
Verifying Layered Protocols – Leveraging Advanced UVM 

Capabilities 
  

Parag Goel 

Synopsys Inc 

RMZ Infinity, Bangalore 

0091.80.40188620, 

paragg@synopsys.com 

Amit Sharma                    

Synopsys Inc 

RMZ Infinity, Bangalore 

0091.80.40189192,  

amits@synopsys.com 
 

 
Abstract - Sophisticated generations of protocols are being 

standardized to address the complex communication within the 

SoC’s as well with external peripherals. These enable the SoC’s 

to deliver improved performance, power, quality of service and 

numerous advanced capabilities. A layered protocol provides 

improved data flow and hence is being adopted by the new 

emerging standards. A layered architecture compliant to the 

existing OSI model brings in the much desired standardization 

across different protocols. Most of the new emerging MIPI 

protocols have adapted to the OSI model for enabling advanced 

capabilities in mobile technology. PCIe, USB and other advanced 

protocols have a layered stack and revisions are being regularly 

rolled out for these standards as well. As the layered protocols 

bring in more advanced functionalities, we also see new 

verification challenges associated with them. Taking the MIPI 

Low Latency Interface (LLI) protocol as an example, we present 

the various challenges in the verification of a complex layered 

protocol. Then, we shall look at the how we can tackle these 

challenges leveraging the different capabilities the UVM base 

classes provide. 

 
Categories and Subject Descriptors  

Universal Verification Methodology, UVM, MIPI, Low Latency 

Interface, Transaction Level Modeling 

 

General Terms-Verification, Methodology, Verification IP 

 

Keywords-- UVM, Layered Protocol, System Verilog, MIPI, LLI 

 

 

I. Introduction 

 

The new emerging protocols enable SOC’s to deliver 

much higher performance and bring in advanced 

capabilities. Most of these protocols comply with the 

existing layered Open Systems Interconnection (OSI) 

model (ISO/IEC 7498-1) and as such the adoption of such 

layered protocols has become ubiquitous. As the layered 

protocols bring in more advanced functionalities, we 

also see new verification challenges associated with 

them. The challenges associated with verifying layered 

protocols vary from the ability to create the appropriate 

transactions at each layer, verifying the transformations 

across the different layers, providing the desired 

visibility and granularity of control, to creating the 

appropriate scoreboarding techniques. Methodologies 

such as the Universal Verification Methodology (UVM) 

have been undergoing continuous evolution to keep up 

with the many complex requirements in functional 

verification of complex devices and would need to 

continue to do so to meet various complex requirements.   

This paper illustrates the various challenges which a 

stacked model brings in and presents different ways how 

these challenges are addressed using verification 

techniques built over and above what is provided by in 

UVM components and base classes. These techniques 

are illustrated with the help of the MIPI (Mobile 

Industry Processor Interface) LLI (Low Latency 

Interface) stack and can be easily extrapolated to other 

such layered designs and protocols.  

 

II. Overview of the Layered Architecture (MIPI LLI) 

 

Some of the reasons leading to the wide adoption of a 

layered architecture are as follows: 

 Helps simplify networking designs by breaking 

them into functional layers. Each layer can then 

follow specific protocol to perform its task, like data 

delivery and connection management. 

 Protocol layering enables each layer to be governed 

by simple protocols, each with a few well-defined 

tasks. These protocols can then be assembled into a 

multi-layered one with the desired capabilities.  

 Helps to debug problems more easily.  The user can 

easily identify the specific layer where network 

failures originate from and then address a smaller 

problem. 

 The same user-level (application) program can be 

used over diverse communication networks. For 

example, the same WWW browser can be used 

when you are connected to the internet via a LAN or 

a dial-up line. 

 

The MIPI LLI protocol has been defined by the MIPI-

LLI-WG (The working group of the MIPI alliance: 

www.mipi.org) to provide for a point-to-point, 

bidirectional communication between the two dies (the 

application processor and modem/baseband processor).  

 

MIPI LLI is loosely based on the ISO OSI Reference 

Model (OSI/RM). The architecture of this protocol 

comprises of the Transport, Data Link, Physical Adaptor 

and Physical Layer to map the protocol specification 

mailto:paragg@synopsys.com
mailto:amits@synopsys.com
http://www.mipi.org/


appropriately. The information in the layer n header is 

used for the layer n protocol, creating independence 

among layers. 

