
Verifying Multiple DUV Representations with a

Single UVM-e Testbench

Matt Graham

Applications Engineering

Cadence Design Systems

Ottawa, Canada

magraham@cadence.com

I. BACKGROUND

As Systems on a Chip (SoCs) becoming increasingly larger,

more complex, and further reaching in feature inclusion,

designers and verification engineers continue to be challenged

to develop and refine strategies to effectively develop and test

their products. Terms like “reuse,” “divide and conquer,” and

“advanced methodology” are regularly used, but their efficient

application is not trivial.

Consider the case of a group of intellectual property (IP)

developers creating some advanced processing IP within a

large semi-conductor manufacturer. Groups such as this are

commonplace, with the resultant IP processing everything

from video and audio data (frames or samples) to digital

network traffic (packets). Such groups are almost uniformly

staffed with experienced design and verification engineers.

Most employ advanced design and verification methodologies,

and have an excellent track record of successful, first pass

deliveries.

Despite all of this technology, experience and past success, IP

development cycles are continually under pressure to improve.

Increasingly complex IP must be delivered with equally high

quality with decreasing resources, be they headcount, budget,

time, or often, all three. Development teams are having to

look to more creative and innovative solutions to solve their

schedule and resource constraints while still producing high

quality results.

II. DEVELOPMENT FLOW

Recently, a group of video IP developers began exploring the

option of automatically generating Verilog RTL based on

previously developed C models of the processing algorithms.

The development team was already producing C models to

refine the various video processing algorithms to be included

in the IP. The IP needed to be delivered approximately once

every six months, with each delivery including new

processing capabilities, increased speed and efficiency, and

more data throughput than the previous generation. The team

had been using the C algorithm models as part of the

development process for some time, but up to this point had

always coded the hardware representations of the algorithms

by hand using Verilog. See Fig. 1.

Fig. 1. Traditional Development Flow

To be able to take advantage of the automated process for

moving from C to Verilog, the C models had to be updated

somewhat to include further implementation information.

Thus the team had now created what they referred to as “Tool

Ready C-models”. See Fig. 2.

Fig. 2. Automated RTL generation development flow.

III. PROBLEM STATEMENT

Despite being “Tool Ready” the C models were not

implemented in SystemC. This was a result of a requirement

of the C to RTL conversion tool rather than a specific design

decision. Despite the automated nature of the conversion from

C to RTL, delivery of usable RTL for verification lagged the

delivery of the C models by approximately five weeks.

The verification team also determined that the entire final

RTL sign off process must be accomplished using RTL

simulations. While functional coverage can be collected from

the verification environment for simulations using any

representation of the device under verification (DUV), code or

implementation coverage can only reliably be collected from

implementation (synthesis, timing, etc, etc) flow. Finally, the

team determined that there existed no acceptable flow for

proving equivalence between the C models and the generated

RTL. Existing C to RTL equivalence tools must “flatten”

RTL, removing all synchronous logic (i.e. flip flops) in a logic

tree. Equivalence is then only proven on the data

transformation, rather than the synchronous circuit. It was

determined that this was not sufficient for RTL sign off.

Based on the above requirements and determinations, the team

decided that verification would need to be carried out on both

the C and RTL representations of the DUV. Verification of

the C models gave the team as much as a five week head start

on the verification effort before RTL was available. RTL

verification was still required, as final sign off still needed to

be completed on the RTL DUV.

IV. GOALS

Having determined that both the C and RTL DUVs needed to

be verified, the team set a number of goals for the effort. The

first was to take advantage of the nature of the C models.

Their earlier availability would help to get the verification

effort started early, pipe cleaning the verification environment

and further proving the validity of the algorithms. The higher

abstraction level of the C models also could also help during

early debug phase, making both simulation and debug more

efficient.

To help realize the efficiencies stated above, the team also

added a goal to utilize existing RTL verification IP as much as

possible. This included everything from Universal

Verification Components (UVCs), through functional

coverage definitions, test writer interface and test flow.

It became clear at this point that the most effective path would

be to architect and build a single Universal Verification

Methodology (UVM-e in this case) environment, such that the

same environment could be utilized to verify both the C and

RTL representations of the DUV.

V. VERIFICATION ENVIRONMENT – DUAL DUV

Development of the verification environment began by

architecting a typical RTL verification environment, as had

been used in the past. The DUV shown in figure 3 below

includes a Verilog test harness, which replicated how the IP

would be instantiated in the system. The test harness was also

responsible for generating clocks, reset and providing all

interfaces of the DUV to the verification environment.

The Config Structure generated, via constrained random

stimulus generation, a valid configuration for the DUV, and

created a sequence of commands for configuring the DUV

(i.e. register reads/writes, processor commands, etc).

The Test Loop implemented a virtual sequence that defined

the generic test flow. This flow is guided by the config

structure, and also represented the framework within which

the specific “test” is executed.

