
Verification Reuse for a Non-Transaction
Based Design across Multiple Platforms

Luis Li, Pablo Salazar, Andrés Cordero

Hewlett Packard Enterprise, American Free Zone Building C-8, Heredia, Costa Rica 40103

Abstract- In modern technology, an era of digital disruption has arrived where Big Data, Internet of Things (IoT) and

mobility are radically transforming the businesses of applications and data. High End Servers are prone to this change and
their architecture has evolved into more complex structures. At Hewlett-Packard Enterprise (HPE), a quick response is
essential to provide a server portfolio composed of multiple products and solutions which enable HPE to meet our
customer's unique and intricate needs. The verification of multiple digital systems triggers a tremendous need for code
reuse that conserve verification efforts. Moreover, the large percentage of our design that is non-transaction based has
created the requirement to develop a verification environment that is highly configurable to adapt to those conditions. This
paper will explore reuse and configuration techniques applied to develop a verification environment capable of managing
non-transaction based stimuli injection and to provide a tool to administer checking and coverage over multiple platforms.
The final section highlights the results of this methodology.

I. INTRODUCTION

A. Non-Transaction and Multi-Platform Designs
A verification engineer’s main role involves continually interacting with digital communication protocols and standards which

is an essential task since it is the fundamental way devices communicate with each other. As such, any digital system can be defined
as a device, from the most complex Application-Specific Integrated Circuit (ASIC) such as a last-generation microprocessor to a
simple Universal Asynchronous Receiver/Transmitter (UART) interface or to a Serial Peripheral Interface (SPI) converter
implemented in a Field Programmable Gate Array (FPGA).

In design verification, the most basic or fundamental piece of information in digital protocol is deemed a “transaction.” During the
verification process of a design, the environment generates and injects sets of transactions to establish communication with a design
and then performs response checking to confirm that this Design Under Test (DUT) is behaving as expected. Currently, an
abundance of protocols exist in the electronics industry; therefore, standardized verification methodologies like the Universal
Verification Methodology (UVM) are based on the assumption that most verifications environments are built to support one or
more communication protocols. In fact, many verification Intellectual Property (IP/VIP) solutions offered by Electronic Design
Automation (EDA) vendors are available in the open market if internal project schedules are too stretched and manpower limited
to create a custom solution.

To illustrate, what happens when a verification engineer determines that a device’s pinout is not following a specific protocol
and rather is merely a collection of bit-wise (ON/OFF) signals? How can the engineer utilize a verification methodology like UVM
to build a non-transaction based environment? To make the challenge even more difficult, what if the environment must support
not only one DUT but several similar ones (platforms)? In the detailed analysis following, an answer to these questions is provided.

DUT pinout values in a transaction based verification environment are constrained by the protocol itself as the injection must
respect timing diagrams identified and described in the standard. However, the verification environment complexity grows
exponentially from transaction based to non-transaction based design. For a non-transaction case, pinout activity may arise at any
time and in any order; therefore the state-space grows exponentially as a function of the number of DUT inputs and outputs. Typical
examples of non-transaction based designs are as such: a controller of an industrial machine that responds to several switches and
sensors, a power sequencer for a server programmed on a Complex Programmable Logic Device (CPLD) or FPGA, and any device
with several state machines (SM) and/or sequential logic in its design.

B. Case Study Overview
At HPE, design engineers interact with digital systems that meets both non-transaction based and multi-platform conditions. In

the most recent generations of the ProLiant Server Family, a programmable device known as the System CPLD (or CPLD) will be
our case study throughout this paper.

Inside of each server, the CPLD directs the hardware monitoring and administrative functions specifically focusing on server
power management. It also governs reset, fault detection, glue logic, and other important features inside the server. In addition, it
interacts with the Integrated Lights Out (iLO) management ASIC, the Southbridge Chipset (SBC), processors, power supply units
and other devices. This hardware architecture generates a large number of asynchronous signals converging in the CPLD which in
turn generates numerous functional scenarios. Those signals have a discrete nature in the sense that they are used to represent
ON/OFF signaling and they do not follow a specific standard protocol, which turns out to represent the non-transaction based nature

of the CPLD. Additionally, the number and kind of devices connected to the system CPLD differ from one server to another thereby
making it a multi-platform system as well.

