
Verification strategy for pipeline type of design

Djuro Grubor

Vtool LTD, Rajiceva 1, 11000 Belgrade Serbia, djurog@thevtool.com

Introduction: In the world of very complex ASICs, the need for good methodology and proper strategy is con-

tinuously increasing. Big combinational logic is too complex for maintain and debug, so instead of this pipeline type

of design is taking place.

A common practice is to have a complex IP with pipeline containing multiple sub cores dependent between them-

selves. The verification process of such IP is rather challenging since the sub cores communicate inside the block,

and that communication needs to be followed and verified in verification environment without observing internal

DUT signals.

 Verification strategy: The strategy for pipeline verification needs to be developed to achieve a modular solution

compliant with UVM methodology, so the recommended approach is to create UVM component representing each

sub core. Pipeline type of design consists of several almost independent sub cores responsible for one part of the

work. Output of one sub core is an input for the next. Depending on the configuration, some sub cores can be by-

passed in specific situations. Each sub core has its own set of configuration and status registers and it is independent

of other sub cores. Protocol between sub cores is custom solution up to designer, and from the verification perspec-

tive it is considered a black box, comprising data structure and handshake protocol. Data flow is a typical pipeline,

so when processed by one sub core, the current command is passed to next sub core and new command is taken to be

processed. On input and output side of each sub core, there is a fifo buffer, to avoid blocking condition that might

occur in case one sub core is faster than the next. Each sub core must take command only when the command is val-

id, to prevent data corruption, and part of logic should be blocking and part non-blocking. Having all this in mind,

main challenges are synchronization and back pressure handling in the system, and main advantages are distributed

system and speed up of data and commands processing. UVM methodology provides a very comprehensive set of

features allowing us to create suitable strategy for specific DUT. In most of verification environments, standard set

of UVM components is used to build coverage driven constrain random testbench. To achieve that, for driving

stimulus on DUT interface, protocol specific UVC is used, with set of parameters and configuration. Parameters are

used to handle different width of buses and protocol specific part of transaction, and configuration allows simulation

of constrained random delays and various stimulus types. Virtual sequencer is utilized to synchronize activity over

all UVC sequencers in the environment, and basically it translates higher level items to lower level and provides

connection of a UVC sequence to the physical sequencer. Beside that, each UVC is used for coverage collection, to

gather stimulus coverage. As a part of DUT interface, environment can extract all information from transaction and

use it as separate cover items. All transactions are stored within agent monitor component, and analysis port from

monitor is connected to the environment scoreboard. Scoreboard subscribes to all monitors, collecting transactions

from all interfaces, and using them to achieve prediction and model expected behavior of the DUT. RAL component

with shadow registers is instantiated, and it represents a good way of checking status values, beside storing the con-

figuration registers content. Connection between DUT and verification environment is done via environment inter-

face, and after connecting interface with DUT, env interface handle is passed to environment over uvm_config_db.

Uvm_config_db is standard way of passing handles between different UVM components, and it allows to assign ex-

act user of the handle or provide it to a wider range of users. Apart from standard UVM components, which take

part in stimulus generation, tracking and checking, some additional UVM components have been utilized to over-

come the challenges posed by the DUT architecture.

The list of utilized components includes uvm_tlm_fifo, uvm_blocking_get_port, uvm_nonblocking_put_port, as well

as the semaphores. uvm_tlm_fifo provides storage of transactions between two sub core models in the verification

environment. Transactions are put into the fifo via one of put_export methods. On the other side, transactions are

fetched from the fifo in the order they arrived via one of the get_peek_export methods. Size of the uvm_tlm_fifo is

configurable, so it can realistically model fifo between pipes in DUT. Also, there are predefined methods to check

size, to check for reached level, whether the fifo is empty or full, and finally, what is very important, to flush the fifo.

Flush is critical, because during the reset stage, all components should be reset. If some transaction is left out in

uvm_tlm_fifo, after the reset is released, the environment might encounter wrong behavior. UVM’s TLM port and

export implementations allow connections between ports whose interface signatures are not an exact match. For

example, an uvm_blocking_get_port can be connected to any port, export or imp port that provides at the least an

mailto:djurog@thevtool.com

implementation of the blocking_get interface, which includes the uvm_get_* ports and exports,

uvm_blocking_get_peek_* ports and exports, and uvm_get_peek_* ports and exports. A blocking interface conveys

transactions in blocking fashion; its methods do not complete until the transaction has been successfully sent or re-

trieved. Because delivery may be time-consuming, the methods in such interface are declared as tasks. A non-

blocking interface attempts to convey a transaction without consuming simulation time. Its methods are declared as

functions. Because delivery may fail (e.g. the target component is busy and cannot accept the request), the methods

may return a failed status. A combination interface contains both the blocking and non-blocking variants. Because

