path testing (VIP connected to one side of
the DUT) and partial VIP stack (using some but not all the
verification layers), the onus is on the in-house environment
for all verification activities. The VIP can assist in protocol
checking, but as its scenario layer is disabled it cannot produce
random stimulus. However, if the VIP can be utilized in both
extremities of the DUT protocol layer, then the verification
onus returns to the VIP. Considering the unknown nature of
the VIP market and management decisions, having a plan for

VIP change without disrupting verification (too much) is a
wise idea.

REFERENCES

[1] Universal verification methodology reference implementation. http://
www.accellera.org/downloads/standards/uvm, October 2010.

[2] Acellera. Universal Verification Methodology (UVM) 1.1 User’s Guide,
2011.

[3] J. Bergeron. Verification Methodology Manual for SystemVerilog.
Springer, 2006.

[4] J. Bergeron. Writing testbenches using System Verilog. Springer
Science+Business Media, 2006.

[5] J. Bergeron, F. Delguste, S. Knoeck, S. McMaster, A. Pratt, and
A. Sharma. Beyond uvm: Creating truly reusable protocol layering.
In Design & Verification Conference, 2013.

[6] Cadence Design Systems, Inc. Cadence PCI Express PureSpec VIP User
Guide, 11.3 edition, July 2011.

[7] Denali Software, Inc. Cadence to acquire Denali. http://www.denali.
com/wordpress/index.php/news/2010/05/13/cadence-to-acquire-denali,
May 2010.

[8] S. Iman. Step-by-Step Functional Verification with SystemVerilog and
OVM. Hansen Brown Publishing Company, 2008.

[9] Intel Corporation, Inc. PHY Interface for the PCI Express Architecture,
PCI Express 3.0, revision .9 edition, 2010.

[10] C. Spear. SystemVerilog for Verification, a Guide to Learning the
Testbench Language Features. Springer Science+Business Media, 2010.

[11] Synopsys, Inc. Synopsys acquires nSys Design Systems. http://news.
synopsys.com/index.php?s=20295&item=123308, Sep 2011.

[12] Synopsys, Inc. Synopsys acquires ExpertIO. http://news.synopsys.com/
index.php?s=20295&item=123347, Jan 2012.

http://www.accellera.org/downloads/standards/uvm
http://www.accellera.org/downloads/standards/uvm
http://www.denali.com/wordpress/index.php/news/2010/05/13/cadence-to-acquire-denali
http://www.denali.com/wordpress/index.php/news/2010/05/13/cadence-to-acquire-denali
http://news.synopsys.com/index.php?s=20295&item=123308
http://news.synopsys.com/index.php?s=20295&item=123308
http://news.synopsys.com/index.php?s=20295&item=123347
http://news.synopsys.com/index.php?s=20295&item=123347

	Introduction
	VIP Considerations
	Full Data Path Testing
	Partial Data Path Testing

	VIP Shielding
	Configuration Path
	Data Path
	Gasket

	Case Study: PCI-Express Project
	Gasket Architecture
	Connecting the Custom Components
	Connecting the RAL model

	Results
	Conclusion
	References

