Verifying Functional, Safety and
Secvurity Requirements

(for Standards Compliance)

Viike Bartley
IN collaboration with

SOLUTIONS Logl C

TVS Agenda

= 11.00 Introductions

" 11.05TVS

= 11.20 OneSpin

= 11.55 Tortuga Logic

" 12.10 TVS

= 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

2015
ageellerd BVETIN

SSSSSSSSSSSSSSSSS

Infroduction to your speakers

" Dr Mike Bartley, CEO of TVS

PhD in Mathematical Logic, MSc in Software Engineering, MBA
25 years in Software Testing and Hardware Verification
Started TVS (Test and Verification Solutions) in 2008

125 engineers worldwide
UK, France, Germany, ltaly, Sweden, Turkey, India, Singapore, Korea, China, US

Delivering SW test and HW verification products and services
» Focus on reliability, safety, security

asureSIGN

“Requirements Driven Test and Verification” methodology
Define requirements and refine them to verification plans and capture sign-off

2015
accellera st

IIIIIIIIIIIIIIIII

Jorg GroB3e

Jorg Grol3e recently joined OneSpin Solution as a Product Manager for
Functional Safety.

He has more than 20 years of experience in EDA, functional verification and
ASIC design, having served at companies in Europe, the United States and
New Zealand.

As co-founder of a successful Silicon Valley based startup, he was central in
developing the concept of fault/mutation testing into a state-of-the-art EDA tool.
He deployed this technology in many leading semiconductor companies,
increasing the quality of their functional verification.

He holds a Dipl.-Ing.(FH) in Electrical Engineering from the University of
Applied Science Anhalt.

accellera R T

CONFERENCE AND EXHIBTION
SSSSSSSSSSSSSSSSS

Dr. Ryan Kastner

Dr. Ryan Kastner is a co-founder of Tortuga Logic
and has over 10 years of experience in realm of
hardware security. He has served as a principal
investigator on various government and industrial
grants related to hardware security (over $3
million in toto). This includes the National Science
Foundation Innovation Corps award, which
focuses on commercializing technology from
academia. Dr. Kastner is a professor in the
Computer Science and Engineering Department
at UCSD. He received a PhD in Computer
Science at UCLA, a masters degree (MS) in
engineering and bachelor degrees (BS) in both
Electrical Engineering and Computer
Engineering, all from Northwestern University.

2015
accellera e

IIIIIIIIIIIIIIIII

TVS Agenda

= 11.00 Introductions
= 11.05TVS

Safety and security in Hardware and Software
Requirements Driven Test and Verification (RDTV)
Using an ECC example and breaking it down into a test plan

= 11.20 OneSpin
= 11.55 Tortuga Logic
= 12.10

Analysing the results and signoff
Advantages of RDTV

= 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

IIIIIIIIIIIIIIIII

Why are Safety and Security imporiant?

" |C Insights research

The automotive industry is set to drive chip demand over the
coming years.

IC Insights research suggests the demand from automotive is

expected to exhibit average annual growth of 10.8% into at least
2018.

Demand will come from safety features that are increasingly

becoming mandatory, such as backup cameras or eCall, and the
near-ubiquitous driver-assistance systems.

= |oT

Drones (avionics), autonomous cars, robots,
Connected devices have potential security threats

" TTTech

By 2020 50% of all ICs will be safety-related
By 2020 50% of all ICs will be connected

2
accellera R T

CONFERENCE AND EXHIBTION
SSSSSSSSSSSSSSSSS

Safety Standards

= JEC61508: Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-
related Systems

= D0O254/D0O178: Hardware/Software considerations in
airborne systems and equipment certification

= EN50128: Software for railway control and protection
systems

= JEC60880: Software aspects for computer-based systems
performing category A functions

= |EC62304: Medical device software -- Software life cycle
processes

= |SO26262: Road vehicles — Functional safety

dcceliera DVCON
SYSTEMS INITIATIVE g -

Safety

Safety

“Freedom from unacceptable risk of physical injury or

of damage to the health of people, either directly, or

indirectly as a result of damage to property or to the
environment”

Functional Safety

“That part of the overall safety that depends on a
system or equipment operating correctly in response
to its inputs”

accellera DV2015

SSSSSSSSSSSSSSSSS

How Systems Fail

= Random failures

Can usually predict (statistically) FOoCUs
Can undertake preventative activities __ Here
= Systematic failures Today

Specified, designed or implemented incorrectly

—

Can’t usually predict

—

= Systemic failures TVS
Shortcomings in culture or practices [Has |
Expertise

2015
accellera BVEEN

IIIIIIIIIIIIIIIII

Basics of Safety Standards

" The life cycle processes are identified

= Objectives and outputs for each process are
described

Objectives are mandatory
But vary by Integrity Level

For higher Integrity Levels, some Objectives require
Independence

2
accellera R T

CONFERENCE AND EXHIBTION
SSSSSSSSSSSSSSSSS

IEC61508

. Dynamic analysis and testing

Structural test coverage (entry points) 100%
Structural test coverage (statements) 100%
Structural test coverage (branches) 100%
Structural test coverage (conditions, MC/DC) 100%

Test case execution from boundary value analysis

Test case execution from error guessing

Test case execution from error seeding

Test case execution from model-based test case
generation

Performance modelling

Equivalence classes and input partition testing

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

2015
DVE::C.E N

rrrrrrrrrrrrrrrrrrrrr

Key Processes

" Plans & Standards

= Requirements

" Design Specifications
" Reviews and Analyses

" Testing (against specifications)
At different levels of hierarchy

= Test Coverage Criteria
" Requirements Traceability
" Independence

2015
accellera L

IIIIIIIIIIIIIIIII

Key Deliverables

= Verification Plan

= Validation and Verification Standards
" Traceability Data

= Review and Analysis Procedures

= Review and Analysis Results

" Test Procedures

" Test Results

= Acceptance Test Criteria

"= Problem Reports

= Configuration Management Records
a@rocess Assurance Records

CONFERENCE AND EXHIBTION

SSSSSSSSSSSSSSSSS

Key Deliverables

= Verification Plan

= Validation and Verification Standards
" Traceability Data

= Review and Analysis Procedures

= Review and Analysis Results

= Test Procedures

= Test Results

= Acceptance Test Criteria

= Problem Reports

= Configuration Management Records
" Process Assurance Records

dccenera DVLCLOIN

IIIIIIIIIIIIIIIII

Traceability in Practice

A O O Stakeholder Requirements

. (Customers and internal)
Requirements

. ’ Product Requirements
‘ Product Architecture
Intent to
implement
’ . . ’ ’ . Product Specification and
Features

