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ABSTRACT  
 

Multiple parallel CPU or DSP cores are becoming commonplace 

in today's complex System-on-chip projects.  They are often the 

right solution to provide architecture that can meet demanding 

performance expectations at an optimal process shrink / power 

consumption / price point. 

 

It is however a time of transition, and not without risk: software 

practice for managing parallelism is emerging and evolving, 

hardware design teams are exploring ad hoc parallel or array 

architectures and shared memory approaches in the absence of 

established best practice or a marketplace of pre-qualified 

subsystem IP to draw upon.  Promises of ubiquitous processing 

fabrics are on the horizon.  In time, convergence and solutions 

will come, but in the meantime there is a rich amount of 

innovation going on. 

 

And all of that complexity needs verification. 

 

Project teams adding this dimension to their designs today need 

to perform due diligence on their verification strategy and 

execution plan, to accommodate the newly introduced risks.  For 

some, it is time to upgrade their strategy to current best practice, 

for others, to extend and consolidate their expertise with a view 

to guaranteeing robustness. 

 

To assist in this endeavor, we define Verification Patterns, and 

show how they can be of benefit to our efforts. The established 

rules of the verification game are clear - we ask ourselves these 

three questions: "what are we verifying?", "how can we verify 

that as cheaply as possible?" and of course "how will we know 

when we are done?  Simply put, Verification Patterns are 

specific ways to apply those rules to a particular problem 

domain, based on observations from project experience. 

 

In this paper we identify a candidate subset of such patterns, 

some best practice that can be applied to the verification of 

multi-core control, concurrency, co-operation, clocking and 

coherency, in the strategy for scalable vertical reuse at block-

level, subsystem-level and SoC-level, and in the implementation 

of the required verification machinery to achieve timely closure 

of these larger-scale SoC problems. 

 

Patterns can be kept in verification managers' and engineers' 

toolboxes, built upon over time, providing a useful set of tools, 

techniques and organizing strategies to draw upon or adapt 

during verification planning, environment design and execution, 

in the multi-core domain.    

 

 

Categories and Subject Descriptors  
D.3.3 [Software Engineering]: Testing and Debugging – abstract 

stimulus, pattern extraction and specification. 

 

General Terms  
Algorithms, Documentation, Aspects, Verification.  

 

Keywords  
Closure, Coherency, Coverage, Domain, Methodology, Multicore, 

Patterns, Graph-based, Stimulus, Constrained, Random. 

 

1. INTRODUCTION  
 

Imagine we are in charge of pre-silicon verification of a family of 

SoC products with increasing complexity in every generation. Our 

task is to verify a new system-on-chip containing for the first time a 

new multiprocessor architecture with a multicore CPU complex and 

multiple concurrent datapaths to memory and to the other 

communication and execution elements in our chip. 

 

Until now the products in our family have been single processor, 

single threaded, but now the performance/power demands are such 

that this change in architecture is necessary. 

 

The question is: will our existing verification strategy be sufficient or 

do we need to do something different in order to verify this delta in 

complexity within schedule and within budget? 

 

This question is the challenge of many verification teams that the 

author has been involved with.  A common approach is simply to 

stretch the existing verification strategy to fit.  A common outcome is 

that project schedule and quality both suffer and the second project 

down the line has to invest in improvements to avoid a repeat 

situation. 

 

1.1 Traditional Single-Core Test Strategy 
 

We assert, as many others have done, that any SoC verification 

strategy should consist of unit-level verification followed by system-

level verification, with appropriate separation of concerns.[3] 

 

In CPU-based designs the CPU core is normally delivered pre-

verified [an entire topic in its own right which is a matter for a future 

paper] and so the unit verification is normally very simple. 

Verification strategy consists of the following steps: 

 rerun vendor CPU core verification suite 

 simple CPU core complex unit test 

 peripherals unit tests 

 SoC-level connectivity tests 

 SoC-level datapath integration test 



The SoC-level tests are typically CPU software driven, occasionally 

driven by a stubbed-out CPU bus model driving random transactions. 

 

Whether this test strategy is based on directed tests, or random bus 

stimulus, we speculate that it is insufficient to verify a multicore 

datapath, without some changes in focus. 

 

1.2 Elements of Multicore Architecture 
 

Multicore provides the performance speedup of running Nx 

concurrent algorithms on the same shared set of data. There are costs 

associated with this model: both upfront costs and hardware 

complexity costs. 