 

 
Figure 1 : OSI Reference Model adapted for MIPI LLI 

Figure 1 depicts the layered model of MIPI LLI that is 

essentially derived from the OSI reference model. The 

two stacks communicate over the serial link of the 

physical layer (M-PHY). Once it reaches the stack, we 

have following transformations across the three layers, 

namely, 

 The Transport Layer : Data packets are created in a 

format  that the LLI stack comprehends  

 The Data Link Layer:  Channel information and 

credit information are added to form frames and to 

implement a credit based flow control protocol. 

 Physical Adaptor Layer:  Transports the frames from 

Data Link Layer onto the M-PHY 

 

III. Verifying the Layered Structure 

 

The previous section presented a high level overview of 

the stacked protocol and the transformations that a LLI 

fragment undergoes across different layers of the stack. 

The verification of such a model throws its own unique 

verification challenges.  We break down these 

challenges into the following buckets 

 

 The requirement of providing the desired control 

and granularity at each layer, i.e. the ability to 

exercise control on individual layer, to generate 

traffic corresponding to the intermediate layer, the 

mechanism to transform higher layer transactions to 

lower layer ones. 

 

 The ability to have the verification environment map 

to the layered stack architecturally. This would bring 

in the additional requirement of having the ability to 

provide a similar communication mechanism across 

the layers modeled on the verification side. This has 

to map functionally to the specific protocol being 

verified and the infrastructure should be generic 

enough to map to a variant of the said protocol. 

 

 The ability to independently control each lane in 

case of multi-lane physical scenarios 

 

 The requirement to have appropriate scoreboarding 

techniques and the ability to verify transformations  

at each layer 

 

 The need to create relevant mechanism to terminate 

the simulation gracefully while collecting all the 

relevant simulation metrics across all the layers of 

the stacked model. 

 

 The need to provide debug hooks and visibility 

provided at each layer. 

 

The following sections go through how different 

verification components can be created using UVM base 

classes to meet some of the requirements mentioned 

above. 

 

A. Sequence Generation 

 

Protocol layering happens when an upstream protocol 

(e.g. interconnect protocols like AXI/AHB/OCP) instead 

of being directly executed on a physical interface, is 

encapsulated in a downstream protocol (e.g. serial 

MPHY lines). LLI fragments being encapsulated inside 

LLI packets is an example of protocol layering. An 

upstream transaction may result in many downstream 

transactions. Segmenting a large interconnect transaction 

into multiple LLI fragments is an example of one-to-

many layering. Reassembling multiple PHY symbols to 

form a frame is an example of many-to-one layering. 

 
Figure 2: Transaction transformation across LLI stack – the OSI 

Way 

Figure 2 shows the transformations across the LLI stack 

in more detail. From the layered architecture (as 

depicted from MIPI LLI) perspective and to bring in the 

necessary extensibility in terms of stimulus generation, 



these are some additional considerations that need to be 

taken care of in order to create an effective verification 

infrastructure.  

 

 Ability to inject stimulus of any required type at any 

layer through the specific sequencers at each layer. 

To effectively create stimulus at different layers, it 

should be possible to configure any of the layers as 

topmost layer generating the highest upstream 

sequence. By default, this layer would be the 

Application Layer (Interconnect Adaptation Layer). 

This gives the verification engineer the ability to 

create and verify streams of transactions at the 

abstraction provided by each of these different 

layers 

 

 Ability to arbitrate, i.e. mix and match stimulus from 

the upper layer as well as from the testbench directly 

at a specific layer. To enable a layer modeled on the 

verification side to drive and transform stimulus, 

there should be a collection of UVM sequences and 

a sequencer associated with that layer. Any layer 

should be able to drive stimulus from the sequence 

and sequencer associated with that layer with or 

without having a higher layer sequence being 

layered onto it. In a configuration when protocol 

layering from an upstream sequencer does not 

happen, the layer would be driving stimulus 

configured through the sequences and sequencers 

explicitly associated with it. 

 

 Ability to retrieve and modify the transaction at any 

specific layer via callbacks, factory mechanism and 

UVM command-line override. 