Intent to

verify O O O OO0 O © © @ \Verification & Test Plans

Proof of

v implementation’ O O OO O O O © |Verification & Test Results

Shows a mapping from features to verification and test plans

dcceliera et
SYSTEMS INITIATIVE

Example - Safeguarding a FIFO

= Safety Function
Detect 1-bit errors and correct them
Detect 2-bit errors and raise alarm

data
data FIFO error
corrected

Encoder adds e data bits stored in RAM

Decoder detects & corrects 1-bit faults on read
(error=0, corrected=1)

Decoder detects 2-bit faults on read (error=1) 2015
agcelerd) BUEEIT

IIIIIIIIIIIIIIIII

A full ? set of requirements

R1 FIFO_SINGLE_BIT The FIFO will be able to detect and correct single bit errors.

R2 ERR_REPORT_CPU Single bit errors must be reported to the CPU

R3 MULT_ERR_CPU The FIFO will be able to detect and report multiple bit errors to the CPU

R4 FIFO_NOT_FULL Data arriving on the write interface shall be written in to the FIFO as long as it is not full
R5 FIFO_NOT_EMPTY Requests to read data shall return the oldest data in the FIFO as long as it is not empty
R6 FIFO_EMPTY_READ Read attempts from an empty FIFO shall be reported to the CPU

R7 FIFO_WRITE_FULL Write attempts to a full FIFO shall be reported to the CPU

R8 WRITE_APB_INTERFACE Write data shall come across an APB interface

R9 READ_APB _INTERFACE Read data shall be send across an APB interface

R10 STATUS_REG_SINGLE_ERR A status register will record a single bit error
R11 STATUS REG_MULTI_ERR A status register will record a multibit error bit error S a.fety

R12 STATUS _REG_FIFO FULL A status register will indicate a FULL fifo F u n Ctl O n al
R13 STATUS_REG_FIFO_EMPTY A status register will indicate an empty fifo

R14 STATUS_REG_FIFO_OVERFLOW A status register will indicate overflow S e C u rlty
R15 STATUS BIT_OVERFLOW A status bit will record underflow

R16 PRIVILEGE_LEVEL 1 only users with privilege level 1 can read from the FIFO

R17 PRIVILIGE_LEVEL_1 2 only users with privilege level 1 or 2

2015
accellera e

SYSTEMS INITIATIVE

Safety Requirement Decomposition (exampie)

Req: Safeguard Design against single bit soft errors

Sub-Concept/Req: Safeguarde each FIFO

Safety Reqgirements for FIFO / Concept:

» Use ECC FIFO
* Detect 1-bit errors and correct them
* Detect 2-bit errors and raise alarm

Safety Verification Requirement for ECC FIFO
Implmementation

* If no error occurs, nothing is flagged and the data is uncorrupted

* If one error occurs, no error is flagged, the data is uncorrupted
and the correction is flagged

« If two errors occur, an error is flagged, but no correction

Formal Safety Properties to verify Implementation
» Separate slide

accellera

Mapping Security Requirements to Features

= R16 - PRIVILEGE_LEVEL_1: only users with privilege level 1 can read
from the FIFO

ECC_SECURITY_1 Reads without privilege level Reads without privilege level 1 or 2 will cause a bus error

ECC_SECURITY_2 Reads with privilege level
Reads with privilege level 1 or 2 will be successful

2015
accellera L

IIIIIIIIIIIIIIIII

Mapping Requirements to Verification Metrics

ﬁL

Verification Metrics

Featl «— Featl.l<«— Goall<— Directed Test

\‘ Featl.2«—— Goal2

Featl.31<:

Goal3

Code Coverage

Functional Cvge

Goal4\ Assertion Passing
Assertion Cvge

«—> Feat2.1 «—> Goalbs

T Feat2.2

Feat2

«——— Software Running

«—> Goal6«——— Lab Results

Feat3 <

» Property Proved

Relationships can be:
* Bi-directional .
« Many-many .

SSSSSSSSSSSSSSSSS

Metrics can be:
From HW verification
From Silicon validation

« From SW testing

asureSIGN Demo

" Mapping the requirements to a test plan

20
accellera DV15

IIIIIIIIIIIIIIIII

TVS Agenda

= 11.00 Introductions
= 11.05TVS

Safety and security in Hardware and Software
Requirements Driven Test and Verification (RDTV)
Using an ECC example and breaking it down into a test plan

= 11.20 OneSpin
= 11.55 Tortuga Logic
= 12.10TVS

Analysing the results and signoff
Advantages of RDTV

= 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

IIIIIIIIIIIIIIIII

Requirement Driven Verification
for Safety & High Reliability

Jorg Grolse

OneSpin

SOLUTIONS

accellera DVCON

SYSTEMS INITIATIVE

Why Safety & Reliability Verification is
important - Risk Drivers

e (Cars are computer on wheels

— But reset is not an option, especially not when diving at

high speeds

Systematic Errors

— Machine Errors
* Synthesis bugs, ..

— Human Errors
* Implementation bugs
* Design bugs

— Driven by

e Ever increasing complexity
* Time to market and budget

SYSTEMS INITIATIVE

© Accellera Systems Initiative 28

Random Errors

— Hard Errors

e Latch-ups

e Burnouts (struck-at faults)
— Soft Errors

* Transients (glitches, bit flips)
— Driven by

* Decreasing geometries

* Decreasing supply voltage
* |Increasing area

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Consequence?

4)
Physical Effects
Systematic Errors Random Errors

All Devices Individual Devices
Minimize! Safeguard!
_ J

Functional Verification + Safeguard Verification

Functional Safety Verification 5015
© Accellera Systems Initiative 29 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Safeguarding against Random Errors

Normal Design Function
nout - | Corrected
npu — O
activate propagate GE’ 3 E
Fault o | © O |Corrected
0 E—
"o
. Alarm
— Hardware Safety Mechanism —

Fault Detection
— Raise alarm

Fault Handling
— Enter into safe mode
— Or correct erroneous output

Examples
— Parity, ECC, lock-step

DESIGN AND VI EI%—'QA]T?ON“‘
accellera . DVCON
© Accellera Systems Initiative %0 . CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Additional Verification Effort for

Functional Safety Verification

\ 4

(a N\
Minimize Systematic Safeguard Random
Errors Errors

Verification of Safety

Rigorous Verification Mechanisms

Quantification of

Verification Diagnostic Coverage

Requirement Driven

\.

