
Verification Patterns – Taking Reuse to the Next Level

Harry Foster
Mentor Graphics Corporation

Texas, USA
Harry_Foster@mentor.com

Michael Horn
Mentor Graphics Corporation

Colorado, USA
Mike_Horn@mentor.com

Bob Oden
Mentor Graphics Corporation

North Carolina, USA
Bob_Oden@mentor.com

Pradeep Salla
Mentor Graphics Corporation

Bangalore, India
Pradeep_Salla@mentor.com

Hans van der Schoot
Mentor Graphics Corporation

Ottawa, Canada
Hans_vanderSchoot@mentor.com

Abstract-Design patterns provide an optimized, reusable solution to many of today’s engineering problems.

Experience has shown that they are an effective tool for sharing best practices and building skills within a project

team. However, one problem that has prevented the widespread adoption of design patterns within the

microelectronic verification community is a lack of an easily searchable library of patterns. In this paper, we

demonstrate a systematic set of guidelines for creating and organizing an extendable library of verification patterns

that are applicable across multiple technologies and engines (or platforms) in the verification space—ranging from

property specification to UVM testbench development—and formal verification, simulation, and emulation.

1. INTRODUCTION
What is a pattern? In the process of designing something (e.g., a building, software program, or an airplane) the

designer often makes numerous decisions about how to solve specific problems. If the designer can identify

common factors contributing to the derived solution and abstracts the solution in such a way that it can be applied to

other similar recurring problems, then the resulting generalized problem-solution pair is known as a pattern.

Documenting patterns provides a method of describing good design practices within a field of expertise and enables

designers to improve the quality in their own designs by reusing a proven solution on a recurring problem. In the

context of this paper, we define a pattern library as a collection of pattern entries—where each documented pattern

entry provides a solution to a single problem.

Design patterns originated as a contemporary architectural concept from Christopher Alexander in 1977, and they

have been applied to the design of buildings and urban planning. [2] In 1987, Kent Beck and Ward Cunningham

proposed the idea of applying patterns to programming. [11] However, it was Gamma et al., also known as the Gang

of Four (GoF) who popularized the concept of patterns in computer science after publishing their book Design

Patterns: Elements of Reusable Object-Oriented Software in 1994. [1]

Applying patterns to verification is not a new idea. For example, Dwyer et al. [3] in 1998 initially proposed the idea

of codifying and reusing property specifications for finite-state verification using patterns. Foster et al. [4] in 2004

extended the idea of applying patterns to the general domain of assertion-based verification. More recently, the

literature for many of today’s testbench verification methodologies (such as UVM) often reference various software

or object-oriented related patterns in their discussions, which can provide valuable insight into how to achieve better

vertical and horizontal reuse for testbenches and stimulus and even platform portability with the advent of hardware-

assisted acceleration. [5][6][7][8][9][10]

Although patterns have been referenced in the context of design verification in numerous conference papers, it is

generally difficult to search, reference, and leverage the published solutions these patterns provide since they are

distributed across multiple heterogeneous platforms and databases and documented using multiple varied formats.

Furthermore, prior work in patterns applied to hardware verification problems has been limited in scope by focusing

predominantly on the coding aspect of simulation testbenches. In this paper, we address these concerns by extending

the application of patterns across the entire domain of verification (i.e., from specification to methodology to

implementation) and introduce a systematic set of steps for organizing and documenting an easily referenced

verification patterns library that is applicable across verification engines (or platforms).

Paper Organization—The remainder of this paper is organized as follows. In Section 2, we provide a

recommendation for categorizing and organizing patterns into a library. In Section 3, we turn our focus to a

recommended style for documenting patterns and requirements for creating an easily referenced verification pattern

library. In Section 4, we present verification pattern examples related to various disciplines in the verification space

(such as property specification, UVM testbench development, and hardware acceleration). In Section 5, we discuss

other considerations when creating a patterns library—and introduce our freely available, online verification patterns

library, which is based on the systematic patterns creation approach and guidelines we discuss in the paper. In

Section 6, we summarize our work and then discuss future work, such as extending patterns into newer and

emerging areas of verification (for example, portable stimulus).

2. CATEGORIZING AND ORGANIZING PATTERNS
To facilitate learning, ease of use, and quick access when searching for verification pattern content, careful thought

should go into organizing the library into searchable categories whose patterns solutions are related and exhibit

similar characteristics. Although the verification patterns contained in our library extend beyond traditional patterns

used within the software community, we felt that it was important to first understand and then build on the prior

work that went into pattern categorizations from this domain.