C. Solution Overview
To create a verification environment for a non-transaction based DUT and additionally ensure the ability to support several

platforms, it is necessary to implement verification code reuse and highly configurable components in a layered structure. Over a
period of years, the HPE team developed a flexible environment useful for 15+ CPLD unique platforms using the UVM
methodology in SystemVerilog (SV). The resulting analysis demonstrates the creation of an environment that is highly adaptable
to several CPLD configurations as well as able to manage a non-transaction based DUT. The technical challenge of commanding
numerous platforms with unique hardware requirements while simultaneously achieving a high level of reuse required through the
implementation of configuration files will also be examined.

The standard method in checking discrete signals utilizes SystemVerilog Assertions (SVA); however, our analysis will
demonstrate why SVAs were not entirely suitable for this particular project. Exploration of the solution implemented to analyze
and correlate the discrete data resulted in the creation of a UVM-based tool that provides verification engineers all the information
collected and provides the possibility to easily make signal evaluations and combinations for certifying different scenarios. This
newly created UVM tool provides in its entirety the functions and components required to build a complete scoreboard. The case
study will also establish how this tool can be used via a micro language designed to simplify the scoreboards’ writing and reading
and accelerate their development.

II. CASE STUDY
This paper explains how an UVM/SV verification environment was architected and structured in order to inject stimuli and

check behavior of the CPLD included on each HPE ProLiant server. The design implemented in this CPLD meets the conditions
of both non-transaction based and multi-platform designs.

The following are the basic assumptions regarding the CPLD:
• Multi-platform: ProLiant is a family of servers each having its own specialized CPLD with approximately 90% of the

design for each platform sharing common code and the remaining 10% using custom-made code to the specific features
of the server. For each generation of the ProLiant server, many different server variations can co-exist with each requiring
verification.

• Non-transaction based: Most of the pinout in our CPLD environment has an ON/OFF nature, meaning that a majority
of the signaling processed by the CPLD is unresponsive to a specific communication protocol; instead, the signaling
processed is used for providing the status of specific devices linked to the server or are used to control specific
sequencings performed by the CPLD.

• Sequencing as its main task: Several state machines (SM) populate the CPLD’s Register-Transfer Level (RTL) in order
to perform tasks such as server’ power sequencing, LED control, server monitoring, and fault/error detection.

• Support for several server structural devices: Even in scenarios where the CPLD functionality maintains consistency
among various platforms, the devices linked to the server can be vary drastically in type and in quantity. Examples as
such include: the number and model of CPUs, Voltage Regulators Modules (VRMs), power supplies, south bridge,
mezzanine cards, power supplies, hard drives, and others.

• iLO partnership: HPE’s iLO is the HPE server provisioning and management ASIC. It simplifies server setup, provides
access to server health information, enables server management at scale, improves server power and thermal control and
conveys basic remote administration [1]. The iLO ASIC and CPLD are co-dependent in the sense the they partner with
each other for their server control and monitoring tasks. This is because the iLO has access to a majority of the high-
speed buses in the server whereas the CPLD has access to the more discrete/customizable features of the server.

III. SOLUTION
Our challenge was bifurcated as first, UVM items, components and sequences must be adapted to a non-transaction nature, and

second, the solution necessarily must support multiple CPLD platforms while being cost efficient. One possible solution would be
to develop a single verification environment per platform; however, this precludes cost efficiency as development workforce and
maintenance costs increase exponentially. Thus, the solution pursued takes advantage of the following facts:

• Ports in the DUT top module are ON/OFF and therefore are controlled and monitored consistently and similarly allowing
reused read and write methods.

• Common code permeates the DUT which allows verification code reuse. Differences arising are patched via configuration
in generic components.

• Ports in the DUT top module may be easily grouped together if they are part of the same functionality or are connected
to the same peripheral device.