Puts additional pressure on Time-to-Market & Budget!
=> Automation

.......................
accellera . DVCON
© Accellera Systems Initiative 31 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

J

Minimizing Systematic Errors with
Rigorous
Requirement Based Verification

accellera DVCON

SYSTEMS INITIATIVE

eneric
Requirement Tracing

Requirements

Feedback

Verification

Requirements S

(2015
\\ DESIGN AND VERIFICATION™
accellera - DVEOIN
s © Accellera Systems Initiative 33 T CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE . 2

Example Design
Safeguarding a FIFO with ECC

e Safety Functions
— Detect 1-bit errors and correct them
— Detect 2-bit errors and raise alarm

* Design:

Wr_en
rd_en

rd_data
wr_data wr_data rd_data error

FIFO corrected

* Encoder adds e data bits stored in FIFO

.......................
accellera . DVCON
© Accellera Systems Initiative 4 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

D
Functional & Safety Requirements

Functional
Requirements

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without
writes

The FIFO is full after DEPTH

many writes without reads

The FIFO is no longer empty

after a write

The first data written to an

empty FIFO leaves the FIFO
unmodified on the first read

SYSTEMS INITIATIVE

Safety
Requirements

If no error occurs, nothing is
flagged and the data is
uncorrupted

If one error occurs, no error is
flagged, the data is uncorrupted
and the correction is flagged

If two errors occur, an error is
flagged, but no correction

2015

DESIGN AND VI FICATION™

DVCON

CONFERENCE AND EXHIBITION

EUROPE

S
Mapping Requirements to Properties

Functional
Requirements

The FIFO is no longer empty

after a write

2015

- l—\\ DESIGN AND VERIFICATION™
accellera L DV
_ © Accellera Suetamc Initiative 6 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE M ='ﬁl ulﬁ; li ﬁﬂ :‘ﬂ ';E”

Formal Property

Requirement based verification
-> Create assertions for each requirement!

not empty after write a: assert property

(disable 1ff (!FIFO.reset n) wr en |=> lempty);

Example: assert.not_empty after write_a
“The FIFO is no longer empty after a write”

.......................
accellera . DVCON
© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Formal Assertion Based Verification

Counterexample

Debugging |E
RTL Code Jé — _gg_ "

w

1 2 E 0
Ien |

Assertion
— exhaustively
proven

Assertions /J

Constraints

Standard Formal ABV Flow

* Early: No stimulus or testbench is needed
* Efficient: Typically check-debug-fix in minutes
* Exhaustive: If assertion holds -> no simulation needed

accellera . DVCON
© Accellera Systems Initiative 3% CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

S
Mapping Requirements to Properties

Functional
Requirements

The FIFO is no longer empty

after a write

2015

- l—\\ DESIGN AND VERIFICATION™
accellera L DV
_ © Accellera Suetamc Initiative 9 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE M ='ﬁl ulﬁ; li ﬁﬂ :‘ﬂ ';E”

Reliable Quantification of Formal
Assertion Sets
Coverage Reloaded

accellera DVCON

SYSTEMS INITIATIVE

Quantitative Analysis of Verification

J Requirements

stimulus/constraints checkers/assertions

Often
How good are discounted:

my test vectors How good are my
& constraints? checkers and

assertions?

.......................
accellera . DVCON
© Accellera Systems Initiative 4 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

Cone-of-Influence Coverage

Covered by
COl of A °

Assertion A

.......................
accellera . DVCON
© Accellera Systems Initiative 42 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

A Trivial Example — COl Coverage

1
2
3
4
5 HEbegin
6
7
8
9

16 | state 2i3 :

1f(rst)
s <= 4'b0000;
else
=) begin
10 s[0] <= in;
11 s[1] <= in;
12 si2] <= s[1};
13 s[3] == si2]:
Ft e end
15 [end

assert property (
17 @(posedge clk) disable iff(rst) s[2] |=> s[3]);
18 | endmodule

Emodule shift reg(input clk, input rst, input in, ou
logic [3:0] s;

assign out = s[3];
always @(posedge clk)

But lines:
7,10,11,12
are not verified.

Potential bugs could
escape!

What line coverage
would you expect
from this assertion

when using COI
coverage?

SYSTEMS INITIATIVE

© Accellera Systems Initiative

43

2015

DESIGN AND VERIFICATION™

DVOCOIN

CONFERENCE AND EXHIBITION

Prover Coverage

Not covered

covered

Not covered due to u
COlofA Assertion A

DUV

accellera DVCON

SYSTEMS INITIATIVE

A Trivial Example — Prover Coverage

| 1 Bmodule shift reg(input clk, input rst, input in, output out);
2 | logic [3:0] s;
3 |assign out = s[3];
4 |always osedge clk
5 Elbegiz ifoseds ; But line 12
6 if(rst) IS not verified.
| LT 4+ 09000, Potential bugs could
9 @ begin escape!
10 s[0] <= in;
11 s[1] == s[0]:
12 s[2] <= in;
13 s[3] <= 5[2);
L end
15 [end
16 |state 2i3 : assert property (
17 @(posedge clk) disable iff(rst) s[2] |=> s[3]); Prove engine needs
18 | endmodule
. at least s[2] and s[3].

2015
Ny DESIGN AND VERIFICATION™
accellera - BVETIN
A © Accellera Systems Initiative 45 T T Y

SYSTEMS INITIATIVE

Observation Coverage Principle

(@) (@)
case (state) Coverage case (state)
burst: burst:
if (cancel i if (cancel i

done o <=1 done o <= v

Activation Observation
J _J
Example: Statement Coverage
* Has the statement been activated? e Has the effect been observed?
* |f a statement has not been activated e |f a statement is modified and
during verification, it can’t break a activated, some assertion should fail.
check. « Measures quality of assertions.

* Measures reachability.