SystemVerilog does not support multiple inheritance, the UVM emulates hierarchical interfaces via a common base

class and interface mask. The put interfaces are used to send, or put, transactions to other components. Successful

completion of a put guarantees its delivery, but not execution. The get interfaces are used to retrieve transactions

from other components. The peek interfaces are used for the same purpose, except the retrieved transaction is not

removed from the fifo; successive calls to peek will return the same object. Combined get_peek interfaces are also

defined. The UVM provides unidirectional ports, exports, and implementation ports for connecting components via

the TLM interfaces. Ports are instantiated in components that require, or use, the associate interface to initiate trans-

action requests. Exports are instantiated by components that forward an implementation of the methods defined in

the associated interface. The implementation is typically provided by an imp port in a child component. Imps are

instantiated by components that provide or implement an implementation of the methods defined in the associated

interface. In this approach, uvm_blocking_get_port will be used, because each sub core component should wait from

command on its input, and then proceed with execution, and once it is finishes that execution, it will look back on

uvm_blocking_get_port and wait for the next item. This component also performs synchronization. On the other

side, we will use uvm_nonblocking_put_port, because uvm_tlm_fifo is controlling fifo depth. High-level and easy to

use synchronization and communication mechanism are essential to control the kind of interaction that occurs be-

tween dynamic processes used to model a complex system or a highly reactive verification environment. Beside stat-

ic object synchronization with -> and @ operators, SystemVerilog provides additional techniques to synchronize

dynamic processes: semaphore, mailbox and events. Semaphore is used for lock/unlock of a commonly shared re-

source. Depending of the state of semaphore, if unlocked, the resource can be used, and if locked resource can’t be

used and the source should wait for the semaphore unlock. Mailbox is a mechanism to exchange messages between

processes. Data can be sent to mailbox by one process and retrieved by another. Fifo can be used in mailbox if need-

ed. SystemVerilog events hold Verilog functionality events, plus time-step in which the event is triggered and events

act as handle to synchronization queues, so they can be passed as an argument to task and compared. In this ap-

proach, semaphore will be used to synchronize all sub core components. Semaphore supports get() and put() meth-

ods, which are used for locking and unlocking resource. Additionally, try_get() method can be used for querying

information whether a resource locked or not. Each sub core component needs to be synchronized itself, when got

from external uvm_tlm_fifo item, and start processing, it need to wait for access to external memory to fetch data,

and then to proceed with execution and processing.

 This main goal of the strategy is to remove all dependencies between design and verification components, such as

clock accurate model and peek into internal signals etc., and also provide reusable environment for top-down verifi-

cation. In this approach, each sub core component is completely independent, so we could just create one UVC and

replace uvm_tlm_fifo on input and output, and drive real stimulus. We have self checking component, all interfaces

to external memories, all logic and coverage. Each uvm_component can be used for standalone sub core(pipe) verifi-

cation, but they can also be seamlessly integrated into top level verification as passive reference model. Also for fu-

ture use of this environment, it is maintainable since any change request is related to specific sub core, therefore only

one uvm_component is affected and subjected to change. Also, if one of the components is used on another project,

it is very easy to integrate and reuse environment for just that one.

 All uvm_components are connected with uvm_tlm_fifo, so each uvm_component is independent in receiving data

from the previous and pushing it into the following pipe in the pipeline. In the figure 1 we can see connection and

typical flow of data and order of process. Each sub core is waiting in infinitive loop for command in get_port, and it

is blocked there. Once when command is present in tlm_fifo, get_port will pop command, and execution of sub core

component will start. At that moment, component will take all part of configuration needed for execution, so execu-

tion will be valid for that movement of simulation. Next step will be to get data from external memory, or to write

updated data to external memory, depending of the specification. During that period, all other task needs to be

blocked, since more transactions are needed in order to collect all data. When we strobe last transaction from ex-

pected access, we can used stored data and manipulate with configuration and command, and create prediction and

updates. With all of that, after we write in memory data, we are done with this sub core, and command needs to be

shifted to next sub component. This is done over uvm_nonblocking_put_port, or over uvm_blocking_put_port if

depth of uvm_tlm_fifo is critical point. In that case, we can simulate and have exactly the same behavior as in design,

and simulate back pressure inside of design. When put_port finally put command to uvm_tlm_fifo, sub_core compo-

