
All UVM engineers employ scoreboarding for checking DUT versus reference model

behavior, but only few spend their time wisely by employing an existing scoreboard

architecture. Main reason is that existing frameworks have inadequately served the

user needs, and have failed to accelerate the user efficiency in the debug situation.

This work presents a better UVM scoreboard framework, focusing on scalability,

architectural separation and connectivity to foreign environments. Our scoreboard

architecture has successfully been used in UVM testbenches at various architectural

levels, across models (RTL, SystemC) and on physical devices (FPGA/ASICs).

Based on our work, the SystemVerilog/UVM user ecosystem will be able to improve

how scoreboards are designed, configured and reused across projects, applications

and models/architectural levels.

ABSTRACT

MOTIVATION – CURRENT LANDSCAPE

CONCLUSIONS

In this work we propose an industry-proven, scalable UVM scoreboard architecture,

Addressing the increasing challenges met when performing functional verification,

UVM proposes a firm and productive approach for how to build and reuse

verification components, environments and sequences/tests. When it comes to

describing how to scoreboard and check the behavior of your design against one or

more reference models, the UVM code base as well as the UVM ecosystem offers

less help:

• UVM native scoreboard is empty

• Existing user donations are limited in versatility, employ blocking

”expect” function as reference model[1]

• Expect function inhibits use of time consuming reference models (e.g.

SystemC)

• Expect function inhibits use of multiple concurrent models

SyoSil ApS, Copenhagen, Denmark

Jacob Andersen, Peter Jensen, Kevin Steffensen

Versatile UVM Scoreboarding

VC A

SCB

M1

Ai Ao

A1 B1 A2 A3

DUT Queue

SV/UVM

SC

SV/UVM

SC

A1 B1 A2 A3

SC/C++ Queue

UVM Connect used :

Python

App Socket

Custom

App Socket

Python

scripts

Custom

extensions

Logger
TXT / XML

Log File

R
u

n
-t

im
e

P
o

st
-

si
m

u
la

ti
o

n

The scoreboard utilizes the UVM configuration database such that it can be

reconfigured on the test case level. This allows changing e.g. the number of queues

and compare algorithms. For instance, a user extension of cl_syoscb_cfg can be used

for this purpose:

class cl_scb_myconfig extends cl_scb_uvm_config;

function new(string name = "cl_scb_myconfig");

scb_cfg.set_queues({“RTL”, “M1”});

scb_cfg.set_primary_queue(“RTL”);

scb_cfg.set_producer(“A”, {“RTL”, “M1”});

scb_cfg.set_producer(“B”, {“RTL”, “M1”});

endfunction

endclass

Once the scoreboard is properly configured a standard uvm_sequence_item easily

can be inserted into the scoreboard without manually managing the meta data. In the

below example, the verification environment uses the transaction based API to

retrieve the analysis export for connection with the analysis port of the verification

component:

cl_scb_uvm scb;

…

myvc.ap.connect(scb.get_aexport(“RTL”, “A”));

Alternatively, manually add to queue by implementing an analysis export write

method:

function void cl_myscb::write_A(A_seq_item item);

this.add_item(”RTL”, ”A”, item);

endfunction

CONFIGURATION AND QUEUE INSERTION

QUEUE COMPARISON METHODS

SUCCESS STORIES

Our UVM scoreboard architecture has been across numerous UVM/VMM projects.

Typically we see such projects obtaining an approximate 15% code reduction

compared to creating the scoreboard from scratch using the empty uvm_scoreboard

class. Scoreboard setup, configuration and validation can be done in less than a day,

even for complex designs, offering easy ramp-up for engineers new to UVM and the

use of scoreboards. Furthermore, experienced engineers easily pick up and extend

test benches created using the scoreboard library, as the scoreboard look and feel is

same across applications and engineers. Out of the box, engineers benefit from an

inherent top performing scoreboard with very good debug capabilities, prepared for

hooking up to external interfaces.

Besides interfacing to UVM using analysis ports, establishing links to non-

UVM/non-SystemVerilog code is essential to keep the scoreboard versatile and

reusable, enabling the use of external checkers and debug aiding scripts. For this

purpose, the scoreboard framework offers a number of external interfaces:

NON-UVM CONNECTIVITY

The UVM Connect library enables seamless TLM1/TLM2 communication between

SystemVerilog/UVM and SystemC [2]. We employ the library for implementing most

run-time interfaces depicted above. For connecting analysis ports between

SystemVerilog/SystemC, we employ uvmc_tlm1 sockets with generic payloads,

using the “sv2sc2sv” pattern where SystemVerilog and SystemC both act as

producer/consumer.

The scoreboard can be used with transactions streams from external resources, e.g.

IMPROVEMENTS

Since first published [4], the underlying implementation of the UVM scoreboard has

undergone some changes in order to improve the usability and tool compatibility with

the three big simulator vendors. In general three major changes have been done:

• Changes in the class hierarchy

• Changed methods for enforcing APIs

• Minor changes to obtain simulator compatibility, now supporting

• Synopsys VCS® version J-2014.12

• Mentor Questa® Advanced Simulator version 10.3c

• Cadence® Incisive® version 14.10.014

For each model (M1 … Mn) attached to the scoreboard, any number of queues can be

handled. Each queue contains meta-transactions, wrapping UVM sequence items

along with metadata. This allows same queue to contain different transaction types

not necessarily comparable with each other. The metadata ensure that only queue

elements of same type are compared.

QUEUE ORGANIZATION

In this work we propose an industry-proven, scalable UVM scoreboard architecture,

able to interface to any number of design models across languages, methodologies,

abstractions and physical form. Any relationship between data streams can be

checked using pre-packaged and custom compare methods, and we make it easy to

interface external checker and debug aiding applications. Based on our work, the

SystemVerilog/UVM user ecosystem will be able to improve how scoreboards are

designed, configured and reused across projects, applications and

models/architectural levels.