Been there! Done that! 2015

accellera o DV CIN
© Accellera Systems Initiative 46 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Annotated Source for shift dvcon.sv

Using Observation Coverage

Unlike COI coverage,
observation coverage

1 module shift reg(input clk, input rst, input in, output out); identifies a” UnCheCked
2 logic [3:0] s; aSSignmentS.
3 assign out = s[3];
- always @(posedge clk)
5 begin
6
7
8
9
10
11
ii Need better or more
= 7 assertion(s).
15 end
16 state 213 : assert property (
17 @(posedge clk) disable iff(rst) s[2] |=
18 endmodule
N 1111 h
a@ - DVGOIN
© Accellera Systems Initiative 47 CONEERENCEAND EXHIBITION:

SYSTEMS INITIATIVE

Quantification of Properties

Functional
Requirements

The FIFO is not full and
empty at the same time

The FIFO is empty after

DEPTH many reads without
writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an

empty FIFO leaves the FIFO
unmodified on the first read

SYSTEMS INITIATIVE

Assertions
Hold

All assertions are
proven, but how good
are they?

—

Apply OneSpin’s
Quantify observation
coverage technology.

DESIGN AND VQ;N"

DVCOIN

CONFERENCE AND EXHIBITION

EUROPE

Quantify Coverage Report

Structural Coverage Overview

Statements Branches

15 [0 54% 21 [T
reached 0 0.00% 0 0.00%
unknown 0.00% 0 0.00%
0.00% 0 |0.00%
22 10 2 26%
Jo.00% 0 Jo.oo%
ead 0 [Jp.oo% 0 Jo.oo%
quantity targets v I a2 I

Structural Coverage by File

File Statements Branches
decoderv 12

encodery 5

fifo_fixd.sv 20

Expecting FIFO to be
fully covered!

2015

DESIGN AND VERIFICATION™

accellera DVEOIN

© Accellera Systems Initiative 49 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

'rd en[*0:$]

Stronger Assertion Exposes Bug

property data not corrupted p;

##1
##1 rd en |=> rd data[WIDTH-1:0]==dat

. (empty & wr en, dat=wr data[WIDTH-1:0])

(!full | empty); // Bad!
@ @ ¢~ o cERu@fEE AL s Sss »
sva/check/Tirst_data_not_corrup (2] X

ted a: assert property

(@(posedge clk) Path: 44 [top p Ik TimePoint: 7
i S[E]

[-]1data_not_corrupted p}; 118 $E Ll a
119 P mem [wr_pointer] <= wr_data enc + 1; // another bug -~
[-1¢ 55... 0->1 0 =
: 120 B end =
121 # | end f

ar
©

[fifo.sv (read-only view)| [line 119, column 19 |

(empty & wr_en) ##0
(1'bl, (dat =
(wr_data[WIDTH - 1 : 0])))
##1 1[*0] ##1 (rd_en) |
== [-]1({rd_datalWIDTH - 1 :
0]) == dat))

@m © i t##-3 t##2

t ##2 check/rd_data == ¢
dat = b

SYSTEMS INITIATIVE

t##-1 t##0 t##1

2015

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Quantify Coverage Report

Structural Coverage Overview
Status

Statements Branches

R reached 0 0.00% 0 0.00%
unknown 0.00% 0 0.00%
0 |0.00% 0 0.00%
15 40 54% 5 [J6.13%
0 Jooos 0 Jo.oo%s
0 |Jp.oo%

fifo_fixd.sv 20

Much better after fix!

But still something wrong.

Visit our booth for full demo!
2015

DESIGN AND VERIFICATION™

accellera o DVE TN
© Accellera Systems Initiative 51 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Quantify Properties

Assertions Coverage
Hold Achieved

Functional
Requirements

The FIFO is not full and
empty at the same time

The FIFO is empty after
DEPTH many reads without
writes

The FIFO is full after DEPTH
many writes without reads

The FIFO is no longer empty
after a write

The first data written to an
empty FIFO leaves the FIFO

a(;ggllgm unmodified on the first read

SYSTEMS INITIATIVE

DN N NI NN

2015

DESIGN AND VI ICATION™

col

CONFERENCE AND EXHIBITION

EUROPE

Summary Observation Coverage with
Quantify

case (fsm state s)

* Observation coverage algorithm
drives precise coverage metric
— Qualifies for safety-critical

— Also identifies dead code and over-
constrained code

— Provides comprehensive progress metric ocking: Assertions Still
if (cou Required

« Don't trust COI coverage constrained
— Maybe good for sanity/quick check
— But not for safety-critical

* Prover coverage is also problematic for
safety-critical

Unreachable

— Not objective, results depend on prove engine endcase

DESIGN AND VERQIFQJ1§ON'~
accellera DVEOIN

© Accellera Systems Initiative 53 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Verification of Safety Mechanism

accellera DVCON

SYSTEMS INITIATIVE

Efficient Verification of Safety
Functions

- AT A e I Safety Verification Problem
Wﬂy 58 « Safety functions are inactive
DT) (o] (S under normal operation!
S + Artificially inject faults into
Hardware Safety Mechanism — verification to activate

Fault Injection complexity for bit vectors:
« 2Wwidth hossible data input combinations
* (width) 1-bit errors
* (width* width-1) 2-bit errors

Simulation Based Verification is not a good solution:

« Hard to anticipate all relevant conditions

* Hard to deal with huge number of faults + combinations!
* No exhaustive testing feasible

B ormal ABV with fault injection s
3@ DVCON

© Accellera Systems Initiative 55 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Three Simple Steps to Success

Input Normal Design Function c | Corrected
npu _5
— \.Output g 5 Output
2 185
A O O [Corrected
= —
VVO
. Alarm
— Hardware Safety Mechanism —

1. Describe expected behavior with no fault injecte‘d/and prove that it holds.
property (<antecedent> |=> !Alarm)

2. Describe expected behavior with the fault(s) injected, inject the fault(s)

and prove that it holds. /
property (<antecedent> |=> Alarm)

3. Describe expected behavior with correctable faults injected,
inject the correctable faults and prove that it holds. /
property (<antecedent> |=> Input'== CorrectedOutput 5015

' DESIGN AND VERIFICATION™
3008//0!‘3 & Corrected & !'Alarm VI

© Accellera Systems Initiative 56 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

FIFO Safety Requirements

Functional
Requirements

© Accellara Quctemc Initiative

Safety
Requirements

If no error occurs, nothing is
flagged and the data is
uncorrupted

If one error occurs, no error is
flagged, the data is uncorrupted
and the correction is flagged

If two errors occur, an error is
flagged, but no correction

2015

DESIGN AND VERIFICATION™

DVOCOIN

CONFERENCE AND EXHIBITION

Formal ABV with Fault Injection
Application Scenario: FIFO

* For FIFO Example:

— Create no_error, corrected_no_error and error assertions according to the safety
requirements

— Depening on the assertion, inject Bit-Flip faults at the FIFO output

Wr_en
rd_en
rd_data
error
corrected

full
empty

wr_data

Inject Faults Here!

