
Mike Bartley (TVS)
in collaboration with

Verifying Functional, Safety and

Security Requirements

(for Standards Compliance)

TVS Agenda

 11.00 Introductions

 11.05 TVS

 11.20 OneSpin

 11.55 Tortuga Logic

 12.10 TVS

 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

Introduction to your speakers

 Dr Mike Bartley, CEO of TVS
• PhD in Mathematical Logic, MSc in Software Engineering, MBA

• 25 years in Software Testing and Hardware Verification

• Started TVS (Test and Verification Solutions) in 2008
• 125 engineers worldwide

• UK, France, Germany, Italy, Sweden, Turkey, India, Singapore, Korea, China, US

• Delivering SW test and HW verification products and services

» Focus on reliability, safety, security

• asureSIGN
• “Requirements Driven Test and Verification” methodology

• Define requirements and refine them to verification plans and capture sign-off

Jörg Große

Product Manager for Functional Safety,

OneSpin Solutions

Jörg Große recently joined OneSpin Solution as a Product Manager for

Functional Safety.

He has more than 20 years of experience in EDA, functional verification and

ASIC design, having served at companies in Europe, the United States and

New Zealand.

As co-founder of a successful Silicon Valley based startup, he was central in

developing the concept of fault/mutation testing into a state-of-the-art EDA tool.

He deployed this technology in many leading semiconductor companies,

increasing the quality of their functional verification.

He holds a Dipl.-Ing.(FH) in Electrical Engineering from the University of

Applied Science Anhalt.

Dr. Ryan Kastner

co-founder of Tortuga Logic

Dr. Ryan Kastner is a co-founder of Tortuga Logic

and has over 10 years of experience in realm of

hardware security. He has served as a principal

investigator on various government and industrial

grants related to hardware security (over $3

million in toto). This includes the National Science

Foundation Innovation Corps award, which

focuses on commercializing technology from

academia. Dr. Kastner is a professor in the

Computer Science and Engineering Department

at UCSD. He received a PhD in Computer

Science at UCLA, a masters degree (MS) in

engineering and bachelor degrees (BS) in both

Electrical Engineering and Computer

Engineering, all from Northwestern University.

TVS Agenda

 11.00 Introductions

 11.05 TVS
• Safety and security in Hardware and Software

• Requirements Driven Test and Verification (RDTV)

• Using an ECC example and breaking it down into a test plan

 11.20 OneSpin

 11.55 Tortuga Logic

 12.10
• Analysing the results and signoff

• Advantages of RDTV

 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

Why are Safety and Security important?

 IC Insights research
• The automotive industry is set to drive chip demand over the

coming years.
• IC Insights research suggests the demand from automotive is

expected to exhibit average annual growth of 10.8% into at least
2018.

• Demand will come from safety features that are increasingly
becoming mandatory, such as backup cameras or eCall, and the
near-ubiquitous driver-assistance systems.

 IoT
• Drones (avionics), autonomous cars, robots, ….
• Connected devices have potential security threats

 TTTech
• By 2020 50% of all ICs will be safety-related
• By 2020 50% of all ICs will be connected

Safety Standards

 IEC61508: Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-
related Systems

 DO254/DO178: Hardware/Software considerations in
airborne systems and equipment certification

 EN50128: Software for railway control and protection
systems

 IEC60880: Software aspects for computer-based systems
performing category A functions

 IEC62304: Medical device software -- Software life cycle
processes

 ISO26262: Road vehicles – Functional safety

Safety

Safety
“Freedom from unacceptable risk of physical injury or
of damage to the health of people, either directly, or
indirectly as a result of damage to property or to the

environment”

Functional Safety
“That part of the overall safety that depends on a

system or equipment operating correctly in response
to its inputs”

How Systems Fail

 Random failures
• Can usually predict (statistically)

