
Parag Goel

Sr. Corporate Application Engineer

Synopsys India Pvt. Ltd.

Verifying Layered Protocols
– Leveraging Advanced UVM

Capabilities

Stack based architecture
– Reasons for adoption

Easier Debug
 Faster convergence to where network failures originate

The same user-level (application) program can be
used over diverse communication networks.
 Same WWW browser can be used when you are connected to the

internet via a LAN or a dial-up line.

Application

Presentation

Session

Transport

Network

Data Link

Physical

7

6

5

4

3

2

1

Physical Media

Signaling

Packets

Frames

PHITs -> Symbols

LLI Stack
Specification

SAP-based
communication

Transaction Fragments
Interconnect

Adaptation Layer Breaking network
designs into functional
layers
 Enables each layer to be

governed by simple protocols

 Each with a few well-defined
tasks

Verification IP & Testbench Challenges

Architectural Challenges
 Stimulus generation - Generate varied traffic corresponding to each layer

 Visibility and granularity of control - retrieving transaction for analysis

 Support for intermediate layer and multi-lane scenarios

Application Challenges
 Verifying Transformations

 Graceful End-of-test

 Enough debugging hooks

Need to map verification challenges to existing
methodologies
 Leverage available methodology capabilities

 Build intelligent layers around base classes for more powerful verification setup

Agenda

Architectural Challenges - I

Ability to inject stimulus at
any layer
 It should be possible to

configure any of the layers as
top-most layer generating the
highest upstream sequence.

Ability to arbitrate, i.e. mix
and match stimulus from
the upper layer as well as
from the testbench

- Stimulus Generation

 CRC

Interconnect Transactions

Fragment Fragment

Packet Header
Frame Header

PHIT Header

Fragment

PHIT(96 bit vector)

PHY Symbol[11] ...

...

8-bit

PHY Symbol[0]

8-bit

S
E
R
I
A
L

S
T
A
C
K

T
R
A
N
S
F
O
R
M
A
T
T
I
O
N

AXI/AHB/OCP etc..

Upstream Protocol

Downstream Protocol

One-to-Many

Many-to-One

Ability to retrieve and modify the transaction at any specific layer
via callbacks, factory mechanism and UVM command-line
override.

Appropriate hooks/callbacks/ports for each component
 Retrieve the transactions from any layer

Provision to hook up intermediate custom drivers which can
then drive the interface between the layers.

Callbacks across monitors to verify transformations across the
layers.

- Verifying intermediate layer

Layered– VIP

L
3

L2 L1

DUT

Custom
VIP User defined

L2
User defined

Traffic
towards L3/L2

Traffic
towards L1/L2

Custom
VIP

Layered - VIP

L1 L2
L
3

Transactions /
sequences

Transactions /
sequences

End-End
checking

or

L2 Tx L1 Tx

Serial
/TLM

Architectural Challenges - II

- Verifying multi-lane scenarios

 Sequencer Definition

typedef class

 uvm_sequencer#(mphy_transfer)

 mphy_sequencer;

class lli_agent extends uvm_agent;

  Sequencer Handle Declaration – Dynamic Array 

 mphy_sequencer pa_lane_seqr[];

 function void build_phase(uvm_phase phase);

 if(!uvm_config_db#(lli_configuration)::get(this, “”, “cfg”, cfg)) `uvm_fatal(………….)

  Sequencer creation 

 pa_lane_seqr = new[cfg.tx_lane_count];

 foreach(pa_lane_seqr[i])

 pa_lane_seqr[i] = mphy_sequencer::type_id::create($sformatf(“pa_lane_seqr[%0d]”, i), this);

 endfunction

endclass

Interconnect Adaption
Layer

Transaction Layer

Data Link Layer

Physical Adaptor Layer

pa_lane_seqr[0]
pa_lane_seqr[1]

…..
…..
…….

pa_lane_seqr[n]

M-
RX[0]

Serial

Interface

M-
TX[0]

 M-
RX[0]

 M-
TX[1]

 M-
RX[0]

 M-
TX[n]