• CPLD functionalities are highly similar thus providing uniformity across high level platforms.
• Behavioral checks and coverage collection evolve with common code to ensure maintenance efficiency. This discards

the use of concurrent SVAs as they are prohibited within classes and can only be written in modules and SystemVerilog
interfaces [2].

• Code reuse, configuration and abstraction layers are the quintessential elements in our solution.
The CPLD verification environment provides support to all platforms of a specific ProLiant generation. To effectively administer

differences among platforms, the verification environment is structured in layers. The lowest layer encompasses the most generic

and highly configurable features of the environment while the top most layer incorporates functional aspects shared by all platforms.
The overarching goal is to provide easy platform integration tools to enable users to focus primarily on the functional verification
and alleviate or mitigate differences at the lower level. The high level verification environment provides a set of common methods
that can be used to write sequences and test-cases in a sustainable manner, empower scoreboarding, and support coverage collection
tools.

To illustrate, Figure 1 presents the three abstractions layers which compose the CPLD verification environment. Moving from
the physical to the functional layer increases the amount of code accordingly. The physical layer contains extremely generic
components with small pieces of code but those generic components are highly configurable. Next, the device specific layer
comprised of a library of device specific behaviors that can be selected complementing the platform needs. Finally the major part
of the infrastructure code exists at the functional layer where the components are been re-used or shared across a majority of
platforms. The layers are discussed in greater depth in the following sections.

Driver

MonitorSubscriber

Sequencer

Intf

Generic_IO agent 0

Driver

MonitorSubscriber

Sequencer

Intf

Generic_IO agent 1

Driver

MonitorSubscriber

Sequencer
Intf

Scan Chain agent 0

Sequencer

Subscriber

Discrete_IO agent 1
Device 0 sequence

Device 0 checker

Device 1 sequence

Device 1 checker

Analysis Bus

Functional
scoreboard 0

Functional
scoreboard 1

Virtual sequence

Functional Layer Device Specific Layer Physical Layer

Figure 1: CPLD Verification Environment Layers

A. Physical Layer
The architecture of the CPLD connecting to other devices in the server can vary significantly from one platform to another.

Some servers are comprised of a simple structure such as one CPU, no power supplies, and a small number of peripheral devices.
Other servers offer more complexity of up to four CPUs, multiple mezzanine cards, two power supplies, etc. Platform designers
and server designers together establish these connections.

In design, Scan Chains are commonly incorporated in order to save some pinouts or to increase CPLD connection width.
Normally non-critical monitoring and controlling signals are linked with the CPLD via scan chains. To clarify, Figure 2 illustrates
an example of a device (Device 0) connected to the CPLD using single bit inputs and outputs (Generic I/O). Another device
(Device 1) is coupled to the CPLD utilizing a mix of Generic I/Os as well as through scan chain 0 and 1. One device can use
multiple scan chains to transmit/receive bits while a specific scan chain may be used to transmit/receive bits from multiple devices.

The physical layer must provide highly configurable components with small amounts of code. In order to meet this condition,
the verification environment composition includes the following agent packages at this layer.

• Generic I/O: Supports an infinite number of bit-wise inputs, outputs and inouts mapped directly to the CPLD pinout.
• Scan Chain: Supports a static number of bit-wise CPLD inputs and/or outputs mapped via scan chain in which the

width of each scan chain offers a platform specific definition.
• Discrete I/O: Discrete signals (ON/OFF) arise in the form of the Generic I/O or the Scan Chain. Thus, it is essential

to have a way to extract that physical difference to allow identically processing them at higher layers. Discrete I/O
provides that extraction thereby making all signals look like Generic I/O.

Generic I/O interfaces are parametrized which
means the user can set the number of inputs, outputs
and inouts that need to be grouped and shared to a
specific Generic IO agent during the platform
integration to the environment. Figure 3 clarifies
details on the interface declaration that will
eventually take the role of a device in the verification
process.

Figure 4 demonstrates how several Generic I/O
interfaces that are instantiated to support devices
such as a power supply (psu1), the Southbridge, and
several CPUs.