• Can undertake preventative activities

 Systematic failures
• Specified, designed or implemented incorrectly

• Can’t usually predict

 Systemic failures
• Shortcomings in culture or practices

Focus

Here

Today

TVS

Has

Expertise

Basics of Safety Standards

 The life cycle processes are identified

 Objectives and outputs for each process are
described

• Objectives are mandatory

• But vary by Integrity Level

• For higher Integrity Levels, some Objectives require
Independence

IEC61508

 Dynamic analysis and testing

Technique SIL 1 SIL 2 SIL 3 SIL 4

Structural test coverage (entry points) 100% HR HR HR HR

Structural test coverage (statements) 100% R HR HR HR

Structural test coverage (branches) 100% R R HR HR

Structural test coverage (conditions, MC/DC) 100% R R R HR

Test case execution from boundary value analysis R

HR HR HR

Test case execution from error guessing

R R R R

Test case execution from error seeding - R R R

Test case execution from model-based test case

generation

R R HR HR

Performance modelling R R R HR

Equivalence classes and input partition testing R R R HR

Key Processes

 Plans & Standards

 Requirements

 Design Specifications

 Reviews and Analyses

 Testing (against specifications)
• At different levels of hierarchy

 Test Coverage Criteria

 Requirements Traceability

 Independence

Key Deliverables

 Verification Plan

 Validation and Verification Standards

 Traceability Data

 Review and Analysis Procedures

 Review and Analysis Results

 Test Procedures

 Test Results

 Acceptance Test Criteria

 Problem Reports

 Configuration Management Records

 Process Assurance Records

Key Deliverables

 Verification Plan

 Validation and Verification Standards

 Traceability Data

 Review and Analysis Procedures

 Review and Analysis Results

 Test Procedures

 Test Results

 Acceptance Test Criteria

 Problem Reports

 Configuration Management Records

 Process Assurance Records

Traceability in Practice

Intent to

implement

Intent to

verify

Stakeholder Requirements
(Customers and internal)

Product Requirements

Product Architecture

Verification & Test Plans

Proof of
implementation

Verification & Test Results

Requirements

Product Specification and
Features

Shows a mapping from features to verification and test plans

Example – Safeguarding a FIFO

 Safety Function

• Detect 1-bit errors and correct them

• Detect 2-bit errors and raise alarm

 Design:

• Encoder adds e data bits stored in RAM

• Decoder detects & corrects 1-bit faults on read
(error=0, corrected=1)

• Decoder detects 2-bit faults on read (error=1)

FIFO

e
n
c
o
d
e
r

d d+e
data data

d
e
c
o
d
e
r

d+e data
d

error

corrected

data

A full set of requirements ?

R1 FIFO_SINGLE_BIT The FIFO will be able to detect and correct single bit errors.

R2 ERR_REPORT_CPU Single bit errors must be reported to the CPU

R3 MULT_ERR_CPU The FIFO will be able to detect and report multiple bit errors to the CPU

R4 FIFO_NOT_FULL Data arriving on the write interface shall be written in to the FIFO as long as it is not full

R5 FIFO_NOT_EMPTY Requests to read data shall return the oldest data in the FIFO as long as it is not empty

R6 FIFO_EMPTY_READ Read attempts from an empty FIFO shall be reported to the CPU

R7 FIFO_WRITE_FULL Write attempts to a full FIFO shall be reported to the CPU

R8 WRITE_APB_INTERFACE Write data shall come across an APB interface

R9 READ_APB_INTERFACE Read data shall be send across an APB interface

R10 STATUS_REG_SINGLE_ERR A status register will record a single bit error

R11 STATUS_REG_MULTI_ERR A status register will record a multibit error bit error

R12 STATUS_REG_FIFO_FULL_ A status register will indicate a FULL fifo

R13 STATUS_REG_FIFO_EMPTY A status register will indicate an empty fifo

R14 STATUS_REG_FIFO_OVERFLOW A status register will indicate overflow

R15 STATUS_BIT_OVERFLOW A status bit will record underflow

R16 PRIVILEGE_LEVEL_1 only users with privilege level 1 can read from the FIFO

R17 PRIVILIGE_LEVEL_1_2 only users with privilege level 1 or 2

Safety

Functional

Security

Safety Requirement Decomposition (example)

Req: Safeguard Design against single bit soft errors

Sub-Concept/Req: Safeguarde each FIFO

Safety Reqirements for FIFO / Concept:

• Use ECC FIFO

• Detect 1-bit errors and correct them

• Detect 2-bit errors and raise alarm

Safety Verification Requirement for ECC FIFO
Implmementation

• If no error occurs, nothing is flagged and the data is uncorrupted

• If one error occurs, no error is flagged, the data is uncorrupted
and the correction is flagged

• If two errors occur, an error is flagged, but no correction

Formal Safety Properties to verify Implementation

• Separate slide

Mapping Security Requirements to Features
 R16 - PRIVILEGE_LEVEL_1: only users with privilege level 1 can read

from the FIFO

ECC_SECURITY_1 Reads without privilege level Reads without privilege level 1 or 2 will cause a bus error