The first attempt at design pattern categorization is attributed to the GoF, who proposed the following pattern

organization in the context of creating reusable object-oriented software: Creational Patterns (which deal with

object creation), Structural Patterns (which identify a simple way to realize relationships between entities), and

Behavior Patterns (which identify common communication patterns between objects). [1] Buschmann et al., in their

Pattern Oriented Software Architecture book series built on the work of the GoF and proposed three broader

category levels for patterns: Architectural Patterns (e.g., Layers, MVC, P2P), Design Patterns (e.g., GoF proposal),

and Idioms (e.g., language-specific patterns like Pimpl, RAII in C++). [12] However, Martin Fowler, in his book

Pattern of Enterprise Application Architecture (POEA) points out that patterns are not just for documenting

solutions to code specific problems—they are also useful for describing solutions to how data and system

components are arranged and interconnected. [13]

Since our goal in creating verification patterns is to broaden the application of patterns beyond the software domain,

we decided that our categories should align from a high level with the digital design and verification process. Hence,

we have identified two main verification pattern categories, which should be familiar to any design and verification

engineer working in this domain. That is, Specification Patterns and Implementation Patterns, as illustrated in the

following figure.

Verification Pattern Library

Specification Patterns Implementation Patterns

Occurrence

Properties

Order

Properties
Environment Stimulus Analysis

2.1 SPECIFICATION PATTERNS

Specification Patterns provide solutions to notational problems when specifying design intent. Various forms of

specification notation are being explored in the digital design and verification industry today, such as UML, graphs,

and property specifications. Probably the most prevalent form of formally specifying design intent in the digital

verification domain is through the use of properties, which can be implemented as either assertions or cover

properties. However, learning how to specify properties has historically been a challenge. Hence, for the initial

release of our verification pattern library, we decided to focus on the challenge of creating property patterns—with

the goal of facilitating reuse of common solutions to various property specification problems.

As shown in the previous figure, our property specification patterns are furthered organized into two subcategories,

which is based on the work of M. Dwyer et al. [3]. The subcategories are: Occurrence Properties and Order

Properties. Occurrence Property patterns require that either some state or event
1
 must occur (e.g., a Universality

Property Pattern or an Existence Property Pattern [14]) or not occur (e.g., an Absence Property Pattern [14]).

Alternatively, Order Property patterns constrain the order of states and events (e.g., a Precedence Property Pattern or

a Response Property Pattern [14]). More complex, compound properties can then be built up from combinations of

more basic occurrence and order patterns contained in our library. In section 5.1, we demonstrate an Occurrence

Pattern from our library.

2.2 IMPLEMENTATION PATTERNS

Implementation Patterns provide solutions to the construction problem for various verification infrastructures. Since

the construction of contemporary testbenches are essentially large software projects, which utilize object-oriented

features found in SystemVerilog and UVM, a lot of the prior work in software patterns is applicable to verification

Implementation Patterns. In fact, many of the patterns referenced in prior verification publications originated from

the set of reusable software object-oriented patterns proposed by the GoF. For example:

• Factory – Factory Pattern (Abstract Factory) & Singleton

• Policy Knobs (Objects) – The Policy Pattern [Strategy Pattern]

• Analysis Ports & Analysis Components – Observer Pattern

• Phases – Template Method Pattern

• TLM – Command Pattern

• UVM Object and Component registration – Proxy Pattern

• UVM_TOP – Singleton

• Object Wrappers – Adopter or Wrapper Pattern

However, verification is more than just creating testbenches. Hence, our category of Implementation Patterns is

intended to cover a broader set of solutions to commonly occurring problems involved in verification—such as

stimulus and analysis.

We have further organized our Implementation Patterns into the following three subcategories, as illustrated in the

previous figure: Environment, Stimulus, and Analysis. The Environment patterns are those that are used in testbench

architecture, construction, configuration, and communication/synchronization (e.g., Façade Pattern or Component

Configuration Pattern [14]). These patterns are the ones that capture the structural and behavior aspects of the core

verification environment model. Stimulus patterns capture the behavior, strategy, and types of stimulus (e.g.,

Layering Sequence Pattern [14]). Similarly, Analysis patterns are used to capture the behavior, strategy, and types of

response checking and coverage (e.g., Walking Pattern [14]). For reuse, analysis and stimulus have no interaction or

interdependency. The environment (testbench) includes infrastructure, interconnect, resource sharing,

synchronization, and so on. As such, it touches both analysis and stimulus. It is the structure in which both analysis

and stimulus reside and operate.

3. A TEMPLATE FOR DOCUMENTING VERIFICATION PATTERNS
When creating a pattern library, it is important that each documented pattern follow a consistent format and style.

