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Abstract-Design patterns provide an optimized, reusable solution to many of today’s engineering problems. 

Experience has shown that they are an effective tool for sharing best practices and building skills within a project 

team. However, one problem that has prevented the widespread adoption of design patterns within the 

microelectronic verification community is a lack of an easily searchable library of patterns. In this paper, we 

demonstrate a systematic set of guidelines for creating and organizing an extendable library of verification patterns 

that are applicable across multiple technologies and engines (or platforms) in the verification space—ranging from 

property specification to UVM testbench development—and formal verification, simulation, and emulation.  

1.  INTRODUCTION 
What is a pattern? In the process of designing something (e.g., a building, software program, or an airplane) the 

designer often makes numerous decisions about how to solve specific problems. If the designer can identify 

common factors contributing to the derived solution and abstracts the solution in such a way that it can be applied to 

other similar recurring problems, then the resulting generalized problem-solution pair is known as a pattern. 

Documenting patterns provides a method of describing good design practices within a field of expertise and enables 

designers to improve the quality in their own designs by reusing a proven solution on a recurring problem. In the 

context of this paper, we define a pattern library as a collection of pattern entries—where each documented pattern 

entry provides a solution to a single problem. 

 

Design patterns originated as a contemporary architectural concept from Christopher Alexander in 1977, and they 

have been applied to the design of buildings and urban planning. [2] In 1987, Kent Beck and Ward Cunningham 

proposed the idea of applying patterns to programming. [11] However, it was Gamma et al., also known as the Gang 

of Four (GoF) who popularized the concept of patterns in computer science after publishing their book Design 

Patterns: Elements of Reusable Object-Oriented Software in 1994. [1] 

 

Applying patterns to verification is not a new idea. For example, Dwyer et al. [3] in 1998 initially proposed the idea 

of codifying and reusing property specifications for finite-state verification using patterns. Foster et al. [4] in 2004 

extended the idea of applying patterns to the general domain of assertion-based verification. More recently, the 

literature for many of today’s testbench verification methodologies (such as UVM) often reference various software 

or object-oriented related patterns in their discussions, which can provide valuable insight into how to achieve better 

vertical and horizontal reuse for testbenches and stimulus and even platform portability with the advent of hardware-

assisted acceleration. [5][6][7][8][9][10]  

 

Although patterns have been referenced in the context of design verification in numerous conference papers, it is 

generally difficult to search, reference, and leverage the published solutions these patterns provide since they are 

distributed across multiple heterogeneous platforms and databases and documented using multiple varied formats. 

Furthermore, prior work in patterns applied to hardware verification problems has been limited in scope by focusing 

predominantly on the coding aspect of simulation testbenches. In this paper, we address these concerns by extending 

the application of patterns across the entire domain of verification (i.e., from specification to methodology to 



implementation) and introduce a systematic set of steps for organizing and documenting an easily referenced 

verification patterns library that is applicable across verification engines (or platforms). 

 

Paper Organization—The remainder of this paper is organized as follows. In Section 2, we provide a 

recommendation for categorizing and organizing patterns into a library. In Section 3, we turn our focus to a 

recommended style for documenting patterns and requirements for creating an easily referenced verification pattern 

library. In Section 4, we present verification pattern examples related to various disciplines in the verification space 

(such as property specification, UVM testbench development, and hardware acceleration). In Section 5, we discuss 

other considerations when creating a patterns library—and introduce our freely available, online verification patterns 

library, which is based on the systematic patterns creation approach and guidelines we discuss in the paper. In 

Section 6, we summarize our work and then discuss future work, such as extending patterns into newer and 

emerging areas of verification (for example, portable stimulus). 

2.  CATEGORIZING AND ORGANIZING PATTERNS 
To facilitate learning, ease of use, and quick access when searching for verification pattern content, careful thought 

should go into organizing the library into searchable categories whose patterns solutions are related and exhibit 

similar characteristics. Although the verification patterns contained in our library extend beyond traditional patterns 

used within the software community, we felt that it was important to first understand and then build on the prior 

work that went into pattern categorizations from this domain. 