The fact that interfaces are parametrized may
complicate agents in achieving a common or generic
interface. One general solution to this resides in
using classes to abstract parameterized interfaces,
which is allowed by SystemVerilog’s syntax. In this
syntax, class objects representing interfaces are used
at the driver and allow for monitoring so that the
compile-time parameter is no longer needed.
Specification of the parameter of the interface is
voluntary for dynamic verification components and
they can be coded independently for re-usability [3].

The Generic I/O agent has a standard UVM
structure with its own sequencer, driver, and
monitor. In addition, it possesses
associative arrays accessed by strings.
These arrays are the maps required for
accessing the pinout in the interface.
Each input, output, or inout will be
registered in the agent by means of a
configuration file and its name in the
form of a string will be the access key.
Figure 5 shows part of the
configuration code for a set of inputs
and outputs related to the Southbridge.
After the Generic I/O agent is
configured, the sequences must use
these names to control and/or monitor
the registered signals.

Another special aspect of the Generic I/O agent is found in its
sequencer. It has a subscriber connected to the analysis port of the
monitor in order to provide the sequences with a means to know the
status of the inputs and outputs of the Generic I/O agent. The sequencer
also accesses the maps configured in the agent. In this way it is possible
to declare useful methods for reading and writing in a base sequence that
facilitates the use of the Generic I/O package in upper layers. Figure 6
presents the declaration of the previously mentioned methods.

Closely related to the Generic I/O is the Discrete I/O agent which is
merely an extension of the Generic I/O agent yet with additional support
for inputs and outputs connected to the DUT via Scan Chain. The
Discrete I/O’s goal is to unify Generic I/O signals with those that belong
to the same device but use Scan Chains to reach the CPLD. In this way
all the sequences and methods can be reused despite platform-to-
platform differences at physical level.

If a device is linked to a Discrete I/O agent during the integration of
the platform, this design will be indicated through the configuration file
of the environment which later will be responsible for making a factory
override as illustrated in Figure 7.

Figure 2: Illustrating CPLD Connecting to Other Server Devices

CPLD

SCAN CHAIN 0

SCAN CHAIN 1

load

dati
dato

clk

load

dati
dato

clk

Device 0

Device 1

output N

output 0
input 0

output M

output 0

input M

input 0

input M+1

output M+1

input N

To/From
other devices

To/From
other devices

.

.

.

.

.

.

Figure 3: Generic I/O Interface Definition

Figure 4: Generic I/O Interface Instantiations

Figure 5: Generic I/O Configuration Code for
Registering SBC ON/OFF Signals

At the checking level, the physical layer’s
only responsibility is to verify extremely
specific cases such as the appearance of high
impedances (z) or unknown values (x), thereby
leaving a majority of the responsibility of the
checking to the other two layers. This is
because the physical layer is highly variable
from one platform to another; thus, any
specific code at this level requires an intensive
time of development and maintenance. This
increased developmental and maintenance
cost, however, is the primary aspect to avoid
while structuring the environment. For the
same reason, the use of SVA was discarded as
concurrent SVAs can only exist in the physical
layer and would require having a special set of
rules for each platform.

B. Device Specific Layer
The CPLD verification environment has a

second layer called the Device Specific Layer
which is populated with device specific
sequences and checkers. Sequences in this
layer model the behavior of the CPLD’s
surrounding devices in the server and each is
specific to the type and version of the device
(for the same device type and same version
pinout). Accordingly, these sequences are
selected and configured to the needs of the
platform.

Device specific layer sequences appear in
the form of initiators and responders. An
initiator is a stimulus model that will initiate a
transaction or multiple transactions with the
DUT; in contrast, a responder reacts to outputs
from the DUT and feeds stimulus back into the
DUT [4]. To demonstrate, Figure 8 shows
how a southbridge responder makes use of the
methods provided by the Generic I/O package
in order to implement SBC’s runtime
assertions logic. In this example, the responder
waits for the CPLD to assert PAL_APWROK
and PAL_PWROK prior to setting
DRAM_PGD and CPU_PWROK. Then, it
waits for PAL_SYS_PWROK to be asserted
and finally de-asserts PLT_RST_N. This
sequence of events can suddenly be truncated
if a server shutdown request is detected.

