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Stack based architecture

— Reasons for adoption
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= Easier Debug
= Faster convergence to where network failures originate

*The same user-level (application) program can be
used over diverse communication networks.

= Same WWW browser can be used when you are connected to the
internet via a LAN or a dial-up line.




Agenda

=Verification IP & Testbench Challenges

= Architectural Challenges

= Stimulus generation - Generate varied traffic corresponding to each layer
= Visibility and granularity of control - retrieving transaction for analysis
= Support for intermediate layer and multi-lane scenarios

= Application Challenges
= Verifying Transformations
= Graceful End-of-test
= Enough debugging hooks

*Need to map verification challenges to existing
methodologies

= Leverage available methodology capabilities

= Build intelligent layers around base classes for more powerful verification setup




Architectural Challenges - |

- Stimulus Generation
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= Ability to inject stimulus at
any layer
* |t should be possible to
configure any of the layers as

top-most layer generating the
highest upstream sequence.

= Ability to arbitrate, i.e. mix
and match stimulus from
the upper layer as well as
from the testbench

= Ability to retrieve and modify the transaction at any specific layer
via callbacks, factory mechanism and UVM command-line

override.




Architectural Challenges - Il

- Verifying intermediate layer
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= Appropriate hooks/callbacks/ports for each component

= Retrieve the transactions from any layer

i

" Provision to hook up intermediate custom drivers which can
then drive the interface between the layers.

= Callbacks across monitors to verify transformations across the
layers.




Architectural Challenges - IlI

- Verifying multi-lane scenarios

Interconnect Adaption
pa_lane_seqr[0] (

pa_lane_seqr[1] [«€=

Data Link Layer
..... 6|
....... Physical Adaptor Layer
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( | =» Sequencer Definition€ |
4‘ typedef class
. uvm_sequencer# (mphy transfer)
Expanded version EO |:| Multiple TLM O mphy sequencer;
i e i i
orts
composed of sub- N n-
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class 11i agent extends uvm agent;
= Sequencer Handle Declaration - Dynamic Array € |
mphy sequencer pa lane seqr[];

d_=g
X =0
- :-

function void build phase (uvm_phase phase) ;
if ('uvm config db#(1li_configuration)::get(this, “”, “cfg”, cfg)) “uvm fatal(...... )
|-) Sequencer creation (-l
pa_lane_seqr = new[cfg.tx lane count];
foreach(pa_lane_seqr[i])

pa_lane seqr[i] = mphy sequencer::type_ id::create($sformatf(“pa_lane_seqr[%0d]”, i), this);
endfunction

endclass




Addressing Architectural challenges - |

- Generic architecture

|-) Class & UVM factory Registration € |
class generic_sequenceit (type REQ=uvm segence_item,

- 11_sequencer _ iﬁ type RSP=REQ) extends uvm_sequencei (REQ,RSP) ;
/

Layer-I (L1) Common ‘uvm_object param utils(generic_sequence# (REQ,RSP))

Processing Code

[K.) |-) Parent Sequencer Declaration (-l

2 2 : S S
@ - _Seauencer R uvm_declare p sequencer (uvm_sequenceri (REQ) )

Virtual i} 10 |-) Transaction Handle € |
Layer-II (L2)
Sequencer Common local REQ req;
Processing Code

generic_sequen
ce

=» Dispatch: Drive REQ on downstream sequencer €

task dispatch(uvm_seqeuncerit (REQ) seqr, REQ req);
tb this.req = req;
Layer-Ill (L3 Common this.start(seqr);
- endtask
Processing Code
t | = Body method - Initiate REQ €
task body () ;
|_) ros - - | if (this.req '= null) begin
_ ponse.. handler method To discard RSP € this.wait for grant();

function void response handler this. send:reqaest(req) ;

(uvm_sequence_item response); this.wait for item done () ;
/* Just drop the response. */ end - - -
endfunction endtask
endclass




