Design & Verification Conference & Exhibition

Verifying Layered Protocols

— Leveraging Advanced UVM
Capabilities

Parag Goel
Sr. Corporate Application Engineer
Synopsys India Pvt. Ltd.

SYNOPSYS:

Accelerating Innovation

Stack based architecture

— Reasons for adoption
A 1""-3;“;".; ------ t-", erconnect
"Breaking network posteen | wsetentmnans 21| 7)) dapaiontaer
. . . Presen tation 6
designs into functional - NG
layers g v [e ST s
________ 'I_______________I'___l communication
= Enables each layer to be LustEk o 3
governed by simple protocols \If,,;;;k"""'}Z:_Z_'F:E"E:'__'.'.;"J"';;
= Each with a few well-defined ' ohysc : e : . E
tasks T | Physical Media | 7

= Easier Debug
= Faster convergence to where network failures originate

*The same user-level (application) program can be
used over diverse communication networks.

= Same WWW browser can be used when you are connected to the
internet via a LAN or a dial-up line.

Agenda

=Verification IP & Testbench Challenges

= Architectural Challenges

= Stimulus generation - Generate varied traffic corresponding to each layer
= Visibility and granularity of control - retrieving transaction for analysis
= Support for intermediate layer and multi-lane scenarios

= Application Challenges
= Verifying Transformations
= Graceful End-of-test
= Enough debugging hooks

*Need to map verification challenges to existing
methodologies

= Leverage available methodology capabilities

= Build intelligent layers around base classes for more powerful verification setup

Architectural Challenges - |

- Stimulus Generation

AXI/AHB/OCP etc..

H Upstream Protocol

Interconnect Transactions

One-to-Many

—
~ -
—

—
PHIT Header

,\\ /\ Packet Header

1 Frame Header

PHIT(96 bit vector)

-~
-

L= =

PHY Symbol[0] |
€— 8-hit —>

— ~— ~'\
PHY Symbol[11]

€— 8-bit —>

Many-to-One ==

‘\ Downstream Protocol

—

ROorp-Hwnw

20—=-=4>»800mMmwn2r»x-

= Ability to inject stimulus at
any layer
* |t should be possible to
configure any of the layers as

top-most layer generating the
highest upstream sequence.

= Ability to arbitrate, i.e. mix
and match stimulus from
the upper layer as well as
from the testbench

= Ability to retrieve and modify the transaction at any specific layer
via callbacks, factory mechanism and UVM command-line

override.

Architectural Challenges - Il

- Verifying intermediate layer

Traffic DUT Traffic
towards L3/L2 towards L1/L2

b

Transactions /
sequences

End-End
checking

or

L1 Tx
Laygred- VIP

Laydred - VIP
Transactions / v
sequences —

= Appropriate hooks/callbacks/ports for each component

= Retrieve the transactions from any layer

i

" Provision to hook up intermediate custom drivers which can
then drive the interface between the layers.

= Callbacks across monitors to verify transformations across the
layers.

Architectural Challenges - IlI

- Verifying multi-lane scenarios

Interconnect Adaption
pa_lane_seqr[0] (

pa_lane_seqr[1] [«€=

Data Link Layer
..... 6|
....... Physical Adaptor Layer
pa_lane_seqr[n]

(| =» Sequencer Definition€ |
4‘ typedef class
. uvm_sequencer# (mphy transfer)
Expanded version EO |:| Multiple TLM O mphy sequencer;
i e i i
orts
composed of sub- N n-

sequencer per M- M- . Instances of
Ian/ TX[0] TX[1] PHY/per lane
Pair of TX-RX Serial
transactors o —

class 11i agent extends uvm agent;
= Sequencer Handle Declaration - Dynamic Array € |
mphy sequencer pa lane seqr[];

d_=g
X =0
- :-

function void build phase (uvm_phase phase) ;
if ('uvm config db#(1li_configuration)::get(this, “”, “cfg”, cfg)) “uvm fatal(......)
|-) Sequencer creation (-l
pa_lane_seqr = new[cfg.tx lane count];
foreach(pa_lane_seqr[i])

pa_lane seqr[i] = mphy sequencer::type_ id::create($sformatf(“pa_lane_seqr[%0d]”, i), this);
endfunction

endclass

Addressing Architectural challenges - |

- Generic architecture

|-) Class & UVM factory Registration € |
class generic_sequenceit (type REQ=uvm segence_item,