REFERENCES

[1] Accellera Forum, UVM Resources, http://forums.accellera.org/files/category/3-uvm/

[2] Mentor Graphics, UVM Connect Library,

https://verificationacademy.com/topics/verification-methodology/uvm-connect

[3] Accellera Standards, SCE-MI (Standard Co-Emulation Modeling Interface),

http://www.accellera.org/downloads/standards/sce-mi

[4] Versatile UVM Scoreboarding, Andersen, Jensen & Steffensen, DVCon Europe 2014

[5] “IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and

Verification Language.” IEEE Std 1800-2012, 2012.

GENERAL AVAILABILITY

Our UVM Scoreboard architecture has been released for general availability under

the Apache 2.0 license, featuring the UVM Scoreboard base classes, examples as well

as release notes and documentation.

The package can be obtained from following web resources:

Accellera UVM Forum:

http://forums.accellera.org/files/file/119-versatile-uvm-scoreboard/

SyoSil homepage:

http://syosil.com/index.php?pageid=33

Any suggestions for how to improve the base classes and examples are very

welcome, including potential bug reports. Please direct such feedback per email to

the authors at

scoreboard@syosil.com

A reusable scoreboard is key for productivity and easy debug. We identify following

user needs, naturally being addressed by our scoreboard architecture:

• Fast out of the box, easy to configure

• Consistent re-use

• Scalability (any number of models, queues, producers, compare

methods)

• Clean interfaces to self contained models, e.g. SystemC

• Accelerated debug

• Inherently best performance

• Linear and not polynomial queue search complexity

• Advanced use : Connect to foreign environments

VC A

sequences

req rsp

DUT

A

B

VC B

sequences

req (VC stimuli) + rsp (DUT response)

req (VC) + rsp (M1)

req (VC) + rsp (Mn)

SCB

M1

Bi

Ai

Bo

Ao

Mn

Bi

Ai

Bo

Ao

A1 B1 A2 A3

DUT Queue

A
’s

 a
n

d
 B

’s
 c

o
m

p
a

re
d

,
re

sp
.

in
cl

u
d

in
g

re
q

/s
ti

m
u

li
p

a
rt

A1 A2 A3 B1

M1 Queue

A1 B1 A3 A2

Mn Queue

sequence_item

wrapped with metadata

A1

DUT Queues

A2 A3

B1

A1

M1 Queues

A2 A3

B1

A1

Mn Queues

A3 A2

B1

copy +

replace rsp:
Alternative queue

configuration

(breaks ordering):

req rsp

req (DUT) + rsp (VC)

req (M1) + rsp (VC)

req (Mn) + rsp (VC)

SCB

SV/UVM

SC

UVM Connect used :

Physical /

external

device

A1 B1 A2 A3

DUT Queue

C
o

m
p

a
ri

so
n

o
f

A
,B

s

A1 A2 A3 B1

M1 QueueM1

Ai Ao

Python

App Socket

Python

scripts

Logger
TXT / XML

Log File

Run-time

Post-

simulation

cl_syoscb

uvm_scoreboard

cl_syoscb_compare

cl_syoscb_queue

cl_syoscb_itemcl_syoscb_queue_std ANY uvm_sequence_item

uvm_sequence_item

cl_syoscb_compare_base

cl_syoscb_compare_ooo cl_syoscb_compare_io cl_syoscb_compare_io_producer

cl_syoscb_locator

cl_syoscb_queue_iterator_base

cl_syoscb_cfguvm_object

cl_syoscb_queue_iterator_std

uvm_component

Factory

Factory+Strategy

Tag: A

A1

Tag: B

B1

Tag: A

A2

Tag: A

A3

Queue:

Model X

Ports A,B

Tag: B

B1

Tag: B

B2

Tag: A

A2

Tag: A

A1

Queue:

Model Y

Ports A,B

Comparison only if

metadata tag matches

Model X

Port A

Port B

Model Y

Port A

Port B

A1 B1 A2 A3

Out of Order :

A3 B1A1A2matches

A1 B1 A2 A3

In Order by Producer

matches A1 B1A2 A3

A1 B1 A2 A3

In Order

matches A1 B1 A2 A3

Pre-packaged comparison methods are available, for instance:

QUEUE COMPARISON METHODS

IMPLEMENTATION

Custom compare methods are easily authored and configured for use on the testcase

level. Compare methods are implemented using the built-in iterator/locator

mechanism to search, traverse and compare the queues. Queue searching is done by

calculating hash keys by MD5’ing byte representations of the sequence items,

resulting in a linear rather than a polynomial search complexity.

Our scoreboard is able to simultaneously interface and compare any number of

models: Design models (RTL, gate level), timed/untimed reference models

(SystemVerilog, SystemC, C/C++, Python), as well as physical devices like FPGA

prototypes/ASICs. As a logical consequence, we assume a clear architectural

separation between the models and the scoreboard implementation, the latter

containing queues and comparison mechanisms:

SCALABILITY & ARCHITECTURAL SEPARATION

The generic scoreboard architecture is implemented by extending standard UVM

base classes. This allows us to use the UVM Factory to specialize a scoreboard

implementation, e.g. by changing the comparison algorithm for a specific test.

The scoreboard can be used with transactions streams from external resources, e.g.

by obtaining logs from devices running in the lab (silicon, FPGA, emulators).

Depending on the log format, we use either the XML Interface or the Python App

Socket to retrieve the log transactions as UVM sequence items:

Get the Scoreboard

UVM code today !