 

 

 
Figure 3: Generic UVM Architecture – stacked protocols 

The figure 3 shows the relevant architecture to address 

the various requirements discussed. Each layer is 

associated with a sequencer through its TLM ports. A 

virtual sequencer is provided to synchronize different 

sequencers across the three layers. Layer-I (L1) is the 

topmost layer, which is feeding the lower layer via the 

l1_sequencer. After processing and converting the 

incoming transaction to one that is comprehensible by 

Layer-II (L2), it is passed down using the 

generic_sequence (which is a parameterized 

uvm_sequence) started on l2_sequencer. Now ‘L2’ can 

also be driven from the testbench by executing the 

l2_sequence again on the l2_sequencer. Traffic from 

either path gets arbitrated and finally driven to the ‘L2’ 

and ‘L3’ layers which finally process and drives the 

stimulus down to the physical interface.  

 

 
Figure 4 : Flow diagram for sequence item flow in Transmit 

direction 

The code shown in Figure 4 & Figure 5 shows how the 

generic_sequence in each of the layers enables the 

layering of higher level sequences as and when needed. 

 

 
Figure 5: Code for generic_sequence 



The communication infrastructure will wait for the 

processed transaction to be available to be driven to the 

lower layer. It will then populate the reference of the 

processed transaction in the request sequence queue and 

then start the sequence on the sequencer. Once the 

response is returned, the transaction will be flushed from 

the processed output queue which will then create space 

for the channel to accept more transactions. Through the 

UVM Resource Database and the configuration 

mechanism, the sequence layering can be controlled so 

that a specific layer can create stimulus based on the 

sequences associated with it or through sequence 

layering of upstream sequences.  This allows the 

layering of an arbitrary number of sequences of arbitrary 

upstream transaction types to be executed on the same 

downstream sequencer. Furthermore, each layering 

sequence can be executed with different arbitration 

priorities, allowing the test or environment to shape the 

protocol traffic as necessary.  

 

 

 
Figure 6: Handling multi-lane scenarios 

At the physical layer, most of the protocols have 

expanded from the traditional use of a single pair of 

differential signals to multiple differential pairs to 

achieve increased speed, throughput and to meet the 

latency requirements. This requires that the user should 

have a fine grained control of the communication on the 

serial lanes so that desired speed, throughput etc. can be 

configured based on the end application. In LLI, the 

specification defines a support for a maximum of 12 

lanes/channels (in multiples of 1, 2, 3, 4, 6 and 12). 

Hence, from the verification environment, it is required 

to have access to the configured number of 

lanes/channels. An additional complexity in the case of 

LLI is that the number of transmit and receive paths may 

be asymmetric. Thus, the stimulus generation 

mechanism should be able to modify the frames on a 

per-lane basis. This is enabled through an expanded 

version of the ‘l3_sequencer’ which is composed of 

array of sequencers.  

 

 
Figure 7: Multi-lane sequencer composition 

This is shown in Figure 6 and the relevant code snippet 

for the same is shown in Figure 7. Each of these sub-

sequencers would correspond to one lane.  

 

 
Figure 8 : Flow-diagram flow of sequence item in the Receive 

direction 

The discussion so far concentrated on how the stimulus 

can be generated and layered on the ‘transmit’ side.  

From a verification perspective, there would be a 

requirement to model and arbitrate the communication 

on the ‘receive’ path as well. For such communication 

across the different layers of the stack, the 

uvm_blocking_put_port/uvm_blocking_put_export can 

be leveraged. This is how this can be modeled. As the 

‘receive’ side receives a transaction, the lower layer 

invokes the put method of the associated TLM port to 

transfer the transaction upstream and the upper layer 

provides the implementation of the put method where 

the transaction is accepted for further processing. This 



processed transaction is then passed upwards 

subsequently. 

 

The ‘received’ requests need to be made available to the 

response sequences. This is done so that the sequences 

can retrieve these and form the appropriate response 

outside the layers of the stack. Such processing and 

response creation should be passively managed. The 

uvm_blocking_peek_port-export TLM ports can thus be 

effectively leveraged for this. The topmost layer 

provides the implementation of the peek method to pass 

on the transaction and the response sequence would call 

the peek method and wait for a legal request to be made 

available. On a successful retrieval, the response gets 

driven on the response sequencer associated with each 

layer.  