 

The first attempt at design pattern categorization is attributed to the GoF, who proposed the following pattern 

organization in the context of creating reusable object-oriented software: Creational Patterns (which deal with 

object creation), Structural Patterns (which identify a simple way to realize relationships between entities), and 

Behavior Patterns (which identify common communication patterns between objects). [1] Buschmann et al., in their 

Pattern Oriented Software Architecture book series built on the work of the GoF and proposed three broader 

category levels for patterns: Architectural Patterns (e.g., Layers, MVC, P2P), Design Patterns (e.g., GoF proposal), 

and Idioms (e.g., language-specific patterns like Pimpl, RAII in C++). [12] However, Martin Fowler, in his book 

Pattern of Enterprise Application Architecture (POEA) points out that patterns are not just for documenting 

solutions to code specific problems—they are also useful for describing solutions to how data and system 

components are arranged and interconnected. [13] 

 

Since our goal in creating verification patterns is to broaden the application of patterns beyond the software domain, 

we decided that our categories should align from a high level with the digital design and verification process. Hence, 

we have identified two main verification pattern categories, which should be familiar to any design and verification 

engineer working in this domain. That is, Specification Patterns and Implementation Patterns, as illustrated in the 

following figure. 

Verification Pattern Library

Specification Patterns Implementation Patterns

Occurrence

Properties

Order

Properties 
Environment Stimulus Analysis

 
 

2.1  SPECIFICATION PATTERNS 

Specification Patterns provide solutions to notational problems when specifying design intent. Various forms of 

specification notation are being explored in the digital design and verification industry today, such as UML, graphs, 



and property specifications. Probably the most prevalent form of formally specifying design intent in the digital 

verification domain is through the use of properties, which can be implemented as either assertions or cover 

properties. However, learning how to specify properties has historically been a challenge. Hence, for the initial 

release of our verification pattern library, we decided to focus on the challenge of creating property patterns—with 

the goal of facilitating reuse of common solutions to various property specification problems. 

 

As shown in the previous figure, our property specification patterns are furthered organized into two subcategories, 

which is based on the work of M. Dwyer et al. [3]. The subcategories are: Occurrence Properties and Order 

Properties. Occurrence Property patterns require that either some state or event
1
 must occur (e.g., a Universality 

Property Pattern or an Existence Property Pattern [14]) or not occur (e.g., an Absence Property Pattern [14]). 

Alternatively, Order Property patterns constrain the order of states and events (e.g., a Precedence Property Pattern or 

a Response Property Pattern [14]). More complex, compound properties can then be built up from combinations of 

more basic occurrence and order patterns contained in our library. In section 5.1, we demonstrate an Occurrence 

Pattern from our library. 

 

2.2  IMPLEMENTATION PATTERNS 

Implementation Patterns provide solutions to the construction problem for various verification infrastructures. Since 

the construction of contemporary testbenches are essentially large software projects, which utilize object-oriented 

features found in SystemVerilog and UVM, a lot of the prior work in software patterns is applicable to verification 

Implementation Patterns. In fact, many of the patterns referenced in prior verification publications originated from 

the set of reusable software object-oriented patterns proposed by the GoF. For example: 

 

• Factory –  Factory Pattern (Abstract Factory) & Singleton  

• Policy Knobs (Objects) – The Policy Pattern [Strategy Pattern]  

• Analysis Ports & Analysis Components – Observer Pattern  

• Phases – Template Method Pattern  

• TLM – Command Pattern  

• UVM Object and Component registration – Proxy Pattern  

• UVM_TOP – Singleton  

• Object Wrappers – Adopter or Wrapper Pattern  

 

However, verification is more than just creating testbenches. Hence, our category of Implementation Patterns is 

intended to cover a broader set of solutions to commonly occurring problems involved in verification—such as 

stimulus and analysis. 

 

We have further organized our Implementation Patterns into the following three subcategories, as illustrated in the 

previous figure: Environment, Stimulus, and Analysis. The Environment patterns are those that are used in testbench 

architecture, construction, configuration, and communication/synchronization (e.g., Façade Pattern or Component 

Configuration Pattern [14]). These patterns are the ones that capture the structural and behavior aspects of the core 

verification environment model. Stimulus patterns capture the behavior, strategy, and types of stimulus (e.g., 

Layering Sequence Pattern [14]). Similarly, Analysis patterns are used to capture the behavior, strategy, and types of 

response checking and coverage (e.g., Walking Pattern [14]). For reuse, analysis and stimulus have no interaction or 

interdependency. The environment (testbench) includes infrastructure, interconnect, resource sharing, 

synchronization, and so on. As such, it touches both analysis and stimulus. It is the structure in which both analysis 

and stimulus reside and operate. 

3.  A TEMPLATE FOR DOCUMENTING VERIFICATION PATTERNS  
When creating a pattern library, it is important that each documented pattern follow a consistent format and style. 