ECC_SECURITY_2 Reads with privilege level
Reads with privilege level 1 or 2 will be successful

Metrics can be:

• From HW verification

• From Silicon validation

• From SW testing

Mapping Requirements to Verification Metrics

Relationships can be:

• Bi-directional

• Many-many

Req1 Feat1 Feat1.1 Goal1 Directed Test

Code Coverage

Functional Cvge

Feat1.2 Goal2

Feat3 Req2 Property Proved

Assertion Passing

Feat1.3 Goal3

Goal4

Assertion Cvge

Software Running Feat2 Goal5

Goal6 Lab Results

Verification Metrics

Feat2.1

Feat2.2

asureSIGN Demo

 Mapping the requirements to a test plan

TVS Agenda

 11.00 Introductions

 11.05 TVS
• Safety and security in Hardware and Software

• Requirements Driven Test and Verification (RDTV)

• Using an ECC example and breaking it down into a test plan

 11.20 OneSpin

 11.55 Tortuga Logic

 12.10 TVS
• Analysing the results and signoff

• Advantages of RDTV

 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

Requirement Driven Verification
for Safety & High Reliability

Jörg Große

© Accellera Systems Initiative 27

Why Safety & Reliability Verification is
important - Risk Drivers

• Cars are computer on wheels

– But reset is not an option, especially not when diving at
high speeds

© Accellera Systems Initiative 28

 Systematic Errors
– Machine Errors

• Synthesis bugs, ..

– Human Errors
• Implementation bugs
• Design bugs

– Driven by
• Ever increasing complexity
• Time to market and budget

 Random Errors
– Hard Errors

• Latch-ups
• Burnouts (struck-at faults)

– Soft Errors
• Transients (glitches, bit flips)

– Driven by
• Decreasing geometries
• Decreasing supply voltage
• Increasing area

Consequence?

© Accellera Systems Initiative 29

Design Process

Systematic Errors

All Devices

Minimize!

Physical Effects

Random Errors

Individual Devices

Safeguard!

Functional Verification + Safeguard Verification

=

Functional Safety Verification

Safeguarding against Random Errors

© Accellera Systems Initiative 30

Fault Detection
– Raise alarm

Fault Handling
– Enter into safe mode
– Or correct erroneous output

Examples
– Parity, ECC, lock-step

Additional Verification Effort for

© Accellera Systems Initiative 31

Minimize Systematic
Errors

Rigorous Verification

Quantification of
Verification

Safeguard Random
Errors

Verification of Safety
Mechanisms

Diagnostic Coverage

 Puts additional pressure on Time-to-Market & Budget!

=> Automation

Functional Safety Verification

Requirement Driven

Minimizing Systematic Errors with
Rigorous

Requirement Based Verification

© Accellera Systems Initiative 32

Generic Verification Flow with
Requirement Tracing

© Accellera Systems Initiative 33

Requirements

Design

Verification

Quantitative
Analysis

Report

Feedback

Requirements

Example Design
Safeguarding a FIFO with ECC

© Accellera Systems Initiative 34

• Safety Functions
– Detect 1-bit errors and correct them
– Detect 2-bit errors and raise alarm

• Design:

• Encoder adds e data bits stored in FIFO

en
co

d
er

w w+e
wr_data rd_data

d
e

co
d

er

w+e rd_data
w

error

corrected

wr_data

rd_en
wr_en

FIFO

full
empty

Functional & Safety Requirements

© Accellera Systems Initiative 35

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without

writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an
empty FIFO leaves the FIFO
unmodified on the first read

If no error occurs, nothing is
flagged and the data is

uncorrupted

If one error occurs, no error is
flagged, the data is uncorrupted

and the correction is flagged

If two errors occur, an error is
flagged, but no correction

Functional

Requirements

Safety

Requirements

Mapping Requirements to Properties

© Accellera Systems Initiative 36

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without

writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an
empty FIFO leaves the FIFO
unmodified on the first read

Functional

Requirements

Formal Property

© Accellera Systems Initiative 37

not_empty_after_write_a: assert property

(disable iff (!FIFO.reset_n) wr_en |=> !empty);

Requirement based verification

  Create assertions for each requirement!