This consistency simplifies learning and facilitates ease of use when reviewing different patterns contained in the

library. The documentation for a verification pattern should describe the context in which the pattern is used—a

problem within this context that the pattern is seeking to address—and a suggested solution.

1
 An event could be specified as a Boolean equation that references state elements or variables from the RTL.

Historically, no single standard format for documenting patterns exists. Rather, a variety of different formats have

been used by different pattern authors. One example of a commonly used documentation format is the one used by

the GoF in their book Design Patterns.[1] However, previous pattern documentation proposals focused on software

patterns. We found that there are other necessary pattern documentation requirements that are specifically related to

verification patterns and that are not addressed by previous proposals—such as documenting Specification Patterns.

Hence, our verification pattern template extends previous software pattern documentation proposals to address a

broader set of requirements related to verification.

3.1 VERIFICATION PATTERN TEMPLATE

Our verification pattern template consists of the following sections:

• Pattern Name: A unique (descriptive) name that helps in identifying and referencing the pattern.

• Intent: A very brief description of the goal behind the pattern and the reason for using it.

• Motivation: A description of a specific scenario consisting of a problem and a specific context in which this

pattern can be applied. Think of this as a problem statement that describes a concrete example. (The solution to

the problem will be discussed in the subsequent Implementation and Example sections.)

• Applicability: Situations in which this pattern is usable; the general context for the pattern.

• Structure: (Required for Implementation Patterns and optional for Specification Patterns) Abstract graphical

representation of the pattern (e.g., UML class diagrams, interaction diagrams, etc.).

• Implementation: A description of an implementation of the pattern; the solution part of the pattern.

• Example: A code (or pseudo-code) example of how the pattern can be used. It is suggested that the example

addresses the original problem scenario presented in the motivation section.

• Scope: (Recommended for Specification Patterns and optional for Implementation Patterns) A scope defines

the extent of the verification execution over which the pattern must hold. More property scope details will be

discussed in section 3.2, and an example is provided in section 4.1.

• Consequences: (Optional) A description of the results, side effects, and tradeoffs caused by using this pattern.

• Related Patterns: (Optional) Other patterns that have some relationship with the pattern with a discussion of

the differences and similarities between the related patterns.

• Contribution: Identification of person and/or references for this pattern contribution to the library.

For the novice pattern creator, there is often confusion related to the differences between the sections Intent,

Motivation, and Applicability. The Intent section is a generic, high-level description of the problem being solved,

and it should be limited to one or two sentences. However, the Motivation section is a description of a “specific”

example of a problem where a solution is needed (without describing the solution), and it does not need to be brief.

Note that the Motivation section is sometimes labeled as the Problem Statement in other proposed pattern templates.

The Applicability section will then generalize the “specific” problem example described in the Motivation section so

that the reader understands how the proposed pattern can be applied to other similar problems. Finally, we

recommend that the Example section demonstrate the solution on the same problem previously described in the

Motivation section.

3.2 SPECIFICATION PATTERNS AND PROPERTY SCOPES

Foster et al. documented sixteen patterns in their book Assertion-Based Design. [4] However, a recent and deeper

analysis of these patterns revealed that the base property for a number of the pattern examples had a similar

implementation—and the main difference between these patterns were often due to the boundary enabling and

fulfilling conditions that delimited the base property. This resulted in a slightly larger set of documented patterns

than necessary. Furthermore, in some cases, it was difficult to see how the example for a specific property

specification could then be generalized to address new specification problems.

M. Dwyer et al. proposed an elegant solution to the specification patterns generalization problem by defining

property scopes—where a scope defines the extent of the verification execution (i.e., the design model execution in

simulation, emulation, or formal verification) over which the base pattern must hold. [3] The advantage of defining

scopes is that it greatly simplifies the process of documenting property specification patterns since it generalizes the

application of a base pattern problem-solution pair to many other similar, yet slightly different problems—and thus

greatly reduces the amount of required documentation. Hence, we have adopted the concept of property scopes

when documenting property specification patterns released in our library.

We use the figure below to help illustrate the concept of various scopes for property P and its potential boundary

enabling and fulfilling conditions Q and R, respectively.

Experience has shown that there are five common scopes (as shown in the following figure) that cover a many

properties related to digital design [3], which are: global (the entire verification execution that is under

consideration), before (if R occurs, then the verification execution up to but not necessarily including the fulfilling

condition R), after (the verification execution including and after the enabling condition Q), between (If R occurs,

then the verification execution including and after the enabling condition Q and up to, but not necessarily including,

the fulfilling condition R), after-until (the verification execution including and after the enabling condition Q and up

to, but not necessarily including, the fulfilling condition R). The difference between the between and after-until

scopes is that the between scope of P only applies if the fulfilling condition R occurs after the enabling condition Q.