nent goes back in state where it is waiting on blocking get_port for a new command. Command stored in

uvm_tlm_fifo goes on the end of fifo, because order is very important. Next sub core component could be slower the

previous one, so uvm_tlm_fifo keep original order of commands. Next sub core is using updated command, so next

execution is using results from previous sub core, and it is much easier to debug. In pipeline type of design, some of

common issues are related to fetch data synchronization and data processing. Besides that, missing of some data and

taking corrupted data is also bi issue. In this approach, environment handle that in consideration, and it is tight with

design, every transaction is checked and each operation is performed in same time as in design, couple of clocks is

maximum misalignment, but on first transaction of next operation it is synchronized. All access to external memory,

or memories, are done over analysis ports, and transactions are filtered out based on address space of each sub com-

ponent.

Figure 1. Detailed block diagram for to sub core components

Base code for each component looks like this:

class sub_core1 extends uvm_component;

 uvm_comparer comparer;//used for comparing objects

 virtual env_if env_if;//hook to virtual interface

 ral_block_registers registers_regs;

 //local fields and variables

 `uvm_component_utils(sub_core1)

 uvm_blocking_get_port #(user_type_trans) core1_get_port;

 uvm_blocking_put_port #(user_type_trans) core1_put_port;

 uvm_analysis_imp_mem#(mem_tr , sub_core1) analysis_port_mem;

 function new (string name, uvm_component parent);

 super.new(name, parent);

 core1_get_port = new("core1_get_port",this);

 core1_put_port = new("core1_put_port", this);

 analysis_port_mem = new("analysis_port_mem", this);

 comparer = new();

 endfunction: new

 function void reset();//custom reset of sub core component

 //reset all parts of component to default state

 endfunction: reset

 function void build_phase(uvm_phase phase);

 if(!uvm_config_db#(virtual env_if)::get(this, "", "env_if", env_if))

 `uvm_fatal("build_phase",$sformatf("virtual interface must be set for:

%s.env_if",get_full_name()));

 if (!uvm_config_db#(ral_block_registers)::get(this, "", "registers_regs",registers_regs))

 begin

 `uvm_fatal("SB build phase", "registers_regs block is not set ");

 end

 endfunction

 function void write_mem(mem_tr trans_mem);

 comparer.show_max = 1;

 comparer.sev = UVM_INFO;

 if(trans_imem.mem_addr <= `SC1_END_ADDRES) begin//defined ranges of memory for

 all sub cores

 if(condition_last_trans_access)

 sub_core1_done =1;

 endfunction

 task run_phase (uvm_phase phase);

 while(1)begin

 core1_get_port.get(trans);//blocking port for pull out from fifo, while(1)

 if(bypass_conditions != 1)begin

 strat_working();

 wait(memory_access_done);

 perform_updates();

 if(sub_core1_done)

 core1_put_port.put(updated_ user_type_trans);

 endtask: run_phase

As we can see in code, every component has independent logic, but similar structure. So, one can be used as a tem-

plate, and reused.

All sub core components are instantiated in global scoreboard, also all uvm_tlm_fifos are created and configured in

global scoreboard. All connections are performed in connect phase of environment, and it have form like this:

sb.sub_core1.core1_get_port.connect(sb.tlm_fifo_core0_core1.get_export);

sb.sub_core1.core1_put_port.connect(sb.tlm_fifo_core1_core2.put_export);

Sub cores access the external memories where the necessary data is kept, so each uvm_component consists of an

analysis_port as a dedicated interface towards the defined address space. Based on transactions to external memo-

ries, environment is synchronized with DUT behavior, so the flow of environment transactions from one

uvm_component to uvm_tlm_fifo and finally to another uvm_component is performed in same manner as within

DUT. When three sub core components access to the same interface and memory, but different address space, then

all have same analysis port, each takes in consideration transactions from address range of interest. Each command

requires different number of transactions and access to memory, so very important part of synchronization of this

approach is to make good predictions in this field. Any missing transaction or prediction lead to losing synchroniza-

tion. Some of sub core components can access more memories in parallel or in predefined order. This is easily

solved with semaphores, so dead lock and mutual blocking conditions are avoided.

This solves a lot of problems, such as the modelling of the scenario in which each of the sub cores is accessing the

external memory. Faulty modelling can lead to synchronization issues, potentially causing data corruption.