Example: assert.not_empty_after_write_a

“The FIFO is no longer empty after a write”

Formal Assertion Based Verification

© Accellera Systems Initiative 38

RTL Code

Assertions /
Constraints

Formal
Check

Assertion
exhaustively

proven

Counterexample

Debugging

Standard Formal ABV Flow

• Early: No stimulus or testbench is needed

• Efficient: Typically check-debug-fix in minutes

• Exhaustive: If assertion holds -> no simulation needed

Mapping Requirements to Properties

© Accellera Systems Initiative 39

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without

writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an
empty FIFO leaves the FIFO
unmodified on the first read

Functional

Requirements

Reliable Quantification of Formal
Assertion Sets

Coverage Reloaded

© Accellera Systems Initiative 40

Quantitative Analysis of Verification

© Accellera Systems Initiative 41

coverage metrics

stimulus/constraints checkers/assertions

Requirements

DUV

Report

How good are

my test vectors

& constraints?

Often

discounted:

How good are my

checkers and

assertions?

How much of my DUV is verified?

Cone-of-Influence Coverage

© Accellera Systems Initiative 42

A

Assertion A

DUV

B

Covered by

COI of A

A Trivial Example – COI Coverage

© Accellera Systems Initiative 43

in;

But lines:

 7,10,11,12

are not verified.

Potential bugs could

escape!

What line coverage

would you expect

from this assertion

when using COI

coverage?

Prover Coverage

© Accellera Systems Initiative 44

Whatever the prove engine needs is considered covered.

Corresponds to abstractions inside prove engines.

Each prove engine uses different abstractions.

No guarantee that what the prove engine needs is fully covered!

A

Assertion A

DUV

B

COI of A
Not covered due to

Prover Abstraction

covered

Not covered

A Trivial Example – Prover Coverage

© Accellera Systems Initiative 45

in;

But line 12

is not verified.

Potential bugs could

escape!

Prove engine needs
at least s[2] and s[3].

Observation Coverage Principle

© Accellera Systems Initiative 46

• Has the statement been activated?
• If a statement has not been activated

during verification, it can’t break a
check.

• Measures reachability.

case (state)

 …

 burst:

 if (cancel_i)

 done_o <= 1

 …

active

case (state)

 …

 burst:

 if (cancel_i)

 done_o <= v

 …

modify

• Has the effect been observed?
• If a statement is modified and

activated, some assertion should fail.
• Measures quality of assertions.

Example: Statement Coverage

Coverage

Activation Observation

Been there! Done that!

Using Observation Coverage

© Accellera Systems Initiative 47

Unlike COI coverage,

observation coverage

identifies all unchecked

assignments.

Need better or more

assertion(s).

Quantification of Properties

© Accellera Systems Initiative 48

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without

writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an
empty FIFO leaves the FIFO
unmodified on the first read

Functional

Requirements

All assertions are

proven, but how good

are they?

Apply OneSpin’s

Quantify observation

coverage technology.

Assertions

Hold

Quantify Coverage Report

© Accellera Systems Initiative 49

Expecting FIFO to be

fully covered!

Stronger Assertion Exposes Bug

© Accellera Systems Initiative 50

property data_not_corrupted_p;

... (empty & wr_en, dat=wr_data[WIDTH-1:0]) ##1

!rd_en[*0:$] ##1 rd_en |=> rd_data[WIDTH-1:0]==dat

|| (!full | empty); // Bad!

Quantify Coverage Report

© Accellera Systems Initiative 51

Much better after fix!

But still something wrong.

Visit our booth P6 for full demo!

Quantify Properties

© Accellera Systems Initiative 52

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without

writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an
empty FIFO leaves the FIFO
unmodified on the first read

Functional

Requirements
Assertions

Hold

Coverage

Achieved

Summary Observation Coverage with
Quantify

© Accellera Systems Initiative 53

Constrained

Assertions Still

Required

Verified

Unreachable

• Observation coverage algorithm
drives precise coverage metric

– Qualifies for safety-critical

– Also identifies dead code and over-
constrained code

– Provides comprehensive progress metric

• Don't trust COI coverage
– Maybe good for sanity/quick check

– But not for safety-critical

• Prover coverage is also problematic for
safety-critical

– Not objective, results depend on prove engine

Verification of Safety Mechanism

© Accellera Systems Initiative 54

Efficient Verification of Safety
Functions

© Accellera Systems Initiative 55

Fault Injection complexity for bit vectors:
• 2width possible data input combinations
• (width) 1-bit errors
• (width* width-1) 2-bit errors

Simulation Based Verification is not a good solution:
• Hard to anticipate all relevant conditions
• Hard to deal with huge number of faults + combinations!
• No exhaustive testing feasible

Safety Verification Problem

• Safety functions are inactive

under normal operation!