However, the after-until scope of P applies after the enabling condition Q, even if the fulfilling condition R never

occurs.

Scope: Extent of the model’s execution over which the property P holds.

Global P

P Before R

P After Q

P Between Q and R

P After Q until R

Q

R Q R Q

R

Q Q

Q

R

Q Q

Q

Q

R R

Note, instead of defining a much larger set of scopes for what we found to be less common instances where property

P does not overlap with the enabling condition Q, or the instance where property P is required to overlap with the

fulfilling condition R, it is easy to extend our smaller set of scopes to include these conditions by coding the

property appropriately (e.g., qualify the enabling condition Q to prevent overlap with P, or qualify the fulfilling

condition R to ensure overlap with P).

Pattern scopes are not necessarily applied to the overall property. That is, often a scope is applied to a sub-property

that is used to form a more complex overall property (e.g., sequence_expr |-> property_expr, where the

pattern scope might be applied to the sub-property property_expr versus the overall property).

4. PATTERN EXAMPLES
Due to space limitations, we have chosen to present three examples from our library in this paper. Each example is

representative of patterns from the main categories contained in our library: Specification Patterns and

Implementation Patterns.

4.1 SPECIFICATION PATTERN EXAMPLE

The following example demonstrates our documentation approach for Specification Patterns and how property

scopes can be used as a powerful tool to generalize the implementation of a specific specification pattern solution to

an alternative form, which is then used to address a different specification problem.

Pattern Name: Forbidden Sequence Property Pattern.

Intent: The Forbidden Sequence Property Pattern is used to specify portions of a design model’s verification

execution that forbids a specific sequence of designated states or events.

Motivation: In the normal verification execution of an RTL model, there are often specific sequences of states or

events that must never occur. The classic example of applying the Forbidden Sequence Property Patterns relates to

checking fairness in an arbiter. For example, if a specific client A issues a request to the arbiter, and the arbiter

issues a sequence of multiple grants to client B before client A is issued a grant, then the arbiter is not fair.

Applicability: Any sequence of states or events that describes undesirable behavior in a design, can be formulated

into a forbidden sequence property.

Implementation: The Forbidden Sequence Property Pattern can be expressed using any of the industry standard

specification languages (such as SVA or PSL).

The following table has been created only to provide a better understanding of the semantics of the Forbidden

Sequence Property Pattern for our five basic scopes—where a scope is the extent of the model’s verification

execution over which the property must hold.

The exampled described in the following table illustrates one instance of the Forbidden Sequence Property Pattern

that specifies that the sequence of three low-to-high T transitions is forbidden. For this example, Q, R and T are

Boolean expressions.

Property Scope Definition

Global2 not ($rose(T)[->3])

Before3 R (R[->1]) implies (not ($rose(T)[->3]) s_until R)

After Q always (Q |-> not ($rose(T)[->3]))

Between4 Q and R always (((Q & !R) ## R[->1]) implies

 (not ($rose(T)[->3]) s_until R))

After Q until R always (Q |-> (not ($rose(T)[->3]) until R))

Example: Let us consider a fair, two-client arbiter as illustrated in the figure below, where signals req[0] and

req[1] are input requests to the arbiter from clients 0 and 1, and gnt[0] and gnt[1] are the output grants,

respectively. For our example, a request is defined as a rising edge occurrence for either req[0] or req[1] and

similarly for a grant.

2
 For this particular pattern, and for performance reasons, the global scope is generally more applicable for

defining a sub-property versus an overall property.
3
 What this pattern is expressing is that if R eventually occurs, then the forbidden sequence must hold before R. If R

does not occur, then the forbidden sequence is not required to hold. The Before scope is generally more applicable

when defining a sub-property within a more complex property. Caution, this pattern may incur performance

issues, and the SVA implies construct is not supported by all tools with respect to property implies property.
4
 What this pattern is expressing is that if R eventually occurs after Q, then the forbidden sequence must hold

between Q up to but not including R. If R does not occur after a Q, then the forbidden sequence is not required to

hold. This pattern can incur performance issues, and the SVA implies construct is not supported by all tools.

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

2-client Arbiter

For our two-client arbiter to be fair, a client with a pending request should never have to wait more than two

arbitration cycles to receive a grant (where an arbitration cycle is the interval between issued grants). In another

example, if client 0 has a pending request, and a grant is issued twice to client 1 before a grant is issued to client 0,

then the arbiter is not fair. The following waveform illustrates this failing case.

gnt[0]

req[0]

clk

gnt[1]

Client 0 has a pending request, yet

grant was issued twice to client 1.