DESIGN AND VER?FQJJ?ON“
accellera - DVE TN
© Accellera Systems Initiative s8 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Application Scenario: FIFO
SV Assertions for Safety Features

No error - nothing flagged, data uncorrupted:

no _error: assert property (disable iff (!reset n)
empty & wr en ##1 rd en
|=> rd data == S$past(wr data,2) & !rd error & !rd corrected);

One error - no error flagged, data uncorrupted, correction flagged:

corrected no error: assert property (disable iff (!reset n)
empty & wr en ##1 rd en
|=> rd data == Spast(wr data,2) & !rd error & rd corrected);

Two errors = error flagged, no correction flagged:

error: assert property (disable 1ff (!reset n)
empty & wr en ##1 rd en
|=> rd error && !rd corrected);

2015

accellera e

© Accellera Systems Initiative 59 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

How to inject the faults?

* Conveniently use formal fault injection:

Fault location

!

Formal setup for n-bit faults of desired type

e User can automatically enable different number/kind of faults for
individual assertions
* Possible to verify generic assertions like “a 2-bit fault gets detected”

* Supporting FLIP, STO, ST1, OPEN

IIIIIIIIIIIIIIIIIIIIIII

© Accellera Systems Initiative 60

Using the Formal Fault Injection

inject fault -location rd data FIFO -type <type> -assert <assertion>

safety.no error NONE HOLD
safety.corrected no error FLIP1 bit HOLD
safety.error FLIP 2 bit HOLD

.......................
accellera . DVCON
© Accellera Systems Initiative 61 . CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Application Scenario: FIFO

Failing Assertion for Safety Feature

safety.corrected no error

%éﬂ

Path: 44 [top].dec

26
27
28

29

[a8]

FLIP 1 bit FAIL

® = oG B EE I P A S S S sd em -
X
b Ib TimePoint: 15
3'blel: cerrect = 4'bee1e; Qe
9->0
3'b118: correct = 4'bB188; _
=0
3'b111: correct 4'b1001; Bug: bleee |:|
~0 =]
default: correct = 4'bBEEOG; @__

) B

[line 32, column 1 |

|decoder.ur (read-only view)|

SYSTEMS INITIATIVE

t##3

t##2

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

© Accellera Systems Initiative 62

SYSTEMS INITIATIVE

FIFO Safety Requirements

Functional
Requirements

© Accellara Quctemc Initiative
p

Safety
Requirements

If no error occurs, nothing is
flagged and the data is
uncorrupted

If one error occurs, no error is
flagged, the data is uncorrupted
and the correction is flagged

If two errors occur, an error is
flagged, but no correction

v
v
v

2015

DESIGN AND VERIFICATION™

DVOCOIN

CONFERENCE AND EXHIBITION

Summary Verification of Safety Mechanism

* SO 26262-5 (page 28) highly recommends to apply model
based fault injection testing:

Table 11 — Hardware integration tests to verify the completeness and correctness of the safety
mechanisms implementation with respect to the hardware safety requirements

ASIL
Methods
A B c D
1 Functional testing® + 1+ +4 it
Fault injection testing® + + ++ | ++
Electrical testing® | o+t | ++ | ++

* OneSpin provides formal fault injection to meet ISO 26262 and
verify safety mechanisms
— No modification of source code required
— Supports different fault types and number of faults

— Unlike simulation, it provides complete proof of all faults in one
step

— Easily maps assertions to faults and checks them 2015

accellera o

© Accellera Systems Initiative 64 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Diagnhostic Coverage

accellera) DVCON

SYSTEMS INITIATIVE

20015

DESIGN AND VI ICATION™
accellera . DVECON
© Accellera Systems Initiative 66 CONFEiENcEANDExmamoN
EUROPE

SYSTEMS INITIATIVE

Diagnostic Coverage
ISO 26262 Analysis Requirements

Cedification for Products
i AnCordEnoE with

ISO 26262

* Diagnostic coverage: proportion of hardware element failure rate
that is detected or controlled by safety mechanisms

* High diagnostic coverage is needed to achieve a high Automotive
Safety Integrity Level (ASIL)

.......................
accellera . DVCON
© Accellera Systems Initiative 67 . CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Discussing Diagnhostic Coverage
of Safety Mechanisms

Normal Design Function
\ - | Corrected
Input 1 Output| & 2 |Output
- —r—| S S —
activate propagate GE’ 35
Fault o | © O |Corrected
0 —
VVO
\ . Alarm
— Hardware Safety Mechanism —

DESIGN AND VERQIFQA]TQ)N“‘
accellera . DVCON
© Accellera Systems Initiative 68 . CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Fault Classification in Semiconductor

Context
e Safe faults

— Faults which cannot propagate

— Faults which only propagate to non-safety-critical
functions (don't violate a safety goal)

— Faults which are detected by a safety mechanism
before they can cause harm

e Unsafe faults
— Faults which propagate to a safety-critical function
without being detected
— Faults with unknown behavior

Minimize - Increase
Unsafe Faults Diagnostic Coverage

.......................
accellera . DVCON
© Accellera Systems Initiative 69 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Formal Propagation Analysis Summary

* Formal propagation analysis can identify
— Faults which cannot propagate
— Whether a fault propagates to a safety-critical function
— Whether a fault propagates to a safety mechanism

* This information helps to classify faults as safe or
unsafe and creates more precise diagnostic
coverage of the safety mechanism

More Precise
Diagnostic ‘ Meet Safety Goal

Coverage

.......................
accellera . DVCON
© Accellera Systems Initiative o CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Summary

Functional Safety Verification

\ 4

(a N
Minimize Systematic Safeguard Random
Errors Errors
/ Verification of Safety /

Rigorous Verification Mechanisms

Quantification of / /

Verification Diagnostic Coverage

Requirement Driven /

......................
accellera . DVCON
© Accellera Systems Initiative @ CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Thank you!