This consistency simplifies learning and facilitates ease of use when reviewing different patterns contained in the 

library. The documentation for a verification pattern should describe the context in which the pattern is used—a 

problem within this context that the pattern is seeking to address—and a suggested solution.  

                                                                 
1
 An event could be specified as a Boolean equation that references state elements or variables from the RTL. 



Historically, no single standard format for documenting patterns exists. Rather, a variety of different formats have 

been used by different pattern authors. One example of a commonly used documentation format is the one used by 

the GoF in their book Design Patterns.[1] However, previous pattern documentation proposals focused on software 

patterns. We found that there are other necessary pattern documentation requirements that are specifically related to 

verification patterns and that are not addressed by previous proposals—such as documenting Specification Patterns. 

Hence, our verification pattern template extends previous software pattern documentation proposals to address a 

broader set of requirements related to verification. 

3.1  VERIFICATION PATTERN TEMPLATE 

Our verification pattern template consists of the following sections: 

• Pattern Name: A unique (descriptive) name that helps in identifying and referencing the pattern. 

• Intent: A very brief description of the goal behind the pattern and the reason for using it. 

• Motivation: A description of a specific scenario consisting of a problem and a specific context in which this 

pattern can be applied. Think of this as a problem statement that describes a concrete example. (The solution to 

the problem will be discussed in the subsequent Implementation and Example sections.) 

• Applicability: Situations in which this pattern is usable; the general context for the pattern. 

• Structure: (Required for Implementation Patterns and optional for Specification Patterns) Abstract graphical 

representation of the pattern (e.g., UML class diagrams, interaction diagrams, etc.). 

• Implementation: A description of an implementation of the pattern; the solution part of the pattern.  

• Example: A code (or pseudo-code) example of how the pattern can be used. It is suggested that the example 

addresses the original problem scenario presented in the motivation section. 

• Scope: (Recommended for Specification Patterns and optional for Implementation Patterns) A scope defines 

the extent of the verification execution over which the pattern must hold. More property scope details will be 

discussed in section 3.2, and an example is provided in section 4.1.  

• Consequences: (Optional) A description of the results, side effects, and tradeoffs caused by using this pattern. 

• Related Patterns: (Optional) Other patterns that have some relationship with the pattern with a discussion of 

the differences and similarities between the related patterns. 

• Contribution: Identification of person and/or references for this pattern contribution to the library. 

For the novice pattern creator, there is often confusion related to the differences between the sections Intent, 

Motivation, and Applicability. The Intent section is a generic, high-level description of the problem being solved, 

and it should be limited to one or two sentences. However, the Motivation section is a description of a “specific” 

example of a problem where a solution is needed (without describing the solution), and it does not need to be brief. 

Note that the Motivation section is sometimes labeled as the Problem Statement in other proposed pattern templates. 

The Applicability section will then generalize the “specific” problem example described in the Motivation section so 

that the reader understands how the proposed pattern can be applied to other similar problems. Finally, we 

recommend that the Example section demonstrate the solution on the same problem previously described in the 

Motivation section. 

3.2  SPECIFICATION PATTERNS AND PROPERTY SCOPES 

Foster et al. documented sixteen patterns in their book Assertion-Based Design. [4] However, a recent and deeper 

analysis of these patterns revealed that the base property for a number of the pattern examples had a similar 

implementation—and the main difference between these patterns were often due to the boundary enabling and 

fulfilling conditions that delimited the base property. This resulted in a slightly larger set of documented patterns 

than necessary. Furthermore, in some cases, it was difficult to see how the example for a specific property 

specification could then be generalized to address new specification problems. 

 

M. Dwyer et al. proposed an elegant solution to the specification patterns generalization problem by defining 

property scopes—where a scope defines the extent of the verification execution (i.e., the design model execution in 

simulation, emulation, or formal verification) over which the base pattern must hold. [3] The advantage of defining 



scopes is that it greatly simplifies the process of documenting property specification patterns since it generalizes the 

application of a base pattern problem-solution pair to many other similar, yet slightly different problems—and thus 

greatly reduces the amount of required documentation. Hence, we have adopted the concept of property scopes 

when documenting property specification patterns released in our library. 

 

We use the figure below to help illustrate the concept of various scopes for property P and its potential boundary 

enabling and fulfilling conditions Q and R, respectively. 