. . ………………………

 . . ………………………

. . ………………………

Instances of

PHY/per lane

Multiple TLM
Ports

Expanded version
of l3_sequencer –
composed of sub-

sequencer per
lane

Pair of TX-RX
transactors

Architectural Challenges - III

Addressing Architectural challenges - I
- Generic architecture

Virtual

Sequencer

l2_sequencer l2_sequencer

Layer-I (L1)
Common

Processing Code

generic_sequen
ce

Layer-II (L2)
Common

Processing Code

l1_sequencer l1_sequencer

l2_sequence

l1_sequence

l3_sequencer l3_sequencer

generic_sequen
ce

Layer-III (L3)
Common

Processing Code

l3_sequence

  Class & UVM factory Registration 

class generic_sequence#(type REQ=uvm_seqence_item,

type RSP=REQ) extends uvm_sequence#(REQ,RSP);

`uvm_object_param_utils(generic_sequence#(REQ,RSP))

  Parent Sequencer Declaration 

 `uvm_declare_p_sequencer(uvm_sequencer#(REQ))

  Dispatch: Drive REQ on downstream sequencer 

 task dispatch(uvm_seqeuncer#(REQ) seqr, REQ req);

 this.req = req;

 this.start(seqr);

 endtask

  Transaction Handle 

local REQ req;

  Body method – Initiate REQ 

task body();

 if (this.req != null) begin

 this.wait_for_grant();

 this.send_request(req);

 this.wait_for_item_done();

 end

endtask

  response_handler method – To discard RSP 

function void response_handler

 (uvm_sequence_item response);

/* Just drop the response. */

endfunction

endclass

Addressing Architectural challenges - II
- Generic architecture – Flow Diagram

Call
blk_put_port.put(l1_seq_item)

Sample interface & form
l3_seq_item

Call
blk_put_port.put(l2_seq_item)

Process
 l3_seq_item -> l2_seq_item

Accept
task put(l2_sequence_item l2_seq_item)

blk_put_port.connect
(blk_put_export)

Process
 l2_seq_item -> l1_seq_item

blk_put_port.connect

(blk_put_export)

Accept
task put(l1_sequence_item l1_seq_item)

Process & Call
blk_peek_port.peek(l1_seq_item)

Send out to
testbench

Response Request

Form

Response

Passed to the
l1_rsp_seqr to

l1 Transmit
Path

blk_peek_port.connect(bl

k_peek_export)

Consumed

by
testbench

Input l1_seq_item via.
l1_seqr

Process
 l1_seq_item -> l2_seq_item

Call
generic_seq.dispatch(l2_seqr, l2_seq_item)

l2_seqr

Input l2_seq_item via.
l2_seqr

Process
 l2_seq_item -> l3_seq_item

Call
generic_seq.dispatch(l3_seqr, l3_seq_item)

l3_seqr

Input l3_seq_item via.
l3_seqr

Process
 l2_seq_item -> l3_seq_item

Drive interface

TRANSMIT
FLOW

RECEIVE
FLOW

- Scoreboarding Challenges - I

Passive

Monitor

IAL

…

TL

…

PAL

…

DL

…

Frag DeFrag

REQ

SQNR

RSP

SQNR

TL+DL+PAL
Monitor

IAL

…

TL

…

PAL

…

DL

… IAL

LLI

STACKED

DUT
Physical Interface

Scoreboarding @
IAL-TL-DLL-PAL Layers

Scoreboarding @

Classified for

1. Request/Response

2. All traffic types

Transformations that would need to be verified
 End to end transformations in the ‘transmit’ and ‘receive’ paths

 Transformations across all the traffic types

 For requests / responses

Application Challenges - I

STACK - I STACK - II

Request
Transmitted

Request
Received

Response
Generated

Response
Received

Request
Transmitted Request

Received

Response
Generated

Response
Received

1

3 2

- Scoreboarding Challenges -

Application Challenges - I

Addressing Scoreboarding Challenges
class lli_system_env extends uvm_env;

typedef lli_scoreboard#(svt_mipi_lli_transaction)

trans_scbd;

typedef lli_scoreboard#(svt_mipi_lli_packet)

pkt_scbd;