To learn more about safety critical design &
verification:

e Read Safety Critical News

— http://safetycritical.onespin-solutions.com/

e Visit us at Booth P6

© Accellera Systems Initiative 72

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

http://safetycritical.onespin-solutions.com/
http://safetycritical.onespin-solutions.com/
http://safetycritical.onespin-solutions.com/
http://safetycritical.onespin-solutions.com/
http://safetycritical.onespin-solutions.com/

Questions

Finalize slide set with questions slide

2015

SYSTEMS INITIATIVE

TVS Agenda

= 11.00 Introductions
= 11.05TVS

Safety and security in Hardware and Software
Requirements Driven Test and Verification (RDTV)
Using an ECC example and breaking it down into a test plan

= 11.20 OneSpin
= 11.55 Tortuga Logic
= 12.10TVS

Analysing the results and signoff
Advantages of RDTV

= 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

IIIIIIIIIIIIIIIII

2015
agcellera ;

SYSTEMS INITIATIVE

Not just these devices....

—

How A Creep Hacked A Baby
Monitor To Say Lewd Thines Ta A o-

Security risks found in sensors erar_Old

consumer electronics

+ Comment Now + Follow Comments

m

OvBcoPnD =

ANN ARBOR—The type of sensors that pick up the
rhythm of a beating heart in implanted cardiac
defibrillators and pacemakers are vulnerable to
tampering, according to a new study conducted in
controlled laboratory conditions.

an Yoon, K

Before I hacked a stranger’s
smart home, I asked for
permission. An anonymous

Implantable defibrillators monitor the heart for
irregular beating and, when necessary, administer an
electric shock to bring it back into normal rhythm.
Pacemakers use electrical pulses to continuously keep

SYSTEMS INITIATIVE

Car Hacking: The Next Big Threat? ~A
posted by Fox Van Allen on July 29, 2013 ;
in Travel & Entertainment, News, Computers and Software, Car Tech & Safety, Blog, = .
Automotive :: 0 comments ‘ Pinit |

harlie Miller and Chris Valasek are
100-page research paper
maliciously hack a car's computer,
1 and potentially Kill its occupants.

so with the support — and funding
overnment.

R L LA e g Y

DESIGN AND VERIFICATION'

CONFERENCE AND EXHIBTION

Hackers are now focusing on hardware

accellera BVETIN
SYSTEMS INITIATIVE

Current “State-Of-The-Art"

Did you
make it

secure?
Hardware
Q Designers

Tortuga Logic Software

accellera

CONFERENCE AND EXHIBTION

ortuga Logic’s PROSPECT

Enable “Design-for-Security” from the ground up to
minimize security breaches in hardware and systems

Tortuga Logic’'s PROSPECT Software Solution

Tortuga
Logic

Step 1- Add all verilog and vhdl (.v or .vhd) files in design
RTL Files Chosen

/home/jonny/git-prospect/prospect/tests/rtl/vhdl/rsa/rsacypher.vhd

Step 2 - Specify top module, top level language, and clock bouna

Top level language:) Verilog @® VHDL
Top Module: rsacypher
Time Bound (optional - number of cycles to check assertions): 10

Clock Name (optional -if design includes clock gating):

Tortuga Prospect — Secure Information Flow Assertion Tool (v0.4)

Add | Remove

Add

Add

Add

Step 3- Process RTL Files (Re-process for any change in Step 1, Step 2, or Verilog Files)

Process RTL files

Step 4- Select Assertion File

Assertion file: rsacypher.as

Step 5- Check Assertions

‘ Check Assertions

Add

Step 6- View Counterexample Waveforms (optional)

View Counterexamples

SYSTEMS INITIATIVE

Tortuga Prospect — Secure Information Flow Assertion Tool (v0.6)
prospect~> Ready.

Setting language of top level design to "VHDL'
prospect~> Ready.
prospect~> Ready.

Analyzing RTL files...

prospect~>Files in design: /home/jonny/git-prospect/prospect/tests/rtl/vhdl/rsa/rsacypher.vhd, /
home/jonny/git-prospect/prospect/tests/rtl/vhdl/rsa/modmult.vhd

Ready.

prospect~> Ready.

Checking assertions...

Assertion (inExp =/=>ready): Disproved

Counter Example Generated in VCD Format: output.cexs/cex_0.vcd

Assertion (inExp =/=> cypher): Disproved

Counter Example Generated in VCD Format: output.cexs/cex_1.ved

Assertion (inExp[0] =/=> ready && inExp[1] =/=> ready && inExp[2] =/=> ready && inExp[3] =/=>
ready && inExp[4] =/=> ready && inExp[5] =/=> ready && inExp[6] =/=> ready && inExp[7] =/=> ready
&& inExp[8] =/=> ready && inExp[9] =/=> ready && inExp[10] =/=> ready && inExp[11] =/=> ready &&
inExp[12] =/=>ready && inExp[13] =/=>ready && inExp[14] =/=> ready && inExp[15] =/=> ready):
Disproved

Counter Example Generated in VCD Format: output.cexs/cex_2.ved

Ready.

prospect~> Ready.

Analyzing RTL files...

prospect~>Files in design: /home/jonny/git-prospect/prospect/tests/rtl/vhdl/rsa/rsacypher.vhd, /
home/jonny/git-prospect/prospect/tests/rtl/vhdl/rsa/modmult.vhd

Ready.

Checking assertions...

Assertion (inExp =/=>ready): Disproved

Counter Example Generated in VCD Format: output.cexs/cex_0.ved
Assertion (inExp =/== cypher): Disproved

Save Console | | Copy Console | | Clear Console

prospect~>

DESIGN AND VERIFICATION'

CONFERENCE AND EXHIBTION

Tortuga Logic’s PROSPECT

" Prospect Tool flow

Security
Properties

e Prospect GUI ey =/=> out

coreA =/=> coreB

Tortuga Prospec

Secure Information Flow Assertion Tool (v0.4)

s Tortuga Prospe(l Secure Information Flow Assertion Tool (v0.6)
Tortuga prospect-> Rea
rioe Logl (o} Setting language of top level design to 'VHDL'

i Step 1- Add all verilog and vhd! (v or.vhd) files in design prospect->Ready.