 

B. Verifying the Intermediate Layers 

 

In a stacked architecture, verification of the intermediate 

layers is crucial. From the RTL development 

perspective, the maturity of the individual layers might 

be different.  Verifying each of these layers in isolation 

is not going to be very efficient. Hence, the verification 

environment should be structured in such a way so that 

the same environment can be used for a robust 

verification of the intermediate layers as well as for the 

end to end verification of the entire stack. As mentioned 

earlier, the verification environment architecture should 

mimic the stacked model of the DUT.  This allows 

stimulus, transformations, and responses to be mapped 

appropriately and can enable faster convergence when 

verifying either the ‘transmit’ or ‘receive’ paths. In 

addition to this basic requirement, here are a few items 

to be addressed when architecting such an environment.  

 

 Individual verification component should have 

appropriate hooks/callbacks/ports  which can be 

used  to retrieve the transactions from any layer 

 

 There should be a provision to hook up intermediate 

custom drivers which can then drive the interface 

between the layers. Such a ‘virtual interface’ would 

have to be created based on the interface between 

the layers. The additional drivers would be required 

as the communication between the layers of the 

complete stack on the verification side is otherwise 

done at the transaction level through TLM ports.    

 

 The hooks provided in the structure and intermediate 

layer level monitors would be required to verify 

transformations across the layers. 

 

 
Figure 9: Example infrastructure for intermediate layer 

verification 

The figure 9 above represents how an intermediate layer 

in the stack can be verified with the relevant 

infrastructure. 

The layer being verified here is the ‘L2” layer. 

Fragments from the L3 are transformed into Packets 

before entering Data Link Layer. Here there is a one-to-

one correspondence for each Fragment-Packet pair.   

Packets in L2 are then appended with additional 

information which the other side of the stack has to 

decipher. This includes information related to the traffic 

class and credits.  To verify such transformation on the 

LLI DUT, the user would need to create the appropriate 

stimulus coming in from L3 and then funnel it to the 

DUT through a custom virtual interface and Bus 

Function Model as shown above. Similarly on the 

‘receive’ side, similar infrastructure needs to be enabled. 

Passive components on both side of the LLI stack of the 

verification infrastructure can extract the transactions for 

verifying the transformation on the L2 layer.  With a 

symmetric architecture, the transformations across both 

the ‘transmit’ and ‘receive’ side can thus be verified. 

 

C. Scoreboarding considerations: Verifying the 

intermediate and end-to-end transformations 

 

In order to create a self-checking infrastructure, the 

scoreboarding techniques should be able to extract 

relevant transactions for analysis at each layer. This 

would enable the verification engineer to localize and 

converge on the problem area efficiently. Here are a few 

challenges that need to be addressed while creating a 

self-checking infrastructure for a layered architecture. 

 

 How can one ensure that the transformations across 

the stack have occurred correctly? The complexity 

increases with multiple layers and with different 

configurations. The end transaction would be an 

aggregate of incremental information and 

aggregated transformations. 

 

 One-to-many transformations in case of a 

disassembly on the ‘transmit’ side and a many-to-



one transformation of an assembly on the ‘receive’ 

side need to be additionally validated. 

 

There might also be ‘false pass’ even if the end-to-end 

checking stamps the transformed transactions as correct. 

Hence, checking across individual layers is crucial. The 

use of UVM callbacks and TLM ports at each layer and 

the built-in UVM comparators help to address this need.  

The following diagram shows how a layered score-

boarding approached can be created. 

 

 
Figure 10: Verifying Transformations 

The passive verification components which monitor the 

‘transmit’ and ‘receive’ path extracts the signal level 

information and  rebuilds the transactions at each layer 

and make them  available for scoreboarding. This also 

ensures that the checks can be made at a significantly 

high granularity. Here are the different transformations 

that would need to be verified. 

 

 End to end transformations in the ‘transmit’ and 

‘receive’  paths 

 

 Transformations across all the traffic types for MIPI 

LLI  (Low Latency(LL), Best Effort(BE) and 

Service transactions (SVC))  

 

For the transformations across the different traffic types, 

additional intermediate checks needs to be performed. 

These are: 

 

 the request transmitted and received on the peer 

stack 

 the response received and transmitted on the peer 

stack 

 the request transmitted and the expected response 

received on the same stack 

 the request received and the expected response 

transmitted. 