We can create a sequence that represents the condition where two grants are issued to client 1, and throughout this

sequence, no grant is issued to client 0, as follows:

(!gnt[0] throughout $rose(gnt[1])[->2])

This forbidden sequence can be used to construct our fairness property. For this case, we specify that client 1 should

never be granted more than one grant when we have a pending request from client 0.

property p_arbiter_fair_0_1;

 @(posedge clk) disable iff (!reset_n)

 $rose(req[0]) |-> not (!gnt[0] throughout $rose(gnt[1])[->2]);

endproperty

Similarly, we can write a separate property to specify the fairness with respect to client 1 (e.g., p_arbiter_fair_1_0).

Alternatively, we could create a parameterized property that could be used to check for any pairwise arbiter grants

(i, j) as follows:

property p_arbiter_fair(i,j);

 @(posedge clk) disable iff (!reset_n)

 $rose(req[i]) |-> not (!gnt[i] throughout $rose(gnt[j])[->2]);

endproperty

This parameterized property could then be used to fully specify any n-client arbiter (e.g., p_arbiter_fair(0,1),

p_arbiter_fair(0,2)…p_arbiter_fair(0,n), p_arbiter_fair(1,2)…). A SystemVerilog generate

statement could be used to efficiently create the full set of properties using this parameterized property.

Scope: The scope for the Forbidden Property Pattern in our previous fairness property example is after.

Obviously, depending on the property we wish to specify, the Forbidden Sequence Property Pattern is applicable to

other scopes (e.g., global, before, between, or after-until).

Consequences: The Forbidden Sequence Property Pattern does not specifically require the occurrence of any

number of instances for a given state or event (rather it forbids the number of occurrences). A separate property

needs to be written if we want to specify that a specific number of occurrences are required.

Related Patterns: The Forbidden Sequence Property Pattern is classified as a Specification Pattern, with a sub-

classification of an Occurrence Pattern. This pattern is a special case of the Absence Property Pattern.

4.2 IMPLEMENTATION PATTERN EXAMPLES

The following are two verification pattern examples that demonstrate how we document Implementation Patterns.

The first example demonstrates a pattern targeted at both simulation and emulation, while the second example

demonstrates how to share resources between objects without requiring detailed knowledge of the resource.

Pattern Name: The BFM-Proxy Pair Pattern.

Intent: The BFM-Proxy Pair Pattern is categorized as an Environment Pattern and facilitates the design of

transactors like drivers and monitors for dual domain partitioned testbenches that can be used for both simulation

and emulation, and across verification engines (or platforms) in general.

Motivation: In order to enable and promote a verification process that is abstracted from underlying verification

engines, particularly a software simulator and a hardware emulator, modern testbenches should exhibit (from

conception) a dual domain architecture with partitioned HVL and HDL module hierarchies targeted for the simulator

and emulator, respectively, and linked together to run in unison. Fundamental to this architecture is the employment

of BFM-proxy pairs to devise so-called split transactors, where components in the HVL domain typically

implemented as classes act as proxies to BFMs implemented as interfaces or modules in the (synthesizable) HDL

domain. An HVL proxy provides a surrogate or placeholder for the associated cross-domain HDL BFM to control

access to it via a transaction-based HVL-HDL communication model using remote function and task calls.

Effectively, the proxy embodies the transactor API to upper testbench layers, abstracting the cross-domain

communication and the implementation details of the BFM’s bus cycle state machines.

Applicability: The BFM-Proxy Pair Pattern is applicable in any situation demanding a common dual domain

partitioned testbench architecture (i.e., separated HVL and HDL module hierarchies) for both simulation and

emulation, and across verification engines in general.

Structure: The diagrams below illustrate the dual domain testbench architecture and the according UVM agent

structure, respectively, with the transactors depicted as BFM-proxy pairs.

Emulator

DUTDriver

Monitor

Responder

Monitor

Transactor

Layer

Testbench

Layer

Scoreboard

Stimulus

Coverage

SlaveRespondeDriver

MonitorMonitor

“Remote” task & function calls

Test

Controller SV

Interface/Module

(BFM)
SV

Interface/Module

(BFM)

Proxy Class

SV Interface

(pins)

RTL

Layer

DUT

HVL Top

HDL Top

Pin IFs

Monitor

BFM

Driver

BFM

Tasks/Functions/Pipes

}

}

Proxy

Classes

BFM

Interfaces

Config Sequencer

Monitor Driver

Implementation: A transactor following the prescribed BFM-Proxy Pair Pattern implements a BFM as a

SystemVerilog interface (or module) with dedicated functions and tasks to be called from a class proxy through a

virtual (or DPI-C) interface to execute bus cycles, set parameters, or get status information. Additionally, a BFM

interface (or module) may call functions defined in the class proxy via a proxy object back-pointer mechanism to

provide notifications of transactions and other interesting events and conditions for control and analysis.