 An instance of VIP AGENT - LLI Master/Slave 

svt_mipi_lli_agent mstr, slv;

 IAL Scoreboard Instances for request xact 

trans_scbd m_s_ll_xact_sb;

trans_scbd m_s_be_xact_sb;

 Construct the IAL scoreboard instances 

 m_s_ll_xact_sb = new("m_s_ll_xact_sb", this);

 m_s_be_xact_sb = new("m_s_be_xact_sb", this);

 Connect the monitor to the scoreboard for Master

LL request 

mstr.ial_mon.tx_ll_ta_xact_observed_port.

 connect(m_s_ll_xact_sb.tx_export);

slv.ial_mon.rx_ll_in_xact_observed_port.

 connect(m_s_ll_xact_sb.rx_export);

 Connect the monitor to the scoreboard for Master

BE request 

mstr.ial_mon.tx_be_ta_xact_observed_port.

 connect(m_s_be_xact_sb.tx_export);

slv.ial_mon.rx_be_in_xact_observed_port.

 connect(m_s_be_xact_sb.rx_export);

endclass

 Building components 

 Connect local export to comparator export 

 Reporting results 

class lli_scoreboard#(type T=uvm_sequence_item)

 extends uvm_scoreboard;

 Export Transmitted/Received Requests 

uvm_analysis_export#(T) tx_export, rx_export;

 "in order comparator" 

uvm_in_order_comparator #(T, lli_comp#(T),

 uvm_class_converter#(T)) comparator;

class lli_comp #(type T = int);

 static uvm_comparer relevant_comparer = new();

 static function bit comp(input T a, input T b);

 relevant_comparer.physical = 1;

 relevant_comparer.abstract = 0;

 return a.compare(b, relevant_comparer);

 endfunction

endclass

Policy Based design :
 template taking several type

parameters
 specialized to encapsulates

orthogonal aspects of the behavior of
the instantiated class

- End-of-test Mechanism

Application Challenges - II

REQUEST RESPONSE REQUEST RESPONSE

RSP Sequence

RSP Sequence

REQ Sequence

REQ Sequence

REQ SQNR RSP SQNR

TRANSMIT PATH:
Raise an objection when new REQ started
Drop an objection when RSP is received

RECEIVE PATH:
Raise an objection when new REQ received
Drop an objection when RSP is transmitted

Raise/drop objection
in the

req_sequence’s
pre_body() and

post_body()

Raise an objection in
a callback - the

request gets
accepted by the

highest layer

Drop objections once
the peer stack

generates the response
and the same is

received

Raise an objection
when request

appears on the
receive path.

For a reactive sequence, drop
the objection - response

passed down on the transmit
path

Drain Time - Amount of time to wait once
all objections have been dropped

int stack_round_trip_time;

task main_phase(uvm_phase phase);

 phase.phase_done.set_drain_time

 (this, 2*stack_round_trip_time);

endtask

Global timeout - The phase ends if the timeout

expires even before all objections are dropped

`define HS_MODE_GLOBAL_TIMEOUT 5ms

`define LS_MODE_GLOBAL_TIMEOUT 25ms

function void test_base::build_phase(...);

  Set the global timeout 

 if(sys_cfg.mode == LS_MODE)

 set_global_timeout(`LS_MODE_GLOBAL_TIMEOUT);

 else

 set_global_timeout(`HS_MODE_GLOBAL_TIMEOUT);

endfunction

Application Challenges - III
- Debug Abstraction

Tracing the transformation across each layer
• Needs to be captured through TLM ports and dumped for Post processing

Debug abstraction : Dumping of protocol objects

Use transaction IDs to map across transformations

 Layered architecture in network protocols bring in advanced
functionalities but complex verification challenges
 Can be mapped across multiple new protocols (the MIPI family, PCIe, USB

etc) and network designs

 UVM base classes provides the infrastructure on which
required capabilities can be built
 user defined enhancing sequence layering, phase completion tracking,

transformation monitoring

Verification infrastructure should continue to evolve with
added complexity in design

Summary