In this device specific layer, all signals are
treated as Generic I/O regardless of whether a
signal is connected directly to the DUT or
indirectly through a Scan Chain. Thus, at this
point, the physical layer has been configured
and signals can be accessed using device
common names.

The number and names of the Generic I/O agent instances depend on the platform as well as what devices are part of the specific
server and are interacting with the CPLD. This information is readily specified in the environment’s configuration object as shown
in Figure 9. Device specific layer sequences can be set to run in a Generic I/O sequencer as a default sequence (this is the most
common case for responders), in a virtual sequence, or in a test-case.

Figure 7: CPLD Environment Using Factory Placed Registered Discrete I/O Agents

Figure 6: Generic I/O Declaration of Useful Methods

Figure 8: SBC Responder Sample Code

Checkers in the device specific layer must not only verify
that the CPLD is interacting as expected with other devices but
also is responsible for abstracting and sharing useful
information for later processing in the functional layer. Each
checker connects to the analysis port of a Generic I/O agent. It
is in this way that it receives a callback when activity occurs in
the interface, and afterwards, the component compares the
received information against its expectations. It then updates
the status and calculates new expectations.
The media used by all checkers to share
status, desired expectations, and other
essential information to the functional layer
is called the Analysis Bus. The Analysis
Bus is an object in which several types of
variables can be registered and are
accessible by all checkers and scoreboards.
Figure 10 demonstrates how a Voltage
Regulator Module (VRM) checker assesses
its information in relation to the Analysis
Bus.

C. Functional Layer
The Functional Layer is the third layer where functional sequences and functional scoreboards reside utilizing platform specific

configuration objects in order to determine supported CPLD features and the devices connected to the DUT. The code in the
Functional Layer is shared across platforms as the code performs identical functionalities in a specific server generation. In rare
situations, special cases arise and may be patched with platform specific code by using the UVM factory to override sequences or
components. On the stimuli side, regular UVM virtual
sequences are revealed which are capable to control
other device specific sequences in order to inject
CPLD functional scenarios. At this point, test-cases
may select, configure, and execute these virtual
sequences.

In the Functional Layer, the checking part is quite
remarkable as it is in this layer where functional
scoreboards and coverage collectors reside. For that
reason, these highly complex elements in the CPLD
verification environment process and verify all the
information registered in the Analysis Bus while at the
same time are flexible enough for different
configurations. Figure 11 exhibits the main attributes
(or properties) of the scoreboard base class. These are
complex objects each with a specific data processing
logic.

Class-based languages are object-oriented and uphold two main categories – classes and instances. A class property_item is
similar to an SVA property as it has the capability to check that Boolean conditions representing logical scenarios occur in certain
timing circumstances. State_machine_reference is a class used as a behavioral model for most of the state machines present in the
CPLD. In this class, it is possible to calculate expectations accordingly with the activity processed in each property_item.

As mentioned previously, the CPLD performs multiple sequencing tasks which are verified in the scoreboards using
sequence_checker objects. Comparisons are performed between state machine reference models and the activity observed in the
Analysis Bus. One coverage_collector instance is integrated in each functional scoreboard. Its primary task is to collect information
about state machines transitions that reflect all the possibilities occurring in a specific CPLD functionality.

Finally, due to the complexity in managing and connecting all objects in order to interact and evaluate functional features, it was
necessary to create a tool that provides users a simplified method to develop the scoreboards’ logic. This tool is called “The Maker.”
A micro language designed for The Maker simplifies and accelerates scoreboard development. The functions provided by The
Maker ask for a string variable as an argument. In this string, the user can specify the signals and conditions to evaluate by using
the defined syntax, can identify the sequences to check, and can highlight the state machines to create and assess a myriad other
features. The Maker will then read the string, analyze it, and proceed to create the objects and the logic to perform the specified
function.