Transaction-based cross-domain communication is thus enabled in both directions with either the HVL proxy or the

HDL BFM as initiator. Each proxy-BFM pair is regarded as a joint pair representing a single transactor.

Example: BFM-Proxy Pair Pattern source code examples for a UVM driver and monitor are provided below:

class ahb_driver extends uvm_driver ...

...

virtual ahb_driver_bfm bfm;

...

virtual task run_phase(uvm_phase phase);

ahb_seq_item req;

bfm.wait_for_reset();

forever begin

seq_item_port.get_next_item(req);

bfm.drive(req.we,

req.addr, req.data, ...);

seq_item_port.item_done();

end

endtask

...

endclass

interface ahb_driver_bfm(ahb_if pins);

...

task wait_for_reset();

...

endtask

task drive(bit we,

bit [31:0] addr, data, ...);

@(posedge pins.clk);

// Drive request on protocol i/f

...

endtask

endinterface

Virtual interface from HVL class

proxy to HDL BFM interface

Time consuming task call from the

HVL to HDL domain representing

transaction-based BFM access

The UVM driver wiggles the DUT

pins indirectly via a bus cycle state

machine triggered by the task call

class ahb_monitor extends uvm_monitor;

...

virtual ahb_monitor_bfm bfm;

...

function void connect_phase(uvm_phase phase);

...

bfm.proxy = this;

endtask

task run_phase(uvm_phase phase);

bfm.run();

endtask

function void notify_tr(ahb_trans_s req_s);

ahb_seq_item req;

req.from_struct(req_s);

analysis_port.write(req);

endfunction

...

endclass

interface ahb_monitor_bfm (ahb_if pins);

...

import ahb_pkg::ahb_monitor;

ahb_monitor proxy;

function void run();

-> start;

endfunction

initial begin

@(start);

@(negedge pins.clk);

monitor_daemon();

end

task monitor_daemon();

forever begin

// Sample next request on protocol i/f

...

proxy.notify_tr(req_s);

end

endtask

endinterface

Time consuming FSM initiated

from the HVL proxy via non-

blocking function call

Function call via back pointer from HDL BFM

back to HVL monitor proxy instance

Import of HVL proxy back-pointer class type

Assigning the back-pointer in

the build or connect phase

Consequences: The dual domain partitioned testbench architecture enabled by this BFM-Proxy Pair Pattern offers

maximum leverage of established simulation-based verification practices into emulation, including the benefits of

using SystemVerilog and UVM for creating modular, reusable verification components and environments.

Related Patterns: A precursor to this BFM-Proxy Pair Pattern is the Dual Domain Hierarchy Pattern, which

advocates the HVL and HDL domain partitioning as a sound and necessary separation of concerns fundamental to

emulation and other hardware-assisted verification platforms. Additionally, the BFM-Proxy Pair Pattern resembles

the proxy pattern as one of the structural patterns of the GoF’s OOP design patterns (though applying instead

between a dynamic proxy object and a static interface or module).

Pattern Name: Resource Sharing Pattern.

Intent: The Resource Sharing Pattern is categorized as an Environment Pattern is used to share resources between

objects without requiring detailed knowledge of the resource. Related resources share common access attributes

thereby creating simple associations.

Motivation: A hierarchical simulation environment contains resources required by other components as well as test

writers. A consistent mechanism for sharing resources promotes horizontal and vertical reuse. A simple mechanism

that requires no knowledge of the simulation environment hierarchy eases the task of test and stimulus creation.

Applicability: The Resource Sharing Pattern can be used when reusing verification components. It can also be used

to reduce the overhead of adding test writers to a project.

Structure:
Resource Sharing Attributes

Attribute Value

cntxt null

inst_name String identifying resource group

field_name String identifying specific resource

Implementation: The Resource Sharing Pattern can be implemented using either the uvm_config_db or

uvm_resource_db within UVM. For the example below the uvm_config_db was selected because of its

simplicity of use and use model available. The uvm_config_db has two methods for resource sharing: set and

get. It also supports the generic scope use model shown in this example as well as a hierarchical scope use model

required to share specific resources with specific objects. Resources shared can include but not be limited to

configuration objects, virtual interface handles and sequencer handles.