 

Experience has shown that there are five common scopes (as shown in the following figure) that cover a many 

properties related to digital design [3], which are: global (the entire  verification execution that is under 

consideration), before (if R occurs, then the verification execution up to but not necessarily including the fulfilling 

condition R), after (the verification execution including and after the enabling condition Q), between (If R occurs, 

then the verification execution including and after the enabling condition Q and up to, but not necessarily including, 

the fulfilling condition R), after-until (the verification execution including and after the enabling condition Q and up 

to, but not necessarily including, the fulfilling condition R). The difference between the between and after-until 

scopes is that the between scope of P only applies if the fulfilling condition R occurs after the enabling condition Q. 

However, the after-until scope of P applies after the enabling condition Q, even if the fulfilling condition R never 

occurs. 

 

Scope: Extent of the model’s execution over which the property P holds.

Global P

P Before R

P After Q

P Between Q and R

P After Q until R

Q

R Q R Q

R

Q Q

Q

R

Q Q

Q

Q

R R

 
 

Note, instead of defining a much larger set of scopes for what we found to be less common instances where property 

P does not overlap with the enabling condition Q, or the instance where property P is required to overlap with the 

fulfilling condition R, it is easy to extend our smaller set of scopes to include these conditions by coding the 

property appropriately (e.g., qualify the enabling condition Q to prevent overlap with P, or qualify the fulfilling 

condition R to ensure overlap with P). 

 

Pattern scopes are not necessarily applied to the overall property. That is, often a scope is applied to a sub-property 

that is used to form a more complex overall property (e.g., sequence_expr |-> property_expr, where the 

pattern scope might be applied to the sub-property property_expr versus the overall property). 

4.  PATTERN EXAMPLES 
Due to space limitations, we have chosen to present three examples from our library in this paper. Each example is 

representative of patterns from the main categories contained in our library: Specification Patterns and 

Implementation Patterns.  

 



4.1  SPECIFICATION PATTERN EXAMPLE 

The following example demonstrates our documentation approach for Specification Patterns and how property 

scopes can be used as a powerful tool to generalize the implementation of a specific specification pattern solution to 

an alternative form, which is then used to address a different specification problem. 

Pattern Name: Forbidden Sequence Property Pattern.  

Intent: The Forbidden Sequence Property Pattern is used to specify portions of a design model’s verification 

execution that forbids a specific sequence of designated states or events. 

Motivation: In the normal verification execution of an RTL model, there are often specific sequences of states or 

events that must never occur. The classic example of applying the Forbidden Sequence Property Patterns relates to 

checking fairness in an arbiter.  For example, if a specific client A issues a request to the arbiter, and the arbiter 

issues a sequence of multiple grants to client B before client A is issued a grant, then the arbiter is not fair. 

Applicability: Any sequence of states or events that describes undesirable behavior in a design, can be formulated 

into a forbidden sequence property. 

Implementation: The Forbidden Sequence Property Pattern can be expressed using any of the industry standard 

specification languages (such as SVA or PSL).  

The following table has been created only to provide a better understanding of the semantics of the Forbidden 

Sequence Property Pattern for our five basic scopes—where a scope is the extent of the model’s verification 

execution over which the property must hold.  

 

The exampled described in the following table illustrates one instance of the Forbidden Sequence Property Pattern 

that specifies that the sequence of three low-to-high T transitions is forbidden. For this example, Q, R and T are 

Boolean expressions. 

 

  

Property Scope Definition 

Global2 not ($rose(T)[->3]) 

Before3 R (R[->1]) implies (not ($rose(T)[->3]) s_until R) 

After Q always (Q |-> not ($rose(T)[->3])) 

Between4 Q and R always (((Q & !R) ## R[->1]) implies  

                           (not ($rose(T)[->3]) s_until R)) 

After Q until R always (Q |-> (not ($rose(T)[->3]) until R)) 

  

Example: Let us consider a fair, two-client arbiter as illustrated in the figure below, where signals req[0] and 

req[1] are input requests to the arbiter from clients 0 and 1, and gnt[0] and gnt[1] are the output grants, 

respectively. For our example, a request is defined as a rising edge occurrence for either req[0] or req[1] and 

similarly for a grant. 

                                                                 
2
 For this particular pattern, and for performance reasons, the global scope is generally more applicable for 

defining a sub-property versus an overall property.  
3
 What this pattern is expressing is that if R eventually occurs, then the forbidden sequence must hold before R. If R 

does not occur, then the forbidden sequence is not required to hold. The Before scope is generally more applicable 

when defining a sub-property within a more complex property. Caution, this pattern may incur performance 

issues, and the SVA implies construct is not supported by all tools with respect to property implies property. 
4
 What this pattern is expressing is that if R eventually occurs after Q, then the forbidden sequence must hold 

between Q up to but not including R. If R does not occur after a Q, then the forbidden sequence is not required to 

hold. This pattern can incur performance issues, and the SVA implies construct is not supported by all tools. 



Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

2-client Arbiter  

For our two-client arbiter to be fair, a client with a pending request should never have to wait more than two 

arbitration cycles to receive a grant (where an arbitration cycle is the interval between issued grants). In another 

example, if client 0 has a pending request, and a grant is issued twice to client 1 before a grant is issued to client 0, 

then the arbiter is not fair. The following waveform illustrates this failing case. 

gnt[0] 

req[0] 

clk

gnt[1] 

Client 0 has a pending request, yet 

grant was issued twice to client 1.
 

We can create a sequence that represents the condition where two grants are issued to client 1, and throughout this 

sequence, no grant is issued to client 0, as follows:  

( !gnt[0] throughout $rose(gnt[1])[->2] ) 

This forbidden sequence can be used to construct our fairness property. For this case, we specify that client 1 should 

never be granted more than one grant when we have a pending request from client 0. 

property p_arbiter_fair_0_1; 

   @(posedge clk) disable iff (!reset_n) 

       $rose(req[0]) |-> not ( !gnt[0] throughout $rose(gnt[1])[->2] ); 

endproperty 

Similarly, we can write a separate property to specify the fairness with respect to client 1 (e.g., p_arbiter_fair_1_0). 

Alternatively, we could create a parameterized property that could be used to check for any pairwise arbiter grants 

(i, j) as follows: 

property p_arbiter_fair(i,j); 

   @(posedge clk) disable iff (!reset_n) 

      $rose(req[i]) |-> not ( !gnt[i] throughout $rose(gnt[j])[->2] ); 

endproperty 

This parameterized property could then be used to fully specify any n-client arbiter (e.g., p_arbiter_fair(0,1), 

p_arbiter_fair(0,2)…p_arbiter_fair(0,n), p_arbiter_fair(1,2)…). A SystemVerilog generate 

statement could be used to efficiently create the full set of properties using this parameterized property. 

Scope: The scope for the Forbidden Property Pattern in our previous fairness property example is after.   

Obviously, depending on the property we wish to specify, the Forbidden Sequence Property Pattern is applicable to 

other scopes (e.g., global, before, between, or after-until). 

Consequences: The Forbidden Sequence Property Pattern does not specifically require the occurrence of any 

number of instances for a given state or event (rather it forbids the number of occurrences). A separate property 

needs to be written if we want to specify that a specific number of occurrences are required. 

Related Patterns: The Forbidden Sequence Property Pattern is classified as a Specification Pattern, with a sub-

classification of an Occurrence Pattern. This pattern is a special case of the Absence Property Pattern.  



4.2  IMPLEMENTATION PATTERN EXAMPLES 

The following are two verification pattern examples that demonstrate how we document Implementation Patterns. 

The first example demonstrates a pattern targeted at both simulation and emulation, while the second example 

demonstrates how to share resources between objects without requiring detailed knowledge of the resource. 

Pattern Name: The BFM-Proxy Pair Pattern. 

Intent: The BFM-Proxy Pair Pattern is categorized as an Environment Pattern and facilitates the design of 

transactors like drivers and monitors for dual domain partitioned testbenches that can be used for both simulation 

and emulation, and across verification engines (or platforms) in general. 

Motivation: In order to enable and promote a verification process that is abstracted from underlying verification 

engines, particularly a software simulator and a hardware emulator, modern testbenches should exhibit (from 

conception) a dual domain architecture with partitioned HVL and HDL module hierarchies targeted for the simulator 

and emulator, respectively, and linked together to run in unison. Fundamental to this architecture is the employment 

of BFM-proxy pairs to devise so-called split transactors, where components in the HVL domain typically 

implemented as classes act as proxies to BFMs implemented as interfaces or modules in the (synthesizable) HDL 

domain. An HVL proxy provides a surrogate or placeholder for the associated cross-domain HDL BFM to control 

access to it via a transaction-based HVL-HDL communication model using remote function and task calls. 

Effectively, the proxy embodies the transactor API to upper testbench layers, abstracting the cross-domain 

communication and the implementation details of the BFM’s bus cycle state machines. 

Applicability: The BFM-Proxy Pair Pattern is applicable in any situation demanding a common dual domain 

partitioned testbench architecture (i.e., separated HVL and HDL module hierarchies) for both simulation and 

emulation, and across verification engines in general. 