Figure 12 shows an example of how easy it is to evaluate Boolean conditions using The Maker. In this case, a property has been
created for each of the ways that the server can use to start a power up sequence: ILOWAKEUP, PHYSICAL and VIRTUAL. For
instance, the ILOWAKEUP property evaluates if the CPLD input signal GMT_WAKEUP_N is low. If it is, then the value of the
property will be 1. Also, it shows that you can create properties conditionally which helps to reuse the same scoreboard for different

Figure 9: Generic I/O Agents Added to Environment by Means of a
Configuration Object

Figure 10: VRM Checker Registering Several Variables in the Analysis Bus

Figure 11: Scoreboard Base Declaration Attributes

platforms. Later, these properties will be reused for
creating the reference state machines and the
sequence checkers that will complete the
scoreboards.

In Figure 13 it is possible to observe the way a
power sequencer scoreboard is defined using “The
Maker” and its micro-language.

IV. RESULTS
Over the last two ProLiant Server generations (G9

and G10), the HPE CPLD team has been using the
methodology described in this document to
successfully verify up to fifteen platforms per
generation. G9 verification required an environment
capable of supporting multiple platforms and the
CPLD’s non-transaction nature. This was possible
by implementing Generic I/O components and
sequences. The behavioral checking and coverage
collection utilized concurrent SVAs for each
platform. During the G10 verification, SVAs were
substituted by functional scoreboards and coverage
collectors in order to reuse checking logic and save
maintenance time while also providing a more
robust functional verification by adding more
flexible components and development tools like
“The Maker.”

During G9 verification, the platform integration
consumed up to 50% of the total verification time
due to the high maintenance required by the SVA
blocks and the fact that, at the physical layer, each
platform had high variances resulting in a lower
code reuse capability. After implementing class
based functional scoreboards and coverage
collectors in G10 generation, the integration time
was reduced to approximately 10% to 15% of the
verification effort.

It is anticipated, that future CPLD generations will be able to reuse up to 95% of the already developed verification code due to
the fact that the CPLD keeps similar functionalities from one generation to another and due to the high configurability of the
components such as the Generic I/O agent. The Generic I/O has proven been flexible enough to be used in CPLD block verification
and even in other projects.

V. CONCLUSIONS
At HPE, for design engineers to meet the unique demands of our clients, it was necessary to create a digital system meeting both

non-transaction based and multi-platform conditions. Per the analysis above, the design team was highly successful in developing
a CPLD Verification environment capable of dealing with its non-transaction and multi-platform characteristic by using a layered
approach with highly configurable components at the lower layers and highly reusable components at the top layer.

While SVA blocks are useful, implementing SVA blocks incurs a high cost maintenance in multi-platform verification
environments due to the significant platform-to-platform differences at the physical level and also the fact that concurrent assertions
can only be instantiated in modules and interfaces. The design team effectively created a tool for developing functional scoreboards
and coverage collection logic. This tool has its own string based micro-language and provides the benefit of less complexity to
checking code writers.

VI. REFERENCES
[1] Hewlett Packard Enterprise Development LP, “HPE Integrated Lights-Out Portfolio,” in Family data sheet 4AA4-5167ENW, February

2018, Rev. 6 [Online]. Available: https://h20195.www2.hpe.com/v2/getpdf.aspx/4aa4-5167enw.pdf
[2] B. Cohen, “SVA in a UVM Class-based Environment”, [Online]. Available:

https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-9_issue-1/articles/stream/sva-in-a-uvm-class-based-
environment_vh-v9-i3.pdf

[3] W. Yun and S.Zhang, “Deploying Parameterized Interface with UVM” DVCon United States 2013.
[4] B.Wile, J.Goss and W.Roesner, “Comprehensive Functional Verification, The complete Industry Cycle”, Elsevier, pp. 77-78, 2005.

Figure 12: Property declaration for ILOWAKEUP, PHYSICAL and
VIRTUAL power up methods

Figure 13: Power Sequencer Scoreboard’s Logic Implemented Using “The
Maker” for Reset Evaluations

