
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentation
s.com

SoC designers increasingly incorporate a significant 
amount of IPs from third-party IP vendors. IP providers 
verify their IPs thoroughly from a functionality point 
of view but they often lack the understanding (and 
rightfully so) of a bigger picture in which their IPs may 
be used. Many IP providers also provide Verification IP 
(VIP) along with their design or implementation IPs to 
assist and speed up the verification process. Generally 
this process minimizes functional bugs as the vendor 
has spent considerable time and energy on finding and 
fixing functional issues. However, issues related to 
target throughput and how an IP will behave in a 
system context are more difficult to find.
In this paper, we describe our experience in creating 
test benches which quantify IP throughput to find out 
functional issues which cause throughput drops.  

ABSTRACT

The key takeaway

The following graph shows the throughput of the 
memory subsystem under various usage patterns. The 
graph shows the normalized throughput when the 
usage patterns are changed over a period of time.

Observations
The read latency is the time difference between the 
time when a read operation is submitted to Memory 
Controller and the time when data is received. The 
latency numbers obtained for multiple read operations 
on one port at random times are shown below. The 
expected latency was 30nS. 

A block diagram of overall reporting mechanism is 
shown in Figure 6. The graphical reporting mechanism 
was created using a two step approach. 
Run the test bench which had a reporting and scaling 
mechanism. It created a smooth throughput number 
from instantaneous bandwidth measured every clock. 
A gnuplot script is run to display data in .csv file 
graphically.
The details of each block are given below.

Further investigation revealed that the TDM 
architecture of memory controller was the cause. The 
latency increased based on the clock edge on which 
read request was launched. 

How it was done

Figure 5 : Graph showing latency along with flow 
control

The observation of throughput, latency, and flow 
control of an IP subsystem can reveal issues with the IP 
as well as the surrounding design which uses that IP.

In almost all hardware designs, flow control / back 
pressure is one of the least tested functions. If it 
remains untested, it can lower the desired performance 
and even cause system lock ups. We created a 
mechanism to observe flow control signals visually to 
provide feedback of when and where things are going 
wrong. 
The graph for flow control is obtained using the 
techniques similar to throughput calculations. The duty 
cycle of a signal used for back pressure can be used for 
displaying flow control.
Many times flow control / back pressure are tied to 
other issues like latency and throughput. The following 
diagram shows flow control observed along with 
latency numbers. This test uses the extended version of 
the test case used for latency observation. The test case 
was modified to hit the corner case repeatedly. 

Figure 4: Graph showing observed latency issue

Figure 3: Test setup for Latency measurement

The second important objective is to verify latency. 
Low latency is a key factor in most next generation 
networking gears. To achieve low latency it is 
imperative to use all IPs and especially interface IPs 
with the lowest possible latency.
We used the test setup and probing mechanism similar 
to what we used earlier to test throughput. The test 
mechanism is shown again.

Imagine if this drop in memory throughput went 
unnoticed. If the system around memory subsystem 
was unaware of this limitation and created transactions 
which fall under this pattern then it could have created 
an overall low performing system that would have been 
very difficult and time consuming to debug. This 
issue/bug within memory IP was not obvious by 
looking at the specifications.

A pattern or combination of patterns was discovered 
after long simulations which brought throughput down 
to 50%. The first usage pattern “A” corresponds to the 
ideal conditions or parameters. The second pattern “B” 
corresponds to what we believe to be a commonly used 
pattern. This pattern resulted in 85% of the published 
bandwidth. The last pattern “D” drives down memory 
bandwidth to 50% of published numbers. This was a 
cause for concern.
In our experiment the usage patterns are created by 
merely changing the 32 address bits, and thus the 
addressing pattern. 
According to the specification, the IP vendor claimed 
that address bits can be used in flat fashion and there is 
no need to know their internal banking architecture.
In reality, the memory IP used a group of address bits 
for addressing various banks. Changing these bits 
rapidly or using these bits as lower address bits created 
internal bank conflicts and a bottleneck in the memory 
controller design.

Figure 2: Throughput of memory under various 
usage patterns

From past experience we have learned to take vendor 
claims of throughput with a grain of salt. We decided 
to create an exhaustive testing mechanism to verify 
throughput as it is difficult to design an IP subsystem 
to meet every customer’s requirements. 
In the second phase, a mechanism was created to 
measure
- instantaneous throughput
- latency for each transaction
- flow control / push back
In addition, these metrics are displayed graphically as 
the simulation was progressing. 

Figure 1: Test setup

Throughput is how fast the IPs can execute certain 
functions in the real world. For example, a memory 
vendor may specify throughput in terms of bandwidth 
of 10GBytes of write data and  10GBytes of read data 
with 90% of utilization. 
It was assumed that this memory will provide a simple 
SRAM-like interface to offer drop-in replacements for 
an existing design’s memory interfaces.  Like SRAM, 
it will provide simultaneously read and write into a flat 
address space.

The picture below shows the high level view of a test 
mechanism. The testing was done on RTL and netlist as 
well as on silicon at a later stage.

As a part of the Nokia-Siemens Networks’s research 
group, we evaluate various IPs routinely. Evaluating 
them quickly and efficiently is the key. In one such 
project, we created a test infrastructure to validate the 
functionality and throughput of a new memory 
subsystem for networking gear 100G and beyond. This 
paper shows various lessons learned during that 
process. We also include code snippets and scripts that 
can be used by the readers for their projects.
The discussion is divided into 3 parts.

• Throughput
• Latency
• Flow Control

Future Enhancements

A sample gnuplot

Problems in the future avoided

Latency

Flow control

Verifying Throughput

Throughput

Introduction

Sr. Research Engineer, Nokia-Siemens Networks
380 N Bernardo Av. Mountain View, CA 94043

Rajesh.Bawankule@nsn.com

Rajesh Bawankule

Verifying functionality is simply not enough

We outlined the quickly designed mechanism we 
used in our experiments. In the future we will 
enhance it with the following features. 

Optimization of FIFO bits
The paper shows a simple mechanism of adding 
number of bits. The width of FIFO can be 
reduced just by saving number of bytes or even 
just 1 bit if byte enables are not used.

Hardware implementation
The current implementation is heavy in 
simulation. It is also difficult to synthesize due to 
large memory requirements. The 
implementation can be simplified to an 
accumulator style design. A suitable mechanism 
as well as algorithm can be chosen based on the 
application.

Various algorithms
This paper presents a simple average of moving 
window. It has the flaw of slow start and decay. 
The scheme worked for us as we were looking at 
number of clocks which was much larger than 
the FIFO.
Sophisticated algorithms like rolling average, 
weighted moving average, or exponential 
moving average can be used instead to show 
better results. These can remove the need for 
FIFOs and enable us to use faster and smaller 
designs suitable for hardware implementation.

Auto update mechanisms and usage other tools
The current implementation uses readily 
available gnuplot package. We need to load the 
csv file from command line to update the chart. 
An auto updating chart can be created by using 
better tools or using Tcl-Tk to show graph real 
time.

Figure 6: Block diagram of reporting mechanism

Figure 7: Graph showing Input and Output rates

mailto:Rajesh.Bawankule@nsn.com

	Slide Number 1