; RTL Files Chosen prospect->Ready.
et o i prosp hd
N . A , . P a P Analyzing RTL files...
= e prospect->Files in design t/prospe /
Add | Remove o hd
Ready.
Step 2- Specify top module, top level language, and clock bouna
. prospect->Ready.
Top level language: Verilog @ VHDL
Checking assertions.
Top Module: rsacypher Add| Assertion (inExp =/=>ready): Disproved
Counter pl inVCD Format: output. _oved
. Assertion (inE> her): Disproved
Time Bound (optional - number of cycles to check assertions): 10 Add

Counter Example Generated in VCD Format: output.cexs/cex_1.ved
Assertion (inExp[0] =/= ready&s.msxp[q, = ready&s.msxp[z
Clock Name (optional -if design includes clock gating): Add| | ready && inExp[4] d

- >rezdy&&m£xp[9 rezdy&&mExp[m
> ready && inExp[13] =/=>ready &&inExp[14]

Step 3- Process RTL Files (Re-process for any change in Step 1, Step 2, or Verilog Files)

Counter Example Generated in VCD Format: output.cexs/cex_2.ved
Process RTL files Ready.

prospect->Ready.
Step 4- Select Assertion File
X Analyzing RTL files...
Assertion file: rsacypher.as Add| | prospect-> Files in design: i t/prospe /

Step 5- Check Assertions Ready.
Checking assertions.
Check Assertions Assertion (inExp
Counter Example ceneraled in VCD Format: output.cexs/cex_0.vcd
Assertion (inkx ypher): Disproved
Step 6- View Counterexample Waveforms (optional) A

Saveconsole Copy Console | Clear Console |
View Counterexamples. ——

prospect->

Results and
decelers Debug feedback Bvet

CONFERENCE AND EXHIBTION

SYSTEMS INITIATIVE

PROSPECT: Key Values

= Automates HW security design

Reduce security validation from months to hours
Significant cost savings for certification

* |[ncrease security coverage and reduce risk

Many checks cannot be done manually

" Makes design for security a priority

2015
accellera e

SSSSSSSSSSSSSSSSS

Tortuga Logic’s PROSPECT

" Types of addressable security properties

Tortuga Logic’s PROSPECT

= Critical component is adversely affected

EJW;')M =)
Radio
=)
-)
) =)

dcceliera T
SYSTEMS INITIATIVE

Critical
(Pacing unit)

Tortuga Logic’s PROSPECT

= Secret data is unintentionally leaked

-

Untrusted
(Debug Output)
Secret
(HW Key)

2015
accellera LN
SYSTEMS INITIATIVE [s

Case Study - Top-25 Semi Company
Key Flowing Out Of Design

= Assertion: Key only flows through AES
assert iflow (key =/=> Sall_outputs ignoring aes.Sall_outputs);
If assertion holds, key only flows to outputs through AES first
= Real world results

State-of-the-art design with over 10 million gates
Actual required properties, impossible to visually inspect

interconnect

CONFERENCE AND EXHIBTION

Case Study - Top-25 Semi Company
Key Flowing Out Of Design

= Assertion: Key only flows through AES
assert iflow (key =/=> Sall_outputs ignoring aes.Sall_outputs);
If assertion holds, key only flows to outputs through AES first
= Real world results

State-of-the-art design with over 10 million gates
Actual required properties, impossible to visually inspect

dccenera DVCON

IIIIIIIIIIIIIIIII

Case Study - Top-25 Semi Company
Key Flowing Out Of Design

= Assertion: Key only flows through AES
assert iflow (key =/=> Sall_outputs ignoring aes.Sall_outputs);
If assertion holds, key only flows to outputs through AES first
= Real world results
State-of-the-art design with over 10 million gates
Actual required properties, impossible to visually inspect

338

2015
accellera BVEEIN

IIIIIIIIIIIIIIIII

Demo: AES Key Leakage

Property:

assert iflow (key =/=> data_o); Failsin 4 cycles
Key XOR Data flows to pins,

security flaw

>

ready o

accellera szm

SSSSSSSSSSSSSSSSS

Demo: AES Key Leakage

Property:
assert iflow (key =/=> data_0);

Fails in 506 cycles
Encrypted data flows to pins
Flow is allowed, ready o

data o

ready o

2015
accellera st

SSSSSSSSSSSSSSSSS

Demo: AES Key Leakage

Session Setup Fle Edt COMV EC Took Window Help

Ao D-E0S tRERX - EAARE aBAL L

& Darsign Explarer | oF Lirt Browsser & Auto Checks & Desd.Code Checks | & Assertion Chacks B
ﬂ. Proof Status; l Waldity: up to date
|Inszance | Mama | ProofStetus | Whness Stetus | Wallity |nrac|qurc|Tove| Funima
o [[top] ! = ! | ey statu - T| carvy status: = _] azary walidity s - =
£ ASsartions)

e totd, # selected by filver

Shal
@ Shel |t Messages | [Frogress
- Examination window for ‘svasac_inst/assertion_aES W FSH' - [t+0,t+0]
Size of sssertion 'sva/soc_instlassert Wars] 1437 Nodos(l7533)
-1- Checking ascartion “swafaec_LnstSassartion_
- kgsartlon 'evasser inst/fassertion AES W FSH in SBE cyolas frof
Databasa "acs W _fs5n' savad to 'Showeszac/prospact - frontend-plugindTest Srtl

aget (chacked fm @7 min 14 sec, SB44 MB ised)
Searllagfass w_ tsn/eas w_ tsm.onesplin' .

SYSTEMS INITIATIVE

L1 B0

Hide Shedl | Shel Mode Interrupt | ff Help

DESIGN AND VERIFICATION'

CONFERENCE AND EXHIBTION

Demo: AES Key Leakage

Property:

assert iflow (key =/=> data_o0) || ready_o;

Result
Assertion Holds

SSSSSSSSSSSSSSSSS

data o

ready o

A

DESIGN AND VET
CONFERENCE AND EXHIBTION

Demo: AES Key Leakage

EC Took Window BHelp

AiwppiEF]l -0 L EX L AARY B AL F
& Darsign Explorer oF Lirt, Broweser & Auto Checks & Dead-Code Checks @ Assertion Checks B | & sva DF 1rl)
a.Prrml' Status: hold alidty o to date

e totd, F selected by fiver

|Inszance Mama | ProofStetus | Whness Stetus | Wallity | nres|ourc|rove| Runkime
o [[top] T = ! | ey staty - T carvy status: = T azary walidity s - e]ll=d
- Assartions
SVAISEC_MELASSertion_AES W _FSM | bl opEn up_to_date L4 2 00:0LE6
3 Constrants

Shel
@ Shel |t Messages | [Frogress
I- Examtnation window for ‘svassac_inst/assertion_fES_W FSH' - [t+0, t+0]

Slre of sssertion ‘sva/sec_irmstlassertion_AES_W_F§ Vars{1437) Nodosi(l7539)
Chackirg ageertion “evafoec_Inst/agcartion W

[T, 3 > MR
Databasa "aes W f5n° sawad to 'Jhomeszac;

prospact - frontend-plugindtest Srtl feerilogfass w fsnfeas w_ tsm.onespln' .