• Artificially inject faults into

verification to activate

Formal ABV with fault injection

Three Simple Steps to Success

© Accellera Systems Initiative 56

1. Describe expected behavior with no fault injected and prove that it holds.

property (<antecedent> |=> !Alarm)

property (<antecedent> |=> Input'== CorrectedOutput

 & Corrected & !Alarm

2. Describe expected behavior with the fault(s) injected, inject the fault(s)

 and prove that it holds.

3. Describe expected behavior with correctable faults injected,

 inject the correctable faults and prove that it holds.

property (<antecedent> |=> Alarm)

FIFO Safety Requirements

© Accellera Systems Initiative 57

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without

writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an
empty FIFO leaves the FIFO
unmodified on the first read

If no error occurs, nothing is
flagged and the data is

uncorrupted

If one error occurs, no error is
flagged, the data is uncorrupted

and the correction is flagged

If two errors occur, an error is
flagged, but no correction

Functional

Requirements

Safety

Requirements

Formal ABV with Fault Injection
Application Scenario: FIFO

© Accellera Systems Initiative 58

en
co

d
er

w w+e
wr_data rd_data

d
e

co
d

er

w+e rd_data
w

error

corrected

wr_data

rd_en
wr_en

FIFO

full
empty

• For FIFO Example:

– Create no_error, corrected_no_error and error assertions according to the safety
requirements

– Depening on the assertion, inject Bit-Flip faults at the FIFO output

Inject Faults Here!

Application Scenario: FIFO
SV Assertions for Safety Features

© Accellera Systems Initiative 59

No error  nothing flagged, data uncorrupted:

One error  no error flagged, data uncorrupted, correction flagged:

Two errors  error flagged, no correction flagged:

no_error: assert property (disable iff (!reset_n)

 empty & wr_en ##1 rd_en

 |=> rd_data == $past(wr_data,2) & !rd_error & !rd_corrected);

corrected_no_error: assert property (disable iff (!reset_n)

 empty & wr_en ##1 rd_en

 |=> rd_data == $past(wr_data,2) & !rd_error & rd_corrected);

error: assert property (disable iff (!reset_n)

 empty & wr_en ##1 rd_en

 |=> rd_error && !rd_corrected);

How to inject the faults?

© Accellera Systems Initiative 60

• Conveniently use formal fault injection:

• User can automatically enable different number/kind of faults for

individual assertions

• Possible to verify generic assertions like “a 2-bit fault gets detected”

• Supporting FLIP, ST0, ST1, OPEN

Injector

Fault location

Formal setup for n-bit faults of desired type

Using the Formal Fault Injection

© Accellera Systems Initiative 61

Assertion Inject Fault Type Expect

safety.no_error NONE HOLD

safety.corrected_no_error FLIP 1 bit HOLD

safety.error FLIP 2 bit HOLD

inject_fault –location rd_data_FIFO –type <type> -assert <assertion>

Application Scenario: FIFO
Failing Assertion for Safety Feature

© Accellera Systems Initiative 62

Assertion Inject Fault Type Got

safety.corrected_no_error FLIP 1 bit FAIL

FIFO Safety Requirements

© Accellera Systems Initiative 63

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without

writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an
empty FIFO leaves the FIFO
unmodified on the first read

If no error occurs, nothing is
flagged and the data is

uncorrupted

If one error occurs, no error is
flagged, the data is uncorrupted

and the correction is flagged

If two errors occur, an error is
flagged, but no correction

Functional

Requirements

Safety

Requirements

Summary Verification of Safety Mechanism

© Accellera Systems Initiative 64

• ISO 26262-5 (page 28) highly recommends to apply model
based fault injection testing:

• OneSpin provides formal fault injection to meet ISO 26262 and

verify safety mechanisms

– No modification of source code required

– Supports different fault types and number of faults

– Unlike simulation, it provides complete proof of all faults in one
step

– Easily maps assertions to faults and checks them

Diagnostic Coverage

© Accellera Systems Initiative 65

© Accellera Systems Initiative 66

Diagnostic Coverage
ISO 26262 Analysis Requirements

© Accellera Systems Initiative 67

• Diagnostic coverage: proportion of hardware element failure rate
that is detected or controlled by safety mechanisms