Example: Let us consider a DUT with various protocol interface ports. Each interface on the DUT is given a

unique string identifier. For this example let us give one of the interface ports the unique string identifier

“INGRESS_DATA_PORT”. This unique string identifier is used for the field_name attribute listed in the

structure table. All resources for that interface including the virtual interface handle, agent configuration handle and

sequencer handle are identified using the unique string identifier. The table below shows the values used to provide

and access the various resources associated with this interface.

The required constructs are available to environment developers to share resources within the environment. The test

writer only needs to know the information in the table to access resources associated with the ingress data port on

the design. No detailed knowledge of environment hierarchy is required to write test scenarios.

Resource cntxt inst_name field_name

Configuration handle null “CONFIGURATIONS” “INGRESS_DATA_PORT”

Virtual interface handle null “INTERFACES” “INGRESS_DATA_PORT”

Sequencer handle null “SEQUENCERS” “INGRESS_DATA_PORT”

5. Considerations for Creating our Pattern Library
It is important to establish usability goals early on when developing any type of online library. And since achieving

usability goals often places constraints on the required infrastructure, this is one area requiring thoughtful

consideration. Consequently, we chose to broadly identify the usability goals for our verification pattern library as a

knowledge base that is easily discoverable, referenceable, and relatable.

In addition to usability goals, we felt it important to set goals on the pattern creation process and how to effectively

populate the library. On a related note, you might have wondered why there is such a large set of authors listed on

this paper (which we refer to as the Gang of Five). The reality is that verification is a diverse field, and it often

requires expertise in varied areas, such as methodologies, technologies, tools, and languages. No single person is a

master in every aspect of verification. Thus, to create patterns across the broad field of verification, we built a team

made up from experts in assertion-based verification, formal verification, constrained-random and coverage-driven

verification, UVM, hardware-assisted verification, and emulation. However, even with this diverse team of experts

we recognize that there is still additional verification expertise required for solving verification problems in specific

application domains. Hence, for our verification patterns library, we set a goal that the pattern creation process

should harness the power of online social communities made up from a diverse set of verification experts that work

in multiple application domains. In turn, this community of experts would foster collective problem solving for the

creation of novel patterns and provide alternative, optimized solutions for existing pattern content. To achieve these

goals, we developed a web-based infrastructure that allows new content to be contributed in a consistent format,

which follows the pattern template guidelines that we discussed in Section 3.

The final verification patterns library goal we set was to grow the user base as quickly as possible. For this goal, we

decided to leverage the Verification Academy since it consists of an existing online social community with over

35,000 design and verification engineers. Furthermore, the Verification Academy provided us an existing online

infrastructure (reducing our development costs), which enabled the creation of a patterns knowledge base that is

easily discoverable, referenceable, and relatable. Our freely available, online verification patterns library can be

accessed at www.verificationacademy.com. [14]

6. SUMMARY AND FUTURE WORK
As we stated in the introduction, pattern examples from previous publications are generally difficult to search,

reference, and leverage since they are distributed across multiple heterogeneous platforms and databases and

documented using multiple varied formats. In addition, prior work in verification patterns has been limited in scope

by focusing predominantly on the coding aspect of simulation testbenches. In this paper, we addressed these

concerns by extending the application of patterns across the entire domain of verification (i.e., from specification to

implementation) and then introduce a systematic set of steps for organizing and documenting an easily referenced

verification patterns library. Finally, we demonstrated our documentation format on three examples, which are

representative of the class of patterns found in our library.

Our current plans are to continue populating the library with new patterns, many of which will be drawn from

previous publications. In addition, we are opening our pattern library up to an online social community to contribute

one’s own unique patterns to the library. Our future plans are to continue exploring new applications of patterns in

emerging verification domains, such as portable stimulus and system-level analysis. Finally, we plan to explore a

few additional scopes that leverage the expressiveness of regular expressions, which were not considered by the

work of Dwyer et al. [3]

REFERENCES
[1] E. Gamma et al. (1994) Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley.

[2] C. Alexander. (1979) The Timeless Way of Building, New York: Oxford University Press.

[3] M. Dwyer et al. (1998) 2nd Workshop on Formal Methods in Software Practice.

[4] H. Foster et al. (2004) Assertion-Based Design, 2nd-Edition, Kluwer Academic Publishers.

[5] M. Glasser (2009) Open Verification Methodology Cookbook, Springer.

[6] J. Sprott (2008) Improve Your SystemVerilog OOP Skills by Learning Principles and Patterns, SystemVerilog Users Group

[7] H. van der Schoot et al. (2011) “Off to the races with your accelerated SystemVerilog testbench,” DVCon 2011

[8] UVM Cookbook—Emulation, Verification Academy, https://verificationacdemy.com/cookbook/emulation

[9] Accellera Portable Stimulus Specification Working Group, http://www.accellera.org/activities/working-groups/portable-stimulus

[10] H. van der Schoot, A. Yehia (2015) “UVM & Emulation: How to get your ultimate testbench acceleration speed-up,” DVCon Europe 2015

[11] Beck, Kent; Cunningham, Ward (1987). “Using Pattern Languages for Object-Oriented Program,” OOPSLA '87 workshop on Specification

and Design for Object-Oriented Programming.