 

The algorithms are typically threads dispatched by an operating 

system, or a smaller kernel, or arranged at compile time. That part of 

the overhead is done upfront in software. 

 

The other cost is the hardware complexity. In order for 2 or more 

CPU cores to operate on the same shared set of data, we need 

hardware to implement "shared". In a Multicore integration, we 

typically have the following architectural elements: 

 

 
 

 Clusters of 2 or more processing cores with local caches 

o An optional L1 cache layer per core, tightly bound to the 

core functionality and usually be considered part of the 

core and so does not implement the coherency required to 

be a 'shared' data resource. 

o An optional L2 cache layer per core, with an optional 

snoop block to achieve partial coherency or at least 

graceful degradation in performance preserving safety, by 

observing traffic from other cores to shared memory. 

 

 A coherency point in cache or external memory 

o Either a coherent LLC - last-level unified cache - in 

situations where the multicore complex has a single bus 

interface, the LLC provides coherent access here and to 

related IO channels. 

o Or a coherent multi-channel memory controller with 

buffering and arbitration (for example DDR) - in situations 

with discrete CPU cores where multiple buses are 

preserved rather than combined in a cache 

o Support for channels to I/O 

 

 Ancillary functions 

o A means to switch clocking and power independently on 

each CPU core as required, in order to control power 

consumption to fit the algorithm load at a given time 

o Cross-core state control/response for interrupts/exceptions 

o Support for debug, observing and injecting traffic 

 

2. VERIFICATION CHALLENGES 
 

The need for coherency points in a multicore system is always a 

challenge for verification closure. The datapaths are usually 

optimized, and the features for allowing concurrent access and rules 

for data sharing are often layered on top of each other, so the design 

grows over time. As with any parallel, pipelined system, 

inconsistencies can lurk undetected, needing the right initial state and 

the right triggering stimulus. A specific approach is needed. Formal 

techniques to measure Linearizability and Sequential Consistency[1] 

can be applied in small-scale designs, but simulation can do more. 

 

In designs without cache there is no perceived problem with internal 

data coherency - every access arbitrates for the shared external bus to 

memory or I/O. But we still have an arbiter to verify, with perhaps 

less need to worry about concurrent access rules or snooping. And an 

architecture that does not support coherent data sharing will limit the 

possibilities of what can be done in software on the multicore. So we 

can assume that avoidance is not a valid approach. 

 

2.1 The constrained-random testing paradox 
 

Many teams persevere with random stimulus as a brute force 

solution, bombarding each port of a shared bus fabric, last-level 

cache or shared memory controller with randomized traffic over 

millions or billions of cycles in order to emulate the variance that 

may occur in real life on silicon. And yet bugs escape. Why is that, 

and how can we do better? 

 

There are a number of reasons why traditional random stimulus is 

not good enough to verify parallel systems, and we will explore ways 

to make better stimulus by identifying patterns. The main problem 

with traditional random stimulus is that it takes too much time to 

achieve coverage closure, and it is too hard to identify, specify and 

measure what we mean by coverage in this context anyway. So we 

are forced to count our perception of quality in terms of how many 

random cycles we have run. And then we need to repeat that after 

each design delta, so it fast becomes the project bottleneck. 

 

Random, when inadequately constrained, has become part of the 

problem, when we thought it was the solution. The advocates of 

directed tests suddenly appear to have a valid point - if you put some 

effort in upfront to identifying interesting corner cases, you can run 

and rerun more productively. Maybe both approaches have their 

merits, and can be combined - we can do a better job of guiding 

random stimulus to where it is needed. To achieve this we seek ways 

to visualize the shape of the design space we are exercising, and infer 

the shape of the stimulus required to exercise that design space. 

 

We need another dimension to our stimulus to exercise the design 

properly and close a meaningful, measurable subset of coverage. 



3. THREE-DIMENSIONAL STIMULUS 
 

What do we mean by "adding a dimension to our stimulus"? We will 

take stock of the dimensionality of stimulus and identify how we can 

achieve more useful coverage with it. 

 

The dimensionality in question represents a defect-exercising pattern 

that is built up within the DUT state space, given that all stimulus is 

often applied only sequentially from the outside. 