- 11_sequencer _ iﬁ type RSP=REQ) extends uvm_sequencei (REQ,RSP) ;
/

Layer-I (L1) Common ‘uvm_object param utils(generic_sequence# (REQ,RSP))

Processing Code

[K.) |-) Parent Sequencer Declaration (-l

2 2 : S S
@ - _Seauencer R uvm_declare p sequencer (uvm_sequenceri (REQ))

Virtual i} 10 |-) Transaction Handle € |
Layer-II (L2)
Sequencer Common local REQ req;
Processing Code

generic_sequen
ce

=» Dispatch: Drive REQ on downstream sequencer €

task dispatch(uvm_seqeuncerit (REQ) seqr, REQ req);
tb this.req = req;
Layer-Ill (L3 Common this.start(seqr);
- endtask
Processing Code
t | = Body method - Initiate REQ €
task body () ;
|_) ros - - | if (this.req '= null) begin
_ ponse.. handler method To discard RSP € this.wait for grant();

function void response handler this. send:reqaest(req) ;

(uvm_sequence_item response); this.wait for item done () ;
/* Just drop the response. */ end - - -
endfunction endtask
endclass

Addressing Architectural challenges - Il

- Generic architecture — Flow Diagram

Passed to the
11_rsp_seqr to Form Consumed
. . 11 Transmit Request Response by
Input I11_seq_item via. ‘l’ Path Response testbench
11_seqr
Process Sendbout :Io
i d i testbenc
11_seq_item ->12_seq_item blk_peek_port.connect(bl
‘V k_peek_export)
Process & Call
Input I2_seq_item via. . . ll . blk_peek_port.peek(l1_seq_item)
12_seqr generic_seq.dispatch(l2_seqr, 12_seq_item) ¢
Y] Accept
task put(l1_sequence_item I1_seq_item)
12_seqr blk_put_port.connect
(blk_put_export)
Process = Call
7S) B B S (el blk_put_port.put(l1_seq_item)
Input I13_seq_item via. X . Call . . Process .
I13_seqr generic_seq.dispatch(I3_seqr, I13_seq_item) 12_seq_item ->11_seq_item
| Accept
I3 task put(I2_sequence_item 12_seq_item)
-Seqr blk_put_port.connect
Process (blk_put_export)
12_seq_item -> I13_seq_item . | Call
blk_put_port.put(l2_seq_item)
Drive interface TSR

I13_seq_item -> 12_seq_item

Sample interface & form
13_seq_item

TRANSMIT

RECEIVE
FLOW ’ FLOW

Application Challenges - |

- Scoreboarding Challenges - |

Scoreboarding @
Scoreboarding @ Classified for

-TL- - A . 1. Request/Response
IAL-TL-DLL-PAL Layérs 2 Al traffic types

REQ RSP

SQNR SQNR Passive LLI
({2 mA5) vonter— STACKED
DeFrag
——— \ DUT
TL+DL+PAL Physical Interface
J _Monitor

*Transformations that would need to be verified

= End to end transformations in the ‘transmit’ and ‘receive’ paths

= Transformations across all the traffic types
= For requests / responses

Application Challenges - |

- Scoreboarding Challenges - Checking for equivalence

Request
Req uc.est f)&\ Request

Tran

Request Transmitted
Received

Addressing Scoreboarding Challenges

class 1lli system env extends uvm env;