 

 
Figure 11 : Code snippet showcasing Generic Scoreboard 

The parameterized scoreboard class is connected across 

the analysis ports available inside the master and slave 

monitor.  A ‘policy’ class is used to compare the two 

transaction streams. The central element in policy-based 

design is a class template (called the host class), taking 

several type parameters as input, which are specialized 

with types selected by the user (called policy classes), 

each implementing a particular implicit method (called a 

policy), and encapsulating some orthogonal (or mostly 

orthogonal) aspect of the behavior of the instantiated 

host class. By supplying a host class combined with a set 

of different, canned implementations for each policy, a 

library can support an exponential number of different 

behavior combinations, resolved at compile time, and 

selected by mixing and matching the different supplied 

policy classes in the instantiation of the host class 

template. Additionally, by writing a custom 

implementation of a given policy, a policy-based library 

can be used in situations requiring behaviors unforeseen 

by the library implementer.  

 

In the case of the LLI scoreboard, the policy class 

contains the static method, function bit comp(T a, T b) 

which returns TRUE if a and b are the same. Only the 

'physical' fields of the transactions objects are compared 

using the relevant ‘compare policy’ which would be 

provided based on the different variations that were 

discussed earlier in terms of transformation types.  



 
Figure 12 : Generic policy class for Scoreboard 

Thus, as the passive components extract out the relevant 

transactions and posts them through the TLM ports of 

the scoreboard, the built-in comparator of the scoreboard 

compares the request types received from the IAL, the 

LL and BE transaction data from TL, the SVC 

transaction data from the DLL and the PHIT types at the 

PAL and confirms the transformations by using different 

implementations of the ‘compare’ policy for each of 

these different types. 

 
Figure 13 : TLM connections for layer specific Scoreboarding 

D. Effective “End of Test” Mechanism 

 

Another critical aspect that needs to be modeled for 

stacked architectures is intelligent “end of test” 

mechanism. In the context of LLI, as the transactions 

flow across the stack, the verification components across 

each layer have to request for and relinquish control of 

transaction processing based on the protocol 

specifications. At any point in time, different 

components in the verification infrastructure might be 

actively processing transactions. Thus in such layered 

scenarios, the “end of test” mechanism  needs to be 

managed appropriately so that the simulation ends 

gracefully when all the layers are through with their 

transformations. At the same time, it needs to be ensured 

that the entire “end to end” processing is complete as 

well. 

 

For terminating simulations gracefully, the UVM base 

classes provide different mechanisms. Raising and 

dropping of ‘objections’ is the primary mechanism for 

determining the completion of different simulation 

phases. Objections must be explicitly raised and dropped 

by each phase implementation method as required. If no 

phase implementation method raises an objection to the 

end of the phase before the first non-blocking 

assignment, the phase will be immediately terminated 

and all of the implementation method threads will be 

killed. Environment components would typically raise 

the phase objection for every phase they implement. 

UVM also allows for setting of the drain time. It also has 

global timeout for each phase. All of these mechanisms 

serve a specific purpose which contributes towards a 

graceful exit from the simulation. 

 

In the context of MIPI LLI, the ‘objection’ mechanism 

can be used to ensure that the entire traffic generated is 

adequately processed and reaches the design correctly. 

The drain time ensures that the latency the design 

pipeline brings is taken into consideration.  This will 

cause the entire set of transactions to be flushed out on 

the IO before simulation ends. The ‘global time out’ 

mechanism causes the simulation to end only after a 

well-defined ‘timeout’ irrespective of unwanted 

simulation loops and design bugs. This ensures that an 

entire regression is not bottlenecked due to a few ‘faulty’ 

runs.  

 

From the context of a layered architecture, here are some 

challenges tied to a graceful simulation exit.  In UVM 

based testbenches, the termination of each phase and 

eventually the simulation is controlled through the 

raising and dropping of objections in the sequences. In a 

stacked architecture, where sequences are layered, the 

stimulus created by the upstream agent subsequently 

gets passed down to the lower layers. Here, the 

objections in the higher sequences are dropped once 

transactions are processed by the top layer. However, 

simulation cannot end at this point in time. The transfers 

have to go through the entire stack. Subsequently, once 

the transactions go through the physical interface, they 

have to be received by the highest layer of the peer stack 

from where again the response to a specific request has 

to be transferred back. Now, to ensure that the 

transactions have reached their respective destinations 

before simulation termination, the approach shown in 

the figure 14 can be followed. 