 

We contend that three different kinds of defect need to be exposed: 

single locus defects (vertices in the DUT behavior space which can 

be exploited by single items of stimulus), dual locus interactions 

(edges), and multiple-locus complex interactions (planes). 

 

Complex, guided stimulus is required in order to explore all the 

points, all the edges, and all the planes, that we can identify as being 

interesting patterns, without resorting to brute-force cross-coverage. 

We will look in more detail at three kinds of corresponding stimulus: 

 

3.1 First dimension: linear variation 
 

The first dimension of interest for stimulus is in the random contents 

of one transaction on one interface. With this variance we can 

explore and cover interesting types of transaction, corner case values, 

random address and data. 

 

 
 

There are established techniques in both HLVL languages and in 

EDA tools which are used to comprehensively explore this space. 

While it is entirely likely that bugs will be exposed directly by 

simply varying stimulus content in this way, those bugs are likely to 

be isolated, 'point' defects in the DUT, the kind that are easily found. 

More subtle bugs will remain undetected, unless exposed by chance 

due to brute force and sheer number of vectors. 

 

 

3.2 Second Dimension: temporal succession 
 

In the second dimension of stimulus we take a limited look at the 

'time' axis. 

 

Typically we randomize one transaction based upon the previous 

one(s) to build up coverage of 'follow-on' or 'turnaround' conditions, 

for example transaction type B after A, A after A, A after B, etc. 

 

The goal of this kind of variation is to flush turnaround or 'built up' 

corner cases such as buffers filling up or multiplexers switching 

around or pipelines that are out of step with others. 

 

 
 

How to improve on the current state of the art? We have available 

tools like Mentor's InFact which are good at assisting the verification 

expert to crunch the random stimulus space down by representing it 

as a 2D graph, into a shorter set of guided random values that will 

flush out maximum coverage. 

 

With InFact, it is possible to explore interesting combinations of 

randomized values within a transaction, and from one transaction to 

the next. This effectively makes our random stimulus work harder, 

and achieves a dimension of coverage closure, but is not sufficient to 

find the kind of bugs lurking in a multicore design where datapaths 

are merged together. 

 

 
 

Another goal of temporal succession is to find all the possible states 

in known internal state-machines in order to achieve state coverage. 

This kind of grey-box testing approach can have good payback. 

 

But yet in a multi-core / multi-threaded, pipelined design we may 

still not achieve high quality verification closure without brute force, 



because of the space that defects can occupy; across pipeline stages 

and across functional sub-blocks.  To find these typical bugs we need 

to enable multiple streams of stimulus on multiple interfaces, 

colliding with functionality in the combining logic: multiplexing, 

arbitration, and coherency. Our goal is to create a rendezvous of 

stimulus deep within the design, and explore that space. 

 

Both LLC cache architectures and memory controllers with multi-

channel front ends typically have to deal with a subset of these kinds 

of multiple channels, multiple pipeline depth combining logic: 

arbitration, burst coherency; all kinds of concurrency. 

 

Memory controllers can often be less tightly coupled, but they still 

have to deal with buffer allocation corner cases. In all cases, there are 

traffic rules, and exceptions to those rules, and exceptions to the 

exceptions, and orthogonal or parallel events to consider. 

 

3.3 Third dimension: temporal interaction 

 
We postulate that there is a third dimension to good stimulus, one 

which looks across multiple interfaces, but is really concerned with 

time. This is the juxtaposition of interesting stimulus on multiple 

interfaces, both main traffic streams and also orthogonal events, with 

the intent of propagating that juxtaposition in to where the bugs lie. 

 

 
 

This 'interest space' is bounded by the set of orthogonal states on one 

side, and the pipeline depth on the other side. The techniques here 

are often called Micro-timing, because it is key to try different timing 

alignments of concurrent events along the depth of the pipeline. 

 

Start with a verification plan item that says 'arrange for X 

simultaneous with Y within the design; then rewind back to the 

stimulus on the pins required to achieve that, and finally vary those 

stimulus plus or minus the pipeline depth of the design. Bugs will 

drop out like flies when we explore the concurrency in our design. 

 

As ever, random stimulus control is required. And graphing tools 

like InFact could assist that. All three kinds of stimulus above may 

be required to fully verify a design without using just brute random 

force. When we have all three in place we can consider the stimulus 

to be comprehensive, capable of filling the entire defect space in 3D. 