• High diagnostic coverage is needed to achieve a high Automotive
Safety Integrity Level (ASIL)

Discussing Diagnostic Coverage
of Safety Mechanisms

© Accellera Systems Initiative 68

Fault Classification in Semiconductor
Context

© Accellera Systems Initiative 69

• Safe faults
– Faults which cannot propagate
– Faults which only propagate to non-safety-critical

functions (don't violate a safety goal)
– Faults which are detected by a safety mechanism

before they can cause harm

• Unsafe faults
– Faults which propagate to a safety-critical function

without being detected
– Faults with unknown behavior

 Minimize

Unsafe Faults

Increase

Diagnostic Coverage

Formal Propagation Analysis Summary

© Accellera Systems Initiative 70

• Formal propagation analysis can identify
– Faults which cannot propagate
– Whether a fault propagates to a safety-critical function
– Whether a fault propagates to a safety mechanism

• This information helps to classify faults as safe or

unsafe and creates more precise diagnostic
coverage of the safety mechanism

More Precise

Diagnostic

Coverage

Meet Safety Goal

Summary

© Accellera Systems Initiative 71

Minimize Systematic
Errors

Rigorous Verification

Quantification of
Verification

Safeguard Random
Errors

Verification of Safety
Mechanisms

Diagnostic Coverage

Functional Safety Verification

Requirement Driven

Thank you!

© Accellera Systems Initiative 72

To learn more about safety critical design &
verification:

• Read Safety Critical News

– http://safetycritical.onespin-solutions.com/

• Visit us at Booth P6

http://safetycritical.onespin-solutions.com/
http://safetycritical.onespin-solutions.com/
http://safetycritical.onespin-solutions.com/
http://safetycritical.onespin-solutions.com/
http://safetycritical.onespin-solutions.com/

Questions

Finalize slide set with questions slide

© Accellera Systems Initiative 73

TVS Agenda

 11.00 Introductions

 11.05 TVS
• Safety and security in Hardware and Software

• Requirements Driven Test and Verification (RDTV)

• Using an ECC example and breaking it down into a test plan

 11.20 OneSpin

 11.55 Tortuga Logic

 12.10 TVS
• Analysing the results and signoff

• Advantages of RDTV

 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

Not just these devices….

Hackers are now focusing on hardware

Current “State-Of-The-Art”

Designing Secure Hardware

Security

Engineers

Hardware

Designers

Tortuga Logic Software

Did you

make it

secure?

Yes we

did!

Tortuga Logic’s PROSPECT

Enable “Design-for-Security” from the ground up to

minimize security breaches in hardware and systems

Tortuga Logic’s PROSPECT Software Solution

 Prospect Tool flow

Security

Properties

Prospect GUI key =/=> out

coreA =/=> coreB

. . .

Results and

Debug feedback

RTL

Tortuga Logic’s PROSPECT

PROSPECT: Key Values

 Automates HW security design
• Reduce security validation from months to hours

• Significant cost savings for certification

 Increase security coverage and reduce risk
• Many checks cannot be done manually

 Makes design for security a priority

 Types of addressable security properties

Hardware Block

Input Output

Tortuga Logic’s PROSPECT

 Critical component is adversely affected

Hardware Block

Input Output

Untrusted

(Wireless

Radio) Critical

(Pacing unit)

Tortuga Logic’s PROSPECT

 Secret data is unintentionally leaked

Hardware Block

Input Output

Secret

(HW Key)

Untrusted

(Debug Output)

Tortuga Logic’s PROSPECT

Case Study – Top-25 Semi Company
Key Flowing Out Of Design

 Assertion: Key only flows through AES
• assert iflow (key =/=> $all_outputs ignoring aes.$all_outputs);

• If assertion holds, key only flows to outputs through AES first

 Real world results
• State-of-the-art design with over 10 million gates

• Actual required properties, impossible to visually inspect

Key Mem

interconnect

AES

Key Mem

interconnect

AES

Case Study – Top-25 Semi Company
Key Flowing Out Of Design

 Assertion: Key only flows through AES
• assert iflow (key =/=> $all_outputs ignoring aes.$all_outputs);