Structure: The diagrams below illustrate the dual domain testbench architecture and the according UVM agent 

structure, respectively, with the transactors depicted as BFM-proxy pairs. 
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Implementation: A transactor following the prescribed BFM-Proxy Pair Pattern implements a BFM as a 

SystemVerilog interface (or module) with dedicated functions and tasks to be called from a class proxy through a 

virtual (or DPI-C) interface to execute bus cycles, set parameters, or get status information. Additionally, a BFM 

interface (or module) may call functions defined in the class proxy via a proxy object back-pointer mechanism to 

provide notifications of transactions and other interesting events and conditions for control and analysis. 

Transaction-based cross-domain communication is thus enabled in both directions with either the HVL proxy or the 

HDL BFM as initiator. Each proxy-BFM pair is regarded as a joint pair representing a single transactor. 

  

Example: BFM-Proxy Pair Pattern source code examples for a UVM driver and monitor are provided below: 

 

class ahb_driver extends uvm_driver ...

...

virtual ahb_driver_bfm bfm;

...

virtual task run_phase(uvm_phase phase);

ahb_seq_item req;

bfm.wait_for_reset();

forever begin

seq_item_port.get_next_item(req);

bfm.drive(req.we, 

req.addr, req.data, ...);

seq_item_port.item_done();

end

endtask

...

endclass

interface ahb_driver_bfm(ahb_if pins);

...

task wait_for_reset(); 

...

endtask

task drive(bit we, 

bit [31:0] addr, data, ...); 

@(posedge pins.clk);

// Drive request on protocol i/f

...

endtask

endinterface

Virtual interface from HVL class 

proxy to HDL BFM interface

Time consuming task call from the 

HVL to HDL domain representing 

transaction-based BFM access

The UVM driver wiggles the DUT 

pins indirectly via a bus cycle state 

machine triggered by the task call

 



class ahb_monitor extends uvm_monitor;

...

virtual ahb_monitor_bfm bfm;

...

function void connect_phase(uvm_phase phase);

...

bfm.proxy = this;

endtask

task run_phase(uvm_phase phase);

bfm.run();

endtask

function void notify_tr(ahb_trans_s req_s);

ahb_seq_item req;

req.from_struct(req_s);

analysis_port.write(req);

endfunction

...

endclass

interface ahb_monitor_bfm (ahb_if pins);

...

import ahb_pkg::ahb_monitor;

ahb_monitor proxy;

function void run();

-> start;

endfunction

initial begin

@(start);

@(negedge pins.clk);

monitor_daemon();

end

task monitor_daemon();

forever begin

// Sample next request on protocol i/f

...

proxy.notify_tr(req_s);   

end

endtask

endinterface

Time consuming FSM initiated 

from the HVL proxy via non-

blocking function call

Function call via back pointer from HDL BFM 

back to HVL monitor proxy instance

Import of HVL proxy back-pointer class type

Assigning the back-pointer in 

the build or connect phase

Consequences: The dual domain partitioned testbench architecture enabled by this BFM-Proxy Pair Pattern offers 

maximum leverage of established simulation-based verification practices into emulation, including the benefits of 

using SystemVerilog and UVM for creating modular, reusable verification components and environments. 

Related Patterns: A precursor to this BFM-Proxy Pair Pattern is the Dual Domain Hierarchy Pattern, which 

advocates the HVL and HDL domain partitioning as a sound and necessary separation of concerns fundamental to 

emulation and other hardware-assisted verification platforms. Additionally, the BFM-Proxy Pair Pattern resembles 

the proxy pattern as one of the structural patterns of the GoF’s OOP design patterns (though applying instead 

between a dynamic proxy object and a static interface or module). 

Pattern Name: Resource Sharing Pattern. 

Intent: The Resource Sharing Pattern is categorized as an Environment Pattern is used to share resources between 

objects without requiring detailed knowledge of the resource.  Related resources share common access attributes 

thereby creating simple associations. 

Motivation: A hierarchical simulation environment contains resources required by other components as well as test 

writers.  A consistent mechanism for sharing resources promotes horizontal and vertical reuse.  A simple mechanism 

that requires no knowledge of the simulation environment hierarchy eases the task of test and stimulus creation. 

Applicability: The Resource Sharing Pattern can be used when reusing verification components.  It can also be used 

to reduce the overhead of adding test writers to a project. 