4. PATTERN-DRIVEN VERIFICATION 

 
Now that we are thinking about our stimulus having some concrete 

geometric 'shape' within the DUT, whether 1D, 2D or 3D, we can 

look for patterns of abstract stimulus in that space, and randomize 

those. This technique seeks especially to target the 3D zone with 

interesting stimulus, rather than wild randomization, because at the 

3D level we can get more return from a little upfront guidance. 

 

Coverage of the pattern space should be complete, whereas coverage 

of wild randomization, even if crossed and run indefinitely, may 

never lead to all interesting combinations of state and stimulus. The 

random space is vast, so slicing it across using one of the 

dimensional abstractions we have defined is a means to achieve 

closure. 

 

4.2 Verification Pattern Sources 
 

So where do the patterns come from? There is currently no 

equivalent of the InFact tool to generate or assist generation of 3D 

stimulus, although it is only a matter of time before techniques are 

formalized and algorithms emerge. 

 

In reality these tools tend only to leverage the power of thought. So 

some serious thought is required in order to make use of the third 

dimension. Really, such patterns come only from experience - both 

experience in verification generally, and also experience in the 

design domain of concern. 

 

Having real project experience in Multicore designs, and being able 

to benefit from bugs observed, whether captured or escaped, is the 

key to creating improved stimulus shapes for successive projects. 

 

4.3 Verification Experience Required 
 

Here's a trivial example: take an addressable control register, what 

are the verification patterns we can apply to that? 

 

There are some obvious first order 'spot' patterns we can apply: try 

each of the set of possible operations: the read, the write, the reset; 

do that in conjunction with randomized values of the data. 

 

 
 

Then we have some 2D sequential patterns we can apply to traverse 

the edges of the bug space: read followed by write, write followed by 

read, the two back-to-back reads, or two back-to-back writes, a reset 

followed by a read, a reset followed by a write then a read, and so on. 

 

What about 3D patterns? At a first glance most of us would not think 

of any - after all we believe that we have already verified everything 

about the register, so our register is 100% covered if we do the 

above?  This is a fair conclusion, because it covers the limits of our 



experience, and we have derived a 'complete' set of patterns to 

stimulate and cover for a control register. 

 

But then we encounter an escaped bug that would have been caught 

if we had had more experience, or borrowed some patterns. Here are 

an additional two pieces of coverage which I class as 3D stimulus: 

 

One that most people fail to spot: cover that a reset causes the 

register to switch from its non-reset value to its reset value. Most 

folks just perform [reset then read] and then claim that the register 

reset VALUE is covered, but omit to test that the RESET is covered. 

It may have read back as its reset value by complete accident rather 

than by design. For proper coverage you need to test [write then reset 

then read]. 

 

Many of us in this audience will already know that pattern, but that 

just means that some folks experience is greater than others. But now 

that you know that pattern, you've added it to your own personal 

pattern repository for verification. When we formalize these things, 

projects can benefit greatly. 

 

Another register pattern in the 3rd dimension: we achieve 100% 

coverage of all interesting values of a control register setting, without 

actually checking whether the EFFECT of the control register was as 

intended. This is one of the most common failures of coverage-

driven methodology - where we tape out based on meaningless 

coverage. 

 

To summarize: 100% coverage is often a shallow, hollow guarantee 

of verification. Often only experience can mobilize the effectiveness 

of stimulus by extruding it into the 3D pattern space. 

 

4.4 Capturing, Describing, Deploying Patterns 
 

It is worthwhile to find a way to capture a verification pattern, in 

order that team members and future projects may gain the benefit of 

that experience. 

 

This kind of capture is best done independently of the test 

environment coding, where any single pattern may get lost in the 

general complexity. Good teams make note of domain-specific 

verification strategies, and code them separately for reuse. The form 

that "separately" takes can be code-based, for example a well-

commented object-oriented approach capturing verification intent, or 

documentation-based. 

 

This author's preference is for lightweight modular documentation 

that remains near the verification team's fingertips while planning 

and coding; a wiki or similar solution. 

 

Our colleagues in the software design and engineering world utilize 

pattern techniques extensively, and the topic often raises 

controversy; namely because it is difficult to achieve agreement on 

the attributes of the taxonomy of such patterns when applied to an 

environment as diverse as software design. 