 
Figure 14: Effective objection mechanism 

On the Transmit Path, the objection mechanism can be 

specified as below for a request which issued by the 

req_sequence (to ensure that its wait for the response at 

the receiving end) 

 

 Raise/drop objection in the req_sequence’s 

pre_body() and post_body() methods as 

recommended by UVM. This controls the objection 

at the transaction generation-level at the topmost 

layer. 

 

 Raise an objection in a callback or TLM port as 

soon as the request gets accepted by the highest 

layer. 

 

 Once the generated request flows across the stack 

and the peer stack generates the response 

corresponding to the same, drop the objection 

(raised in the earlier step) once the response is 

received on the requesting end.  

 

The Transmit side thus independently controls the 

dropping/raising of objections at its own end.  

A generic method may be added to receive the start and 

the end event of a particular transaction at a specified 

layer. Now each layer is responsible for emitting the 

events appropriately which are tapped and passed down 

to the method controls objection mechanism and 

restricts premature end-of-test.   

 

In the example code below, the count variable is used to 

keep track of requests for which responses are pending. 

So when the count transitions from 0-to-1 the objection 

is raised and then later dropped once the count variable 

transitions from 1-to-0. This can be generically used by 

any protocol irrespective of the fact it is stacked or non-

stacked. For a stacked protocol, it has to be ensured that 

this infrastructure is present in each layer. As discussed 

earlier, any of the layers can be configured to be the top 

most layers. Hence, ensuring that the control of rising 

and dropping of objections can be configured to be 

assigned to any of the layers ensure that the stimulus 

generation requirements from each layer can be met. 

This shall make the testbench generic in case when any 

intermediate layer is promoted as the top-layer. 

 

 
Figure 15 : Code example to build a generic objection mechanism 

On the Receive Path, the objection mechanism for the 

request received at the receive path of the stack should 

be as follows: 

 

 Raise an objection as soon as request appears on the 

receive path. 

 

 If there is a  reactive sequence running on a 

rsp_sequencer to drive back the response, the 

objection can be a dropped as soon as the response 

is passed down on the transmit path. 

 

In addition to the above, setting a drain time ensures that 

simulation is not terminated unless the required response 

is percolated across the DUT. 

 

 
Figure 16 : Setting the drain time 



The drain time is set up for the main phase, as the 

stimulus is set for the main_phase. The value should 

ensure such that all the transmitted frames are 

successfully received at the receiver as well as the 

monitor Interface.  

 

The UVM callbacks registered on components on both 

sides of the stack keep track of the pending transactions 

as they flow through the two stacks. These would be 

used to appropriately raise and drop objections on either 

side of the stack. 

 

 As discussed earlier, a global timeout is necessitated to 

ensure simulation completes irrespective of any kind of 

undesired behavior during simulation. The 

set_global_timeout method can be used to appropriately 

configure the timeout value for each phase under 

different configurations. The usage is shown below:  

  

 
Figure 17 : Setting the Global Time-out 

IV. Enabling debug abstraction 

 

For layered protocols, we have to look beyond simple 

reports and trace file creation for debug. The stimulus 

supplied at the highest layer undergoes multiple 

transformations before finally being driven on the actual 

physical interface. As the complexity of debug 

increases, a few additional capabilities such as debug 

ports which especially help the RTL designers to have 

specific information at each layer in form of signals (not 

necessarily defined by specification) can help 

significantly. The examples of these signals can be ones 

which map to the change of the state of credit 

information as the simulation progress, the retry and the 

associated information in the physical layer etc. These 

signals can present a panoramic view of the entire stack 

in the waveform debugger thus enabling easier fault 

isolation.  

 

As mentioned earlier, the initial input for the LLI stack 

is in the form of a Transaction and this undergoes 

various degrees of transformations before it is finally 

pushed out on to the physical interface via MPHY. Thus, 

it is crucial to enable some correlation for all the 

different object transformations to the debug interface to 

help converge on incorrect operation. 