Addressing Architectural challenges - Il

- Generic architecture — Flow Diagram
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Application Challenges - |

- Scoreboarding Challenges - |
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*Transformations that would need to be verified

= End to end transformations in the ‘transmit’ and ‘receive’ paths

= Transformations across all the traffic types
= For requests / responses




Application Challenges - |

- Scoreboarding Challenges - Checking for equivalence
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Addressing Scoreboarding Challenges

class 1lli system env extends uvm env;

Pollcy Based design :

template ta klng several type typedef 1lli scoreboard# (svt mipi 11li transaction)
trans scbd;
pararne.ters typedef 1lli scoreboard# (svt mipi 11li packet)
= specialized to encapsulates pkt_scbd;

orthogonal aspects of the behavior of
& P |-) An instance of VIP AGENT - LLI Master/Slave (-l

the instantiated class svt_mipi 11i agent mstr, slv;

|-) IAL Scoreboard Instances for request xact € |
trans_scbd m_s 11 xact sb;
trans_scbd m_s_be_xact_sb

class 1li_comp # (type = int);
static uvm_comparer relevant comparer = new() ;
static function bit comp(input T a, input T b);
relevant comparer.physical = 1;
relevant comparer.abstract = 0;
return a.compare (b, relevant comparer) ;
endfunction
endclass

|-) Construct the IAL scoreboard instances € |
m s 11 xact_sb = new("m_s_11 xact_sb", this);
m_s be xact_sb = new("m_s_be xact_sb", this);

= Connect the monitor to the scoreboard for Master
LL request €
mstr.ial mon.tx 11 ta xact observed port.
connect(m_s_11 xact_sb.tx export);
slv.ial mon.rx 11 in xact observed_port
connect(m s_11 xact_sb.rx export);

class 1li_scoreboard#(type T=uvm_sequence_item)
extends uvm_scoreboard;

|-) Export Transmitted/Received Requests € |
uvm_analysis_export# (T) tx export, rx export;
|-) "in order comparator" €
uvm_in order comparator #(T, lli_ comp#(T),
uvm_class_converter# (T)) comparator;

= Connect the monitor to the scoreboard for Master
BE request €
mstr.ial mon.tx be ta xact observed port.

connect (m_s_be xact_sb.tx export);
slv.ial mon.rx be in xact observed port.

connect (m_s_be xact_sb.rx export);

= Building components €
= Connect local export to comparator export €

1
= Reporting results € endclass




Application Challenges - I

- End-of-test Mechanism
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TRANSMIT PATH:
Raise an objection when new REQ started

Drop an objection when RSP is received

RECEIVE PATH:
Raise an objection when new REQ received
Drop an objection when RSP is transmitted

Drain Time - Amount of time to wait once
all objections have been dropped

int stack_round trip time;

task main phase (uvm_phase phase) ;
phase.phase_done.set_drain_ time
(this, 2*stack_round trip time);
endtask

‘define HS MODE_ GLOBAL TIMEOUT 5ms
‘define LS MODE GLOBAL TIMEOUT 25ms

function void test base::build phase(...);
= Set the global timeout € |
if (sys_cfg.mode == LS MODE) |
set global timeout('LS_MODE GLOBAL TIMEOUT) ;
else |
set global timeout( HS_MODE GLOBAL TIMEOUT) ; |
endfunction \




Application Challenges - lli

- Debug Abstraction
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" Tracing the transformation across each layer
* Needs to be captured through TLM ports and dumped for Post processing

" Debug abstraction : Dumping of protocol objects
= Use transaction IDs to map across transformations



Summary

" Layered architecture in network protocols bring in advanced
functionalities but complex verification challenges
= Can be mapped across multiple new protocols (the MIPI family, PCle, USB
etc) and network designs
= UVM base classes provides the infrastructure on which
required capabilities can be built

= user defined enhancing sequence layering, phase completion tracking,
transformation monitoring

= Verification infrastructure should continue to evolve with
added complexity in design