• If assertion holds, key only flows to outputs through AES first

 Real world results
• State-of-the-art design with over 10 million gates

• Actual required properties, impossible to visually inspect

Key Mem

interconnect

AES

Case Study – Top-25 Semi Company
Key Flowing Out Of Design

 Assertion: Key only flows through AES
• assert iflow (key =/=> $all_outputs ignoring aes.$all_outputs);

• If assertion holds, key only flows to outputs through AES first

 Real world results
• State-of-the-art design with over 10 million gates

• Actual required properties, impossible to visually inspect

Demo: AES Key Leakage

Key

Storage
Encryption

Module

Data

data_o

Property:

assert iflow (key =/=> data_o);

Result (demo):

Fails in 4 cycles

Key XOR Data flows to pins,

security flaw

ready_o

Demo: AES Key Leakage

Property:

assert iflow (key =/=> data_o);

Result:

Fails in 506 cycles

Encrypted data flows to pins

Flow is allowed, ready_o=1

Key

Storage
Encryption

Module

Data

data_o

ready_o

Demo: AES Key Leakage

Demo: AES Key Leakage

Key

Storage
Encryption

Module

Data

data_o

Property:

assert iflow (key =/=> data_o) || ready_o;

Result:

Assertion Holds

ready_o

Demo: AES Key Leakage

TVS Agenda

 11.00 Introductions

 11.05 TVS
• Safety and security in Hardware and Software

• Requirements Driven Test and Verification (RDTV)

• Using an ECC example and breaking it down into a test plan

 11.20 OneSpin

 11.55 Tortuga Logic

 12.10 TVS
• Analysing the results and signoff

• Advantages of RDTV

 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

Metrics can be:

• From HW verification

• From Silicon validation

• From SW testing

Mapping Requirements to Verification Metrics

Relationships can be:

• Bi-directional

• Many-many

Req1 Feat1 Feat1.1 Goal1 Directed Test

Code Coverage

Functional Cvge

Feat1.2 Goal2

Feat3 Req2 Property Proved

Assertion Passing

Feat1.3 Goal3

Goal4

Assertion Cvge

Software Running Feat2 Goal5

Goal6 Lab Results

Verification Metrics

Feat2.1

Feat2.2

Use a bi-directional mapping to track backwards

Measuring Requirements Progress



75%

50%



0%









85%

70%



0%







Regression 2

Req1 Feat1 Feat1.1 Goal1 Directed Test

Code Coverage

Functional Cvge

Feat1.2 Goal2

Feat3 Req2 Property Proved

Assertion Passing

Feat1.3 Goal3

Goal4

Assertion Cvge

Software Running Feat2 Goal5

Goal6 Lab Results

Verification Metrics

Feat2.1

Feat2.2

Regression 1

84%

76%

Use an SQL database to hold the mappings and results

asureSIGNTM at the heart of HW/SW V&V

Requirements
- Excel
- Doors
- Jira
- etc

Hardware Simulation
• Coverage Cadence
• Assertions Mentor, Aldec
• Etc.

Directed test results

asureSIGNTM

Matlab

Formal Verification
• OneSpin

UCIS API

Run
API

Automated SW Test Tool

SW Test Tools

Manual
API

Lab Results

Requirements Engineering tools

SystemC Simulation

XML API

Supporting Hierarchical Verification

 A requirement might be signed off at multiple
levels of hierarchy during the hardware
development
• Block

• Subsystem

• SoC

• System
• Including Software

• Post Silicon

asureSIGN Demo

 Mapping the results to the test plan

Retention of Verification Results (DO 254)

 Verification records should contain a clear
correlation to the pass/fail criteria
• These verification records should contain the author/reviewer,

date, and any items used in the including their versions.

• Any failures or issues found should be correlated to the standard
that has been violated.

 Test results should be clearly linked to their
associated tests and requirements

 Test Results should be reviewed to be sure that
the actual and expect results are giving the
correct results and that the tests are passing.

Requirements Driven Verification

 Compliance to various safety standards
• hardware and software (and systems)

 Some advantages
• Identify test holes and test orphans

• Retention of verification results
• Build historical perspective for more accurate predictions

• Better reporting of requirements status

• Risk-based testing

• Prioritisation and Risk Analysis

• Filtering Requirements based on Customers and releases

• Impact and conflict analysis

Any questions ?