[12] Buschmann, Frank (2000). Pattern-Oriented Software Architecture, John Wiley & Sons.

[13] Fowler, Martin (2003). Patterns of Enterprise Application Architecture. Addison-Wesley.

[14] Verification Academy Patterns Library, www.verificationacademy.com

APPENDIX: VERIFICATION ACADEMY PATTERN LIBRARY
The following table represents the Verification Academy Pattern Library released content as of the time of this

publication. For an up-to-date listing of released patterns, visit www.verificationacademy.com.

Pattern Name Category Subcategory Description

Absence Property

Pattern
Specification Occurrence

Used to specify states or events1 in a system that must never occur

during execution. Also known as Never.

Existence Property

Pattern
Specification Occurrence

Used to specify portions of a system’s execution that contains an

instance of a certain states or events. Also known as Eventually or

Future

Forbidden Sequence

Property Pattern
Specification Occurrence

Used to specify portions of a system’s execution that forbids a

sequence of states or events.

Bounded Existence

Property Pattern
Specification Occurrence

Used to specify portions of a system’s execution that contains at

most a specified number of instances of a designated state

transition or event.

Precedence Chain

Property Pattern
Specification Order

Used to specify relationships between chains (i.e., sequence of

states or events), where an occurrence of the cause chain must be

have been preceded by an occurrence of the effect chain. We say

that an occurrence of the effect chain is enabled by an occurrence

of the cause chain.

Precedence Property

Pattern
Specification Order

Used to describe relationships between a pair of states or events

where the occurrence of the first is a necessary pre-condition for

an occurrence of the second. We say that an occurrence of the

second is enabled by an occurrence of the first.

Response Chain

Property Pattern
Specification Order

Used to specifies relationships between chains (i.e., sequence of

states or events), where an occurrence of the cause chain must be

followed by an occurrence of the effect chain. Also known as

Follows and Leads-to.

Response Property

Pattern
Specification Order

Used to describe cause-effect relationships between a pair of states

or events. An occurrence of the first, the cause, must be followed

by an occurrence of the second, the effect. Also known as Follows

and Leads-to

Universality

Property Pattern
Specification Occurrence

Used to specify states or events1 or states in a system that must

always hold (that is, have a desired property) during execution.

Also known as Henceforth and Always.

Adapter Pattern Implementation Environment

Used to convert the interface of a class/module into another

expected interface. Adapter Pattern lets classes/modules work

together easily that couldn’t otherwise be easy because of

incompatible interfaces. Also called the Wrapper.

BFM-Proxy Pair

Pattern
Implementation Environment

Used to facilitate the design of transactors like drivers and

monitors for dual domain partitioned testbenches that can be used

for both simulation and emulation, and across verification engines

(or platforms) in general

BFM Notification

Pattern
Implementation Analysis

Used to provide effective and efficient notifications of protocol

transaction occurrences, and any other interesting protocol and

design events and conditions, for control and analysis in a dual

domain partitioned testbench, from HDL to HVL domain

Component

Configuration

Pattern

Implementation Environment

Used to create a coherent configuration structure for the

component hierarchy from top to bottom. It promotes self-

containment and data-hiding techniques in the configuration and

creation of component hierarchy.

Dual Domain

Hierarchy Pattern
Implementation Environment

Used to facilitate the design of testbenches that can be used for

both simulation and emulation, and across verification engines (or

platforms) in general.

Environment

Layering Pattern
Implementation Environment

Used to provide consistent configuration and structure for vertical

reuse of environments

Façade Pattern Implementation Environment
Provides a simple interface to a complex system, making it easier

for the client or external world to use

Layering Sequence

Pattern
Implementation Stimulus To be able to select and execute one of several sequences at will

Resource Sharing

Pattern
Implementation Environment

Used to share resources between objects without requiring detailed

knowledge of the resource. Related resources share common

access attributes thereby creating simple associations.

Strategy Pattern Implementation Stimulus
Used to define a set of behaviours/algorithms than can be

interchanged seamlessly.

Utility Pattern Implementation Environment
Encapsulate small, useful functionality in a portable, easy-to-use

object

Walking Pattern Implementation Analysis
Used to ensure toggling of signals to ensure connectivity and

ensure higher toggle coverage is achieved.

