
Verification Patterns in the Multicore SoC Domain

Gordon Allan
Mentor Graphics Corp

46871 Bayside Parkway
Fremont, CA 94538 USA

+1(510)354-5578

gordon_allan@mentor.com

ABSTRACT

Multiple parallel CPU or DSP cores are becoming commonplace

in today's complex System-on-chip projects. They are often the

right solution to provide architecture that can meet demanding

performance expectations at an optimal process shrink / power

consumption / price point.

It is however a time of transition, and not without risk: software

practice for managing parallelism is emerging and evolving,

hardware design teams are exploring ad hoc parallel or array

architectures and shared memory approaches in the absence of

established best practice or a marketplace of pre-qualified

subsystem IP to draw upon. Promises of ubiquitous processing

fabrics are on the horizon. In time, convergence and solutions

will come, but in the meantime there is a rich amount of

innovation going on.

And all of that complexity needs verification.

Project teams adding this dimension to their designs today need

to perform due diligence on their verification strategy and

execution plan, to accommodate the newly introduced risks. For

some, it is time to upgrade their strategy to current best practice,

for others, to extend and consolidate their expertise with a view

to guaranteeing robustness.

To assist in this endeavor, we define Verification Patterns, and

show how they can be of benefit to our efforts. The established

rules of the verification game are clear - we ask ourselves these

three questions: "what are we verifying?", "how can we verify

that as cheaply as possible?" and of course "how will we know

when we are done? Simply put, Verification Patterns are

specific ways to apply those rules to a particular problem

domain, based on observations from project experience.

In this paper we identify a candidate subset of such patterns,

some best practice that can be applied to the verification of

multi-core control, concurrency, co-operation, clocking and

coherency, in the strategy for scalable vertical reuse at block-

level, subsystem-level and SoC-level, and in the implementation

of the required verification machinery to achieve timely closure

of these larger-scale SoC problems.

Patterns can be kept in verification managers' and engineers'

toolboxes, built upon over time, providing a useful set of tools,

techniques and organizing strategies to draw upon or adapt

during verification planning, environment design and execution,

in the multi-core domain.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Testing and Debugging – abstract

stimulus, pattern extraction and specification.

General Terms
Algorithms, Documentation, Aspects, Verification.

Keywords
Closure, Coherency, Coverage, Domain, Methodology, Multicore,

Patterns, Graph-based, Stimulus, Constrained, Random.

1. INTRODUCTION

Imagine we are in charge of pre-silicon verification of a family of

SoC products with increasing complexity in every generation. Our

task is to verify a new system-on-chip containing for the first time a

new multiprocessor architecture with a multicore CPU complex and

multiple concurrent datapaths to memory and to the other

communication and execution elements in our chip.

Until now the products in our family have been single processor,

single threaded, but now the performance/power demands are such

that this change in architecture is necessary.

The question is: will our existing verification strategy be sufficient or

do we need to do something different in order to verify this delta in

complexity within schedule and within budget?

This question is the challenge of many verification teams that the

author has been involved with. A common approach is simply to

stretch the existing verification strategy to fit. A common outcome is

that project schedule and quality both suffer and the second project

down the line has to invest in improvements to avoid a repeat

situation.

1.1 Traditional Single-Core Test Strategy

We assert, as many others have done, that any SoC verification

strategy should consist of unit-level verification followed by system-

level verification, with appropriate separation of concerns.[3]

In CPU-based designs the CPU core is normally delivered pre-

verified [an entire topic in its own right which is a matter for a future

paper] and so the unit verification is normally very simple.

Verification strategy consists of the following steps:

 rerun vendor CPU core verification suite

 simple CPU core complex unit test

 peripherals unit tests

 SoC-level connectivity tests

 SoC-level datapath integration test

The SoC-level tests are typically CPU software driven, occasionally

driven by a stubbed-out CPU bus model driving random transactions.

Whether this test strategy is based on directed tests, or random bus

stimulus, we speculate that it is insufficient to verify a multicore

datapath, without some changes in focus.

1.2 Elements of Multicore Architecture

Multicore provides the performance speedup of running Nx

concurrent algorithms on the same shared set of data. There are costs

associated with this model: both upfront costs and hardware

complexity costs.

The algorithms are typically threads dispatched by an operating

system, or a smaller kernel, or arranged at compile time. That part of

the overhead is done upfront in software.