Pollcy Based design :

template ta klng several type typedef 1lli scoreboard# (svt mipi 11li transaction)
trans scbd;
pararne.ters typedef 1lli scoreboard# (svt mipi 11li packet)
= specialized to encapsulates pkt_scbd;

orthogonal aspects of the behavior of
& P |-) An instance of VIP AGENT - LLI Master/Slave (-l

the instantiated class svt_mipi 11i agent mstr, slv;

|-) IAL Scoreboard Instances for request xact € |
trans_scbd m_s 11 xact sb;
trans_scbd m_s_be_xact_sb

class 1li_comp # (type = int);
static uvm_comparer relevant comparer = new() ;
static function bit comp(input T a, input T b);
relevant comparer.physical = 1;
relevant comparer.abstract = 0;
return a.compare (b, relevant comparer) ;
endfunction
endclass

|-) Construct the IAL scoreboard instances € |
m s 11 xact_sb = new("m_s_11 xact_sb", this);
m_s be xact_sb = new("m_s_be xact_sb", this);

= Connect the monitor to the scoreboard for Master
LL request €
mstr.ial mon.tx 11 ta xact observed port.
connect(m_s_11 xact_sb.tx export);
slv.ial mon.rx 11 in xact observed_port
connect(m s_11 xact_sb.rx export);

class 1li_scoreboard#(type T=uvm_sequence_item)
extends uvm_scoreboard;

|-) Export Transmitted/Received Requests € |
uvm_analysis_export# (T) tx export, rx export;
|-) "in order comparator" €
uvm_in order comparator #(T, lli_ comp#(T),
uvm_class_converter# (T)) comparator;

= Connect the monitor to the scoreboard for Master
BE request €
mstr.ial mon.tx be ta xact observed port.

connect (m_s_be xact_sb.tx export);
slv.ial mon.rx be in xact observed port.

connect (m_s_be xact_sb.rx export);

= Building components €
= Connect local export to comparator export €

1
= Reporting results € endclass

Application Challenges - I

- End-of-test Mechanism

Raise/drop objection
in the
req_sequence’s
pre_body() and
post_body()

Raise an objection in\\<
a callback - the

REQ Sequence
equence

v

REQ SQNR

RSP SONR

~

request gets ~=_
RESPONSE

-
-

REQUEST

accepted by the ~_L

-
-

For a reactive sequence, drop
the objection - response
passed down on the transmit

path

Raise an objection
when request
appears on the
receive path.

P Sequence
RSP Sequence

@/f
. B

-

Drop objections once
the peer stack
generates the response
and the same is
received

-

-. J-REQUEST | ' RESPONSE

AU

. i A N
highest layer Yo- A

TRANSMIT PATH:
Raise an objection when new REQ started

Drop an objection when RSP is received

RECEIVE PATH:
Raise an objection when new REQ received
Drop an objection when RSP is transmitted

Drain Time - Amount of time to wait once
all objections have been dropped

int stack_round trip time;

task main phase (uvm_phase phase) ;
phase.phase_done.set_drain_ time
(this, 2*stack_round trip time);
endtask

‘define HS MODE_ GLOBAL TIMEOUT 5ms
‘define LS MODE GLOBAL TIMEOUT 25ms

function void test base::build phase(...);
= Set the global timeout € |
if (sys_cfg.mode == LS MODE) |
set global timeout('LS_MODE GLOBAL TIMEOUT) ;
else |
set global timeout(HS_MODE GLOBAL TIMEOUT) ; |
endfunction \

Application Challenges - lli

- Debug Abstraction

f\f\

Transactions Fragments | Packets | PHITS MPHY_Ts
RX

AP

" Tracing the transformation across each layer
* Needs to be captured through TLM ports and dumped for Post processing

" Debug abstraction : Dumping of protocol objects
= Use transaction IDs to map across transformations

Summary

" Layered architecture in network protocols bring in advanced
functionalities but complex verification challenges
= Can be mapped across multiple new protocols (the MIPI family, PCle, USB
etc) and network designs
= UVM base classes provides the infrastructure on which
required capabilities can be built

= user defined enhancing sequence layering, phase completion tracking,
transformation monitoring

= Verification infrastructure should continue to evolve with
added complexity in design