Structure:  
Resource Sharing Attributes 

Attribute Value 

cntxt  null   

inst_name   String identifying resource group 

field_name String identifying specific resource 

Implementation: The Resource Sharing Pattern can be implemented using either the uvm_config_db or 

uvm_resource_db within UVM. For the example below the uvm_config_db was selected because of its 



simplicity of use and use model available.  The uvm_config_db has two methods for resource sharing: set and 

get.  It also supports the generic scope use model shown in this example as well as a hierarchical scope use model 

required to share specific resources with specific objects.  Resources shared can include but not be limited to 

configuration objects, virtual interface handles and sequencer handles. 

Example: Let us consider a DUT with various protocol interface ports.  Each interface on the DUT is given a 

unique string identifier.  For this example let us give one of the interface ports the unique string identifier 

“INGRESS_DATA_PORT”.  This unique string identifier is used for the field_name attribute listed in the 

structure table.  All resources for that interface including the virtual interface handle, agent configuration handle and 

sequencer handle are identified using the unique string identifier.  The table below shows the values used to provide 

and access the various resources associated with this interface. 

The required constructs are available to environment developers to share resources within the environment.  The test 

writer only needs to know the information in the table to access resources associated with the ingress data port on 

the design.  No detailed knowledge of environment hierarchy is required to write test scenarios. 

Resource cntxt inst_name field_name 

Configuration handle null “CONFIGURATIONS” “INGRESS_DATA_PORT” 

Virtual interface handle null “INTERFACES” “INGRESS_DATA_PORT” 

Sequencer handle null “SEQUENCERS” “INGRESS_DATA_PORT” 

5.  Considerations for Creating our Pattern Library 
It is important to establish usability goals early on when developing any type of online library. And since achieving 

usability goals often places constraints on the required infrastructure, this is one area requiring thoughtful 

consideration. Consequently, we chose to broadly identify the usability goals for our verification pattern library as a 

knowledge base that is easily discoverable, referenceable, and relatable.  

In addition to usability goals, we felt it important to set goals on the pattern creation process and how to effectively 

populate the library. On a related note, you might have wondered why there is such a large set of authors listed on 

this paper (which we refer to as the Gang of Five). The reality is that verification is a diverse field, and it often 

requires expertise in varied areas, such as methodologies, technologies, tools, and languages. No single person is a 

master in every aspect of verification. Thus, to create patterns across the broad field of verification, we built a team 

made up from experts in assertion-based verification, formal verification, constrained-random and coverage-driven 

verification, UVM, hardware-assisted verification, and emulation. However, even with this diverse team of experts 

we recognize that there is still additional verification expertise required for solving verification problems in specific 

application domains. Hence, for our verification patterns library, we set a goal that the pattern creation process 

should harness the power of online social communities made up from a diverse set of verification experts that work 

in multiple application domains. In turn, this community of experts would foster collective problem solving for the 

creation of novel patterns and provide alternative, optimized solutions for existing pattern content. To achieve these 

goals, we developed a web-based infrastructure that allows new content to be contributed in a consistent format, 

which follows the pattern template guidelines that we discussed in Section 3. 

 

The final verification patterns library goal we set was to grow the user base as quickly as possible. For this goal, we 

decided to leverage the Verification Academy since it consists of an existing online social community with over 

35,000 design and verification engineers. Furthermore, the Verification Academy provided us an existing online 

infrastructure (reducing our development costs), which enabled the creation of a patterns knowledge base that is 

easily discoverable, referenceable, and relatable. Our freely available, online verification patterns library can be 

accessed at www.verificationacademy.com. [14] 

6.  SUMMARY AND FUTURE WORK 
As we stated in the introduction, pattern examples from previous publications are generally difficult to search, 

reference, and leverage since they are distributed across multiple heterogeneous platforms and databases and 

documented using multiple varied formats. In addition, prior work in verification patterns has been limited in scope 



by focusing predominantly on the coding aspect of simulation testbenches. In this paper, we addressed these 

concerns by extending the application of patterns across the entire domain of verification (i.e., from specification to 

implementation) and then introduce a systematic set of steps for organizing and documenting an easily referenced 

verification patterns library. Finally, we demonstrated our documentation format on three examples, which are 

representative of the class of patterns found in our library. 

