
Verification Strategy for Pipeline Type of Design

Djuro Grubor
djurog@thevtool.com

Introduction
Complexity of ASICs requires adjusting the methodologies.

Modularity of the design should be followed by the verification methodology.

Pipeline type of design should be verified with pipeline testbench.

Efficiency in verification process is a must!

Pipeline type of design
Pipeline type of design consist of several independent sub cores.

Sub cores have different configurations for execution flow.

Synchronization and arbitration between sub cores is a challenge.

The main goal is to achieve good performance even with back pressure.

Shared resources create race conditions.

Design and ENV Correlation
Each sub core should be covered with one uvm_component.

All sub_core_components should be connected with a tlm_fifo_port.

Synchronization should be done with blocking/non_blocking put/get port.

Synchronization in shared resources should be covered with semaphores.

ENV/DUT synchronization is done only on transaction level.

Verification Scopes
Creating a uvm_component for each sub core of DUT create reference model.

Stimulus are unique and random for the entire system.

Parallelism and back pressure is distributed between components.

Bypass of each component is performed on the sequence level.

Coverage is collected on component level in a real use case.

Advantages and improvements
Entire scope of work is divided to logical parts.

More engineers can work without dependencies.

Good synchronization between RTl and verification environment.

Improvements could be done in generalization of this approach on

each complex DUT.

Summary
Biggest challenges with complex DUT is to choose a suitable verification strategy.

Great reusability and maintainability of the verification environment.

Entire scope of work is split logically and with no dependencies.

Synchronization between DUT/TB is handled by the strategy itself.

Shared resources and arbitration is covered and handled by the methodology.

Reusability and maintainability
Great reusability in both directions:

 Reference model of each component can be used as standalone.

 Entire pipeline can be used in top level verification environment.

Any change request affects only one sub component.

Any component can be easily integrated and adjusted for usage in other project.

F
I
F
O

uvm_blocking_get_portuvm_tlm_fifo

uvm_tlm_fifo

Sub core component 1

Pipe Line Design

ENV Correlation

Synchronization inside ENV

Sub core component 2 memory space

Sub core component 2

start execution and prediction

mem access and sync

caclculate expected

uvm_nonblocking_put_port

uvm_blocking_get_port

start execution and prediction

mem access and sync

caclculate expected

uvm_nonblocking_put_port

Sub core component 1 memory space

 while(1)begin
 core1_get_port.get(trans);

 if(!bypass_conditions)begin
 strat_working();

 wait(external_access_done);

 perform_updates();
 create_expected();

 wait(sub_core1_done);
 core1_put_port.put
 (updated_ user_type_trans);

In infinitive loop repeat wait for transaction on blocking get port.

This is the first step in synchronization and is the same for all sub components.

After getting transaction first check “is bypass” condition(s).

If sub core is in bypass, go to end of flow and pass transaction to the next sub core.

When sub core is not in bypass, standard working flow starts.

Every sub core has some external memory access and resources.

This is the second step in synchronization and a guarantee of data consistency.

Update current item with all data from external memories and configuration.

Create expected items for external access.

Waiting for all actions to finish until it is safe to proceed to the next sub core.

When item is sent to next sub core, current sub core goes back to the
beginning and waits for the next item.

Sub core component Code

Block Diagram of Full ENV

WP_1

Flow_1

su
b

_co
m

p_0

uvm_tlm_fifo uvm_tlm_fifo uvm_tlm_fifo uvm_tlm_fifo

su
b

_co
m

p_1

su
b

_co
m

p_2

su
b

_co
m

p_3

su
b

_co
m

p_4

Flow_2

WP_2

WP_3

WP_1

WP_1

sub_comp_0

sub_comp_1

external_memory_1 external_memory_1

sub_comp_3

sub_comp_1

not used

sub_comp_2