SYSTEMS INITIATIVE

Hichis Shedl

Shel Maode

L1 B0

Interrupt | & Help

DESIGN AND VERIFICATION'

CONFERENCE AND EXHIBTION

TVS Agenda

= 11.00 Introductions
= 11.05TVS

Safety and security in Hardware and Software
Requirements Driven Test and Verification (RDTV)
Using an ECC example and breaking it down into a test plan

= 11.20 OneSpin
= 11.55 Tortuga Logic
= 12.10TVS

Analysing the results and signoff
Advantages of RDTV

= 12.25 Q&A (TVS, OneSpin, Tortuga Logic)

IIIIIIIIIIIIIIIII

2015,

DVCON

Mapping Requirements to Verification Metrics

ﬁL

Verification Metrics

Featl «— Featl.l<«— Goall<— Directed Test

\‘ Featl.2«—— Goal2

Featl.31<:

Goal3

Code Coverage

Functional Cvge

Goal4\ Assertion Passing
Assertion Cvge

«—> Feat2.1 «—> Goalbs

T Feat2.2

Feat2

«——— Software Running

«—> Goal6«——— Lab Results

Feat3 <

» Property Proved

Relationships can be:
* Bi-directional .
« Many-many .

SSSSSSSSSSSSSSSSS

Metrics can be:
From HW verification
From Silicon validation

« From SW testing

Regression 2

Measuring Requirements Progress regression 1

4% ﬂi: Featl.2<—— Goal2 Code Coverage 75% 85%
Featl.3¢<: Goal3 Functional Cvge 50% 70%

Goal4 Assertion Passing
\ Assertion Cvge 0% 0%

Feat2 «— Feat2.1 «——> Goals5 _—» Software Running x v

\ Feat2.2 «—> Goal6+«—— Lab Results v x

Reqg2 Feat3 < » Property Proved x v
0%

i Verification Metrics
Reql Featl «— Featl.l1¢«— Goall<«— > Directed Test v v

Use a bi-directional mapping to track backwards

Use an SQL database to hold the mappings and results
accellrs) BVEDN

SSSSSSSSSSSSSSSSS

asureSIGN™ at the heart of HW/SW V&V

= "E"'S”r”;’ = Hardware Simulation
ystemC Simulation Coverage Cadence

Requirements :
? [write-only Assertions Mentor, Aldec
Excel rite and Ra EtC

Doors 10bit Add

i 7Bit Addr o o
Jira [1081t addr Formal Verification

etc D Master OneSpin

CJ Hardware
XML API

Directed test results

asureSIGN™
Automated SW Test Tool

i ® - o0 asureSign Dashboard - internalTest) Lab R eS U ItS

asureSign Tools Help ‘ead Registers

Filter Text: |0 | [sp1master j Multifrequency

Itam |[9) I
9 £ internalTest ~|i so v PITX and RX

sl P] Quaster
g [[s N AN Matlab SW Test Tools

Requirements Engineering tools

Date
2012-01-27... a1 52
escrip... |2012-01-27... 41 52 —
2012-01-27... il 22 nss.onmmggfglwson--
.|z012-01-26... 31 s2l DVCON
CONPERENCE AND EXHIBTON

[EUROPE]

SYSTEMS INITIATIVE

Supporting Hierarchical Verification

" A requirement might be signed off at multiple
levels of hierarchy during the hardware

development
Block
Subsystem
SoC
System

Including Software

Post Silicon

3008//8[’8 pesion Ao SAE AT
ety

SSSSSSSSSSSSSSSSS

asureSIGN Demo

" Mapping the results to the test plan

20
accellera DV15

IIIIIIIIIIIIIIIII

Retention of Verification Resulis (DO 254)

= Verification records should contain a clear
correlation to the pass/fail criteria

These verification records should contain the author/reviewer,
date, and any items used in the including their versions.

Any failures or issues found should be correlated to the standard
that has been violated.

= Test results should be clearly linked to their
associated tests and requirements

= Test Results should be reviewed to be sure that
the actual and expect results are giving the
correct results and that the tests are passing.

2
accellera DVOB

SSSSSSSSSSSSSSSSS

Requirements Driven Verification

= Compliance to various safety standards

hardware and software (and systems)

= Some advantages

|dentify test holes and test orphans
Retention of verification results

Build historical perspective for more accurate predictions

Better reporting of requirements status

Risk-based testing

Prioritisation and Risk Analysis

Filtering Requirements based on Customers and releases
Impact and conflict analysis

2015
accellera e

SSSSSSSSSSSSSSSSS

Any questions ?

ILL NEED TO KNOW
YOUR REQUIREMENTS
BEFORE I START TO
DESIGN THE SOFTWARE.

-~

FIRST OF ALL, |
WHAT ARE YOU
TRYING TO
ACCOMPLISH?

',

I™ TRYING TO

MAKE YOU DESIGN

MY SOFTWARE.

L. -
e

| ¢)

F—

7/

. 1T MEAN WHAT ARE

p

~

\

YOU TRYING TO
ACCOMPLISH WITH
THE SOFTWARE? |

I WON'T KNOW WHAT
1 CAN ACCOMPLISH
UNTIL YOU TELL ME

WHAT THE SOFTWARE

CAN DO,

SYSTEMS INITIATIVE

: TRY TO GET THIS
CONCEPT THROUGH YOUR
THICK SKULL' THE
SOFTWARE CAN DO
WHATEVER I DESIGN
IT TO DO

e e (O

CAN YOU DESIGN
IT TO TELL YOU
MY REQUIREMENTS?

DESIGN AND VERIFICATION'
CONFERENCE AND EXHIBTION