 All uvm_component could be bypassed, without any time consumption. Blocking get_port will take item from

uvm_tlm_fifo, and if is set to be bypassed, because of configuration or some type of item, it will just pass item to put

port, which is not blocking, and then next sub core component can take item. Since all these actions are non-time

consuming, item skips a component in zero time, and then, when there is traffic in proper core on external interface,

it is performed for valid item. Each uvm_component is reset by its own corresponding reset. Each component could

have implemented reset_phase, or reset function could be implemented, depends on environment. It allows to follow

phasing structure or some custom solution. A set of functions is provided to extensively cover behavior of DUT sub

core, providing a self-checking environment. A global scoreboard instantiates all uvm_components for each sub core

and can interact with any of them, relying upon the data and the flags from uvm_components. To eliminate the unde-

sired dependency between the components, the communication between them is established by using UVM TLM

elements, rather than directly between the uvm_components. Each uvm_component contains an instance of

uvm_blocking_get_port to get transaction from uvm_tlm_fifo, and uvm_non_blocking_put_port for putting transac-

tion into next uvm_tlm_fifo. All uvm_tlm_fifos are configurable according to design parameters for sub cores fifo on

arrival or departure port. During reset, all uvm_tlm_fifo are flushed, so after the reset recovery, the environment be-

haves expectedly, clear for a fresh start.

 Stimulus generation is completely constrained random, and independent from the environment components, and is

therefore completely reusable. To apply stress onto the DUT, the provided sequences can be used in parallel with

other flows and testing, so the main virtual sequences are built consisting of a number of parallel threads for different

modes. All UVCs are randomly configured to introduce delay in responses, so back pressure is present from time to

time. This structure is built for this purpose, to be flexible and stay aligned with DUT behavior, based only on exter-

nal interface observation.

 Modules that are sharing same resources are synchronized using semaphores. Also, it is applicable to collect cov-

erage in each uvm_component for each sub core, achieving Metric -driven verification. As a benefit of the solution,

the debugging process is facilitated and sped up, because it is localized within the first uvm_component which causes

failure. Because of this modularity, the whole environment is easy to document.

Figure 2. Block diagram of full environment

On Figure 2 is shown block diagram of full environment. Flow selection is controlled with VIP_2, VIP_1 sends logi-

cal command, and from that point environment works automatically. Based on configuration, sub_comp_0 will read

from memory relevant data for this logical command, and start parsing and updating. When update is done, and

sub_comp_0 I done with all operation, command is passed to uvm_tlm_fifo reside between sub_comp_0 and

sub_comp_1. At that point of time, sub_comp_0 is ready to take new command and do all operation from beginning,

and sub_comp_1 is waiting on uvm_blocking_get_port to take command from uvm_tlm_fifo. Other sub components

are also blocked and waiting on get_port. Sub_comp_1 is getting command from uvm_tlm_fifo, and start reading

from external memory from processing. In parallel, it reads and updates current state of sub_comp_1 in other exter-

nal memory. That two operations are synchronized with semaphore, since one is dependent to other, after each part

of processing different status is saved and updated. In scenarios like this, it is very important to create good synchro-

nization flow, any issue in this part could be critical. With this approach, debugging is limited to only one sub com-

ponent, and with localization of problem, is much easier to find the root of problem and solve it, either in design or

environment. When sub_comp_1 is done, command goes to next uvm_tlm_fifo, and then next subcomponent. At the

end, when last subcomponent is done, all data is check and compared. Common issue is that part of one command

reflect other command, some flags stayed leached, or some corrupted data is taken into consideration in wrong mo-

ment. In that case, in big environments, tracing is extremely time consuming, so when it is divided into small logical

parts, it is much faster and logical. On each write into all external memories, all check is performed, so at first wrong

write, address, data, protocol, first error appearance will point out where problem is started, so root will be known. In

case of reset, each sub core component should be reset independently, and uvm_tlm_fifos should be flushed so after

reset state of env is idle and empty.

 Summary: The biggest challenges encountered while developing this strategy is to choose proper get and put

port elements for each component, configure all components, and finally take proper approach in handling transac-

tions in each component. At the beginning it was really challenging to get the environment set up and running, but

later it was very easy to update and work in it, since the workload was split between components. Even different en-

gineers could develop different components, so whole process of verification could be faster. The main room for

potential improvement would be to develop the uvm_components independently and use them for sub cores

standalone verification, and only then integrate them into block environment and as a final step, integrate this blocks

environment into top level environment.

 In comparison to one scoreboard for whole block solution, this solution is very advantageous. Code is much more

readable, easier to debug, and maintain, reusable, easier to synchronize and document. With some modification and

improvements, this approach of splitting the DUT modelling into units and create a dedicated separate component

for each of the units, regardless of the number of inputs and outputs, could emerge into a general solution for com-

plex DUTs with stage part of processing.