 

In addition to the debug ports mentioned earlier, the 

requirements are to provide a protocol-oriented analysis 

environment which should provide visualization and 

analysis at a higher abstraction. Leveraging the 

infrastructure enabled through UVM base classes, this 

can be enabled through the effective dumping of 

"protocol objects". A "protocol object" would be any 

description of data that is found in a protocol 

specification.  To ensure that there are enough 

configurable hooks in the VIP, the layered component 

hierarchy is interspersed with UVM callbacks at all 

interesting execution points. These callbacks can be 

leveraged to dump an XML trace of the simulation 

enriched with the relevant details of the ‘protocol 

objects’ across the different layers. As these points are 

all ‘protocol aware’ and the UVM testbench is aware of 

the levels of abstraction at these different points and of 

the different transformations, the appropriate 

information can be dumped into the XML traced as 

mentioned earlier. Thus a tool like the Protocol Analyzer 

can efficiently analyze this information and provide an 

Interactive frontend to debug protocol behavior. The 

different displays that are available for visualizing 

protocol objects feed on the underlying methodology 

layer to provide a unique set of analysis capabilities. For 

example, as shown in the figure 18 below, the Object 

Timeline Display emphasizes the temporal relationship 

between the protocol objects in the view; the Object 

Tree/Table Display emphasizes the hierarchical 

relationship between objects and the Object Tree. 

Display focuses on the field attributes and values of the 

protocol objects. Here we observe how a single 

Transaction, leads to the formation of LLI stack 

compatible 3 Fragments, which further translates on 

one-to-one basis into Packets and Frames and PHIT’s.. 

Thus, such graphical representations accelerate the 

investigation of protocol behavior by providing 

protocol-oriented analysis and debug capabilities in the 

associated verification environments. These capabilities 

not only reduce the time required to identify the source 

of bugs that can be directly attributed to protocol 

behavior, but also provide insight into aspects of the 

operation of a layered design that might otherwise be 

missed. 

 

The first snapshot shows how the different 

transformations can be correlated. The next important 

aspect is to be able to closely monitor the content of 

each of these ‘transformed’ objects.  This can be shown 

in the subsequent snapshot in Figure 19. Both these 

views leverage the capabilities that the UVM base 



classes provide in terms of printing the content of 

individual class objects in the format desired. 

 

 
Figure 18: Effective transaction debugging - I 

 

 
Figure 19: Effective transaction debugging – II 

 

 

 

 

 

 

 

 

 

 

 
 

IV. Summary 

 

As the complexity of protocols continues to increase and 

evolve, the infrastructure required for the verification of 

the same needs to scale up in sophistication as well. 

With the stacked protocol model becoming popular 

across these new protocols and standards, it is important 

to understand the challenges associated with the 

verification of such a stacked model. Robust verification 

architecture for one such model which can address the 

challenges that such a layered model brings up can then 

be leveraged across multiple protocols. For examples, 

the architecture described here can be leveraged for a 

stacked protocol like Unipro which bears a close 

relationship with LLI in terms of functionality. 

Similarly, there are other MIPI protocols such as UFS, 

CSI-3 etc. which would have similar requirements.  

Methodologies such as UVM have been undergoing 

continuous evolution to keep up with the many complex 

requirements in functional verification of complex 

devices.  The capabilities provided for by the UVM 

library with respect to sequence layering, TLM 

communication, distributed phasing; configuration 

management provides the vehicle to build the required 

capabilities  to address the verification requirements l to 

create robust verification architecture for stacked 

protocols. 

 

V. References 

 
[1] MIPI® Alliance Specification for Low Latency Interface (LLI): 

Version 1.0 – 26 January 2012  

[2] UVM User Guide  

[3] UVM Reference Manual  

[4] Accellera Verification IP Technical Subcommittee Documents -  

http://www.accellera.org/apps/org/workgroup/vip  

[5] UVM World Website http://www.uvmworld.org/  

[6] Synopsys UVM CES Training  

[7] Verification Martial Arts Blog 

http://www.vmmcentral.org/vmartialarts 

[8] Discovery MIPI LLI User Guide 

[9] VIP Café :  http://www.vip-central.org/blog 

[10] Sharma A, Goel P, Acharya S, Luo R, Varghese R, Mohammed 

P, “ACE’ing the Verification of a Coherent System Using UVM”, 

Proceedings of DVCon, 2012. 

http://www.vmmcentral.org/vmartialarts
http://www.vip-central.org/blog