 

Our current plans are to continue populating the library with new patterns, many of which will be drawn from 

previous publications. In addition, we are opening our pattern library up to an online social community to contribute 

one’s own unique patterns to the library.  Our future plans are to continue exploring new applications of patterns in 

emerging verification domains, such as portable stimulus and system-level analysis. Finally, we plan to explore a 

few additional scopes that leverage the expressiveness of regular expressions, which were not considered by the 

work of Dwyer et al. [3] 
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APPENDIX: VERIFICATION ACADEMY PATTERN LIBRARY 
The following table represents the Verification Academy Pattern Library released content as of the time of this 

publication. For an up-to-date listing of released patterns, visit www.verificationacademy.com. 

 

Pattern Name  Category Subcategory  Description 

Absence Property 

Pattern 
Specification Occurrence 

Used to specify states or events1 in a system that must never occur 

during execution. Also known as Never. 

Existence Property 

Pattern 
Specification Occurrence 

Used to specify portions of a system’s execution that contains an 

instance of a certain states or events. Also known as Eventually or 

Future 

Forbidden Sequence 

Property Pattern 
Specification Occurrence 

Used to specify portions of a system’s execution that forbids a 

sequence of states or events. 

Bounded Existence 

Property Pattern 
Specification Occurrence 

Used to specify portions of a system’s execution that contains at 

most a specified number of instances of a designated state 

transition or event. 

Precedence Chain 

Property Pattern 
Specification Order 

Used to specify relationships between chains (i.e., sequence of 

states or events), where an occurrence of the cause chain must be 

have been preceded by an occurrence of the effect chain. We say 

that an occurrence of the effect chain is enabled by an occurrence 

of the cause chain. 



Precedence Property 

Pattern 
Specification Order 

Used to describe relationships between a pair of states or events 

where the occurrence of the first is a necessary pre-condition for 

an occurrence of the second. We say that an occurrence of the 

second is enabled by an occurrence of the first. 

Response Chain 

Property Pattern 
Specification Order 

Used to specifies relationships between chains (i.e., sequence of 

states or events), where an occurrence of the cause chain must be 

followed by an occurrence of the effect chain. Also known as 

Follows and Leads-to. 

Response Property 

Pattern 
Specification Order 

Used to describe cause-effect relationships between a pair of states 

or events. An occurrence of the first, the cause, must be followed 

by an occurrence of the second, the effect. Also known as Follows 

and Leads-to 

Universality 

Property Pattern 
Specification Occurrence 

Used to specify states or events1 or states in a system that must 

always hold (that is, have a desired property) during execution. 

Also known as Henceforth and Always. 

Adapter Pattern Implementation Environment 

Used to convert the interface of a class/module into another 

expected interface.  Adapter Pattern lets classes/modules work 

together easily that couldn’t otherwise be easy because of 

incompatible interfaces. Also called the Wrapper. 

BFM-Proxy Pair 

Pattern 
Implementation Environment 

Used to facilitate the design of transactors like drivers and 

monitors for dual domain partitioned testbenches that can be used 

for both simulation and emulation, and across verification engines 

(or platforms) in general 

BFM Notification 

Pattern 
Implementation Analysis 

Used to provide effective and efficient notifications of protocol 

transaction occurrences, and any other interesting protocol and 

design events and conditions, for control and analysis in a dual 

domain partitioned testbench, from HDL to HVL domain 

Component 

Configuration 

Pattern 

Implementation Environment 

Used to create a coherent configuration structure for the 

component hierarchy from top to bottom.  It promotes self-

containment and data-hiding techniques in the configuration and 

creation of component hierarchy. 

Dual Domain 

Hierarchy Pattern 
Implementation Environment 

Used to facilitate the design of testbenches that can be used for 

both simulation and emulation, and across verification engines (or 

platforms) in general.  

Environment 

Layering Pattern 
Implementation Environment 

Used to provide consistent configuration and structure for vertical 

reuse of environments 

Façade Pattern Implementation Environment 
Provides a simple interface to a complex system, making it easier 

for the client or external world to use 

Layering Sequence 

Pattern 
Implementation Stimulus To be able to select and execute one of several sequences at will 

Resource Sharing 

Pattern 
Implementation Environment 

Used to share resources between objects without requiring detailed 

knowledge of the resource.  Related resources share common 

access attributes thereby creating simple associations. 

Strategy Pattern Implementation Stimulus 
Used to define a set of behaviours/algorithms than can be 

interchanged seamlessly. 

Utility Pattern Implementation Environment 
Encapsulate small, useful functionality in a portable, easy-to-use 

object 

Walking Pattern Implementation Analysis 
Used to ensure toggling of signals to ensure connectivity and 

ensure higher toggle coverage is achieved. 

 