The Command Bus UVC was a standard UVM-e UVC for the

protocol of the DUV command bus. In this particular case,

this was a non-standard (internal) bus protocol, but generically

could have been any protocol such as PCI, AMBA, etc. Other

assorted UVCs were connected to all other interfaces of the

DUV, to both stimulate and monitor those interfaces.

The monitor portions of the various UVCs captured data on

various interfaces of the DUV and forwarded it to the

scoreboard via analysis ports. The same data was also

simultaneously passed to the predictor.

The predictor was a custom, cycle accurate model of the

DUV. In many cases this predictor made use of the original

C-model (not the “tool ready” C-model), but in other instances

the predictor was hand coded by the verification engineers

using the ‘e’ HVL. Output from the predictor was passed to

the scoreboard via more analysis ports to enable end to end

data checking.

A design goal for the verification environment was to

maintain the same verification environment between the two

representations of the DUV. As the environment was

architected, it became clear to the team that having a single

“DUV Select” control parameter for the verification

environment, allowing easy switching between the C and

RTL, would be ideal.

Abstracting the DUV representation from the verification

environment via the test harness, as conceptually shown in

figure 3, would also allow capturing waveform data at the

output of the UVCs for simple debug. It would also allow for

identical stimulus to be provided to the DUV by the

verification environment regardless of which DUV

implementation was used, for a given random seed.

Fig. 3

VI. C DUV TEST HARNESS

To facilitate connection of the C DUV to the verification

environment, the Verilog test harness had to be updated to

include some sort of verilog to C converter. The C model,

which had the notion of interfaces, did not include any timing

information. The expanded test harness had to add timing

information as well.

Fig. 4

The team utilized the C interface provided by ‘e’ to develop a

wrapper for the C DUV. As the UVCs utilized in the

verification environment already provided the client side of

the various interfaces (as recommended per UVM), they were

easily used to abstract the stimulus data up to the level

required for the C DUV. See Fig 4.

A single C model thread executed from the beginning of

simulation time. The ports of the DUV acted as FIFOs,

defined in varying lengths depending on the specification of

each interface. Each occurrence of a put or get had the C

model thread execute a call back to the e DUV wrapper. The

wrapper would then stall until the data was received or sent.

The alternative approach, to bypass the signal level interface

of a UVC and connect directly to C code, was considered.

The team felt this approach was superior in cases where UVCs

are new development. In this case, however, the existing

UVCs required little or no rework from a functional

standpoint. In addition, the client side portion of the UVCs

were also already developed and proven. Thus the decision

was taken to instantiate the client side UVC agents as a

portion of the “Specman DUV Wrapper.” The only new

development was the interface from the client side UVCs to

the C DUV (See Fig 5).

Fig. 5

VII. RESULTS

A total of 10% of the overall feature coverage was achieved

before any RTL was available. 25% of all design bugs were

found and fixed during the C model verification phase. The

single environment was successfully used for all C and RTL

DUV verification, including all stimulus generation and

coverage capture. Once up and running, the verification

environment needed no further changes when RTL was

successfully generated.

As this was the first pass through the automated RTL

generation flow for this team, a number of challenges were

encountered, and lessons taken away. The team found that

live debugging of the C model was troublesome. The team

worked around these difficulties by capturing stimulus from

the UVM-e verification environment and simply playing it

back through the C model while debugging with GDB. The

team felt that some time spent with simulation tool support

would alleviate this problem in the future.

The e-to-C DUV wrapper required a significant initial

investment, nearing 4 person weeks. It was expected that

future utilizations of such an environment would be much

lower cost. The aspect oriented nature of e should enable

rapid reuse of the wrapper on future projects.

The team also felt that further investigation into the usage of

SystemC for the C models would be warranted in future

projects. SystemC would enable timing information to be

embedded in the C DUV, thus simplifying the wrapper.

Simulation tool support for SystemC might yield better native

debug support as well. Utilization of standard SystemC TLM

interfaces might further simplify the C DUV wrapper as well.

The team found that the ability to dynamically select between

DUV representations was a major benefit to the architecture

and were keen to maintain this feature.

Future passes through this development path would likely

result in greater percentages of functional coverage achieved.

Shorter development cycle of the e-to-C wrapper could result

in more time for simulations, and greater collection of

functional coverage. The main factor limiting functional

coverage collection during the C DUV phase of this

verification effort was time.

VIII. SUMMARY

The verification environment architected to allow verification

of both C and RTL representations of the DUV helped the

verification team get access to the DUV a full five weeks

before RTL was available. Despite the need for complete

verification sign off to be accomplished with the RTL DUV,

early access to the C DUV enabled the verification team to

achieve 10% functional coverage and find 25% of the design

bugs before RTL availability.

The e-to-C DUV wrapper developed enabled the team to

utilize a single environment for both DUV representations,

and utilized the existing library of Verification IP available to

the team.

Despite some debug tool issues, the entire development team

viewed the project as successful.