The other cost is the hardware complexity. In order for 2 or more

CPU cores to operate on the same shared set of data, we need

hardware to implement "shared". In a Multicore integration, we

typically have the following architectural elements:

 Clusters of 2 or more processing cores with local caches

o An optional L1 cache layer per core, tightly bound to the

core functionality and usually be considered part of the

core and so does not implement the coherency required to

be a 'shared' data resource.

o An optional L2 cache layer per core, with an optional

snoop block to achieve partial coherency or at least

graceful degradation in performance preserving safety, by

observing traffic from other cores to shared memory.

 A coherency point in cache or external memory

o Either a coherent LLC - last-level unified cache - in

situations where the multicore complex has a single bus

interface, the LLC provides coherent access here and to

related IO channels.

o Or a coherent multi-channel memory controller with

buffering and arbitration (for example DDR) - in situations

with discrete CPU cores where multiple buses are

preserved rather than combined in a cache

o Support for channels to I/O

 Ancillary functions

o A means to switch clocking and power independently on

each CPU core as required, in order to control power

consumption to fit the algorithm load at a given time

o Cross-core state control/response for interrupts/exceptions

o Support for debug, observing and injecting traffic

2. VERIFICATION CHALLENGES

The need for coherency points in a multicore system is always a

challenge for verification closure. The datapaths are usually

optimized, and the features for allowing concurrent access and rules

for data sharing are often layered on top of each other, so the design

grows over time. As with any parallel, pipelined system,

inconsistencies can lurk undetected, needing the right initial state and

the right triggering stimulus. A specific approach is needed. Formal

techniques to measure Linearizability and Sequential Consistency[1]

can be applied in small-scale designs, but simulation can do more.

In designs without cache there is no perceived problem with internal

data coherency - every access arbitrates for the shared external bus to

memory or I/O. But we still have an arbiter to verify, with perhaps

less need to worry about concurrent access rules or snooping. And an

architecture that does not support coherent data sharing will limit the

possibilities of what can be done in software on the multicore. So we

can assume that avoidance is not a valid approach.

2.1 The constrained-random testing paradox

Many teams persevere with random stimulus as a brute force

solution, bombarding each port of a shared bus fabric, last-level

cache or shared memory controller with randomized traffic over

millions or billions of cycles in order to emulate the variance that

may occur in real life on silicon. And yet bugs escape. Why is that,

and how can we do better?

There are a number of reasons why traditional random stimulus is

not good enough to verify parallel systems, and we will explore ways

to make better stimulus by identifying patterns. The main problem

with traditional random stimulus is that it takes too much time to

achieve coverage closure, and it is too hard to identify, specify and

measure what we mean by coverage in this context anyway. So we

are forced to count our perception of quality in terms of how many

random cycles we have run. And then we need to repeat that after

each design delta, so it fast becomes the project bottleneck.

Random, when inadequately constrained, has become part of the

problem, when we thought it was the solution. The advocates of

directed tests suddenly appear to have a valid point - if you put some

effort in upfront to identifying interesting corner cases, you can run

and rerun more productively. Maybe both approaches have their

merits, and can be combined - we can do a better job of guiding

random stimulus to where it is needed. To achieve this we seek ways

to visualize the shape of the design space we are exercising, and infer

the shape of the stimulus required to exercise that design space.

We need another dimension to our stimulus to exercise the design

properly and close a meaningful, measurable subset of coverage.

3. THREE-DIMENSIONAL STIMULUS

What do we mean by "adding a dimension to our stimulus"? We will

take stock of the dimensionality of stimulus and identify how we can

achieve more useful coverage with it.

The dimensionality in question represents a defect-exercising pattern

that is built up within the DUT state space, given that all stimulus is

often applied only sequentially from the outside.

We contend that three different kinds of defect need to be exposed:

single locus defects (vertices in the DUT behavior space which can

be exploited by single items of stimulus), dual locus interactions

(edges), and multiple-locus complex interactions (planes).

Complex, guided stimulus is required in order to explore all the

points, all the edges, and all the planes, that we can identify as being

interesting patterns, without resorting to brute-force cross-coverage.

We will look in more detail at three kinds of corresponding stimulus:

3.1 First dimension: linear variation

The first dimension of interest for stimulus is in the random contents

of one transaction on one interface. With this variance we can

explore and cover interesting types of transaction, corner case values,

random address and data.

There are established techniques in both HLVL languages and in

EDA tools which are used to comprehensively explore this space.

While it is entirely likely that bugs will be exposed directly by

simply varying stimulus content in this way, those bugs are likely to

be isolated, 'point' defects in the DUT, the kind that are easily found.

More subtle bugs will remain undetected, unless exposed by chance

due to brute force and sheer number of vectors.

3.2 Second Dimension: temporal succession

In the second dimension