 

However, that is the nature of the problem: identifying patterns 

which work well and therefore which ought to be captured and used 

again by successive projects. The reason we are equating the need for 

this in conjunction with more complex '3D' well-thought-out 

constrained random stimulus, is that such stimulus does not come 

from a tool for free: it relies on accumulated knowledge. Do your 

successors a favor and capture that knowledge formally for use in 

successive projects. 

 

5. MULTICORE VERIFICATION PATTERNS  
 

Now that we have described an abstraction that may help us to 

stimulate bugs in a concurrent / parallel design, what are the patterns 

that we can usefully apply to the multicore coherency problem? 

 

Some of the patterns below apply to an L1/L2 cache/LLC situation 

with a snooping bus protocol, other apply to traditional multi-

channel shared memory controllers aware of DDR semantics. 

 

The set of patterns included here are only scratching the surface of 

the multicore / coherency / concurrency verification challenges in a 

typical SoC. 

 

5.1 Pattern A: In-N-Out Cache Line Swapout 
 

 
 

Applicability: this pattern applies to a Shareability Domain 

Sandwich cache, e.g. an L2 which is part of a system-wide 

shareability domain, but which has as input a coherent bus which is a 

shareability domain representing a subgroup of cores each with a 

snoopable L1 cache. 

 

Situation: L2 cache cleans out a dirty line (to memory or an adjacent 

coherent cache) at the same time as L1 coherent bus writes back the 

same address. 

 

 
 

Exploration: sweep the timing overlap between the L1 and L2 bus 

activity from the start (where L2 will accept the L1 write to existing 

unique dirty line, beating the L2 bus activity) to last (where L2 has 

completed eviction and accepts the L1 write as a new unshared line).  

 

No need to explore all stimulus offsets in the dead zone in the 

middle, while line is flushing out, maybe a few random ones, but 

focus on the relevant DUT pipeline depth zone at each boundary. 

 

Finally, explore both cases when the outgoing and incoming lines are 

different lines as above, or the same line (by pre-filling other lines). 

 



5.2 Pattern B: Core Power Cycle with Activity 
 

Applicability: a multicore complex with independent power islands 

for each core or core group plus their tightly coupled caches, which 

are on a shared coherent bus. Appropriate power management 

hardware is deployed on boundaries. 

 

 
 

Description: The pattern is a 3D cross of each coherent bus activity, 

orthogonal with each of the significant steps in the power cycle. 

 

 
 

Examples of significant internal state changes to rendezvous are: 

disable cache from accepting new coherency pushes, flush all dirty 

lines, unshare all shared lines, fully disable cache, reduce clock, 

reduce voltage, isolation/retention component protocol, internal 

reset, clock off, voltage off ... voltage on, clock on, out of reset, 

isolation and retention protocol, volts up, clock up, cache enabled) 

 

Exploration: perform coverage of simple offsets between significant 

traffic boundaries and the orthogonal power state changes, plus-or-

minus pipeline depth. 

 

5.3 Pattern C: Cache Refill Boundary Activity 
 

Applicability: all coherent cache subsystems. Different coherency 

schemas (MSI, MOSI, MESI, MOESI, MERSI, MESIF, etc.) will 

have different boundary conditions to explore. 

 

Description: this pattern may appear obvious but is not often 

addressed. During cache operations, cache lines take time to refill, 

during which their state must reflect the true situation. 

 

The boundary activity patterns seek to co-locate stimulus affecting 

for example the same cache line that is in the middle of an existing 

operation. This can be the rendezvous of two simultaneous events, 

e.g. existing line flush with new request from core, or three events: 

add an additional snoop operation to the above. 

 

Exploration: as ever, when we say 'simultaneous', and here is the 

crux of the 'making our stimulus more 3-dimensional' argument, we 

mean simultaneous plus-or-minus the depth of the pipeline in the 

DUT. Sweeping the temporal possibilities in a guided manner is 

going to close coverage well before random X-after-Y stimulus can. 

5.4 Pattern D: DDR Page Table Swapout 
 

Applicability: DDR-aware reordering multi-threaded shared 

memory controller, connected to independent non-coherent cores and 

other sources. This kind of controller maintains a coherency point 

somewhere within, and is typically optimized to do reordering within 

constraints, depending on the capabilities of the memory involved; 

the ultimate goal of the controller is to keep memory bandwidth fully 

utilized. 

 

 
 

Description: Core #0, Core #1 and other sources have built up a 

series of reads occupying the memory controller's buffers as much as 

possible; randomization is steered to open DDR pages across banks 

until the memory controller page table is saturated. We then co-

ordinate stimulus from Core #0 and Core #1 which exercise bank 

page opens/closes simultaneously with key orthogonal events such as 

refresh stalls. 

 

5.5 Pattern E: Same Line Simultaneous Request 
 

Applicability: all coherent cache subsystems or shared memory 

controllers. 

 

Description: All cores access the same address simultaneously. 

Cross this stimulus, as ever, with timing offsets between the cores, 

designed to collide on the coherent bus, and cross it with all possible 

states of the shared data in question: Missed, Clean/Dirty, 

Owned/Unique, Shared, and all possible states of the caches: 

full/need to evict, empty. Also checkpoint flush if supported. 

 

 
 

Summary: Knowing how your coherency fabric will respond 

robustly when all possible masters request access to the same shared 

data is key. 

 

Extruding that situation into different temporal shapes within your 

bus pipelines by juxtaposing those requests makes for interesting 

bug-finding. Save this kind of cache stress pattern for last - once you 

have the timing situation set up you can repeat with lots of random 

variety. 

 

As mentioned already, these few patterns are just examples, and 

barely scratch the surface of the multicore verification space. They 

are representative of ones you may want to define from your own 

personal or team experience, in order to have the guidance available 

project-after-project; in a similar manner to yesterday's legacy 

testcase libraries. 



5.5 Scope and reuse 

 
SoC verification following the traditional single-core approach 

described at the beginning of this paper will suffer from two 

problems: lack of coverage quality, the solution being to look at 3D 

stimulus and apply known patterns in a semi-directed manner, and 

inefficiency / perceived performance problems, the solution being to 

divide and conquer. 

 

Multicore pattern-based verification should be performed at the unit-

level, where the unit in question is the coherency point: either a last-

level-cache with multiple core bus inputs, or an external memory 

controller with multiple bus inputs, buffers, arbitration, and 

request/response fabric, or some other kind of multiple-to-single or 

multiple-to-multiple coherency fabric. 

 

 
 

That is the level at which exhaustive verification should be applied: 

not at subsystem or SoC-level, where it takes too long. 

 

CPU cores should be replaced with accurate, capable bus-functional 

models in any case. Of course, verifying the CPU core itself is 

another matter. Once one coherency domain is verified, it can be 

abstracted in its entirety for the next level up, until SoC-level. 

 

 
 

This area is as contentious as the topic of over-reliance on random 

stimulus. It is perceived to be desirable that verification stimulus or 

components are reused from unit-level to subsystem or system-level 

verification environments. The reality is often that such reuse is 

counterproductive, and can be a contributory cause to the project 

outcome heard so often: difficulty closing coverage. 

 

Achieve maximum coverage quality at the coherency point, and the 

rest of your test environment can rely on that feature to be robust. 

When new use cases are found at SoC level, capture their essence as 

a verification pattern, and add that you your repository, which lives 

with the unit-level test environment.  It's too valuable to leave that 

information out at SoC level, and its presence there perpetuates the 

situation of stimulus being applied at the wrong level to get the most 

out of your simulation resources, and becomes your next 'legacy' 

problem. 

 

The standard test of how applicable / efficient a verification strategy 

is, boils down to the following three questions: 

 

1. What are we verifying? 

2. How can we achieve verification as cheaply as possible? 

3. How will we know when we are done? 

 

Asking these questions of every test environment and test database 

that we create or reuse can help to steer effort and test focus up or 

down the hierarchy of unit-level/cluster-level/chip-level/system-level 

environments. 

 

6. SUMMARY  
 

We have described some specific aspects of multicore design 

requirements which need special treatment in verification and which 

are prone to bugs. We have speculated on the weaknesses of 

traditional black-box stimulus / coverage approaches in trying to 

achieve meaningful coverage quality and timely closure. 

 

We introduced the concept of multi-dimensional stimulus which 

seeks to exploit a defect space within the DUT by injecting a 

temporal pattern on multiple or orthogonal interfaces. 

 

We introduced the concept of Verification Patterns, which are 

domain-specific abstractions of verification intent, based on 

experience, and captured for use by future verification efforts or, in 

time, the 3D stimulus generation and coverage tools of the future. 

 

Finally, we described some examples of Verification Patterns 

applicable to the multicore design domain. There are many more. 
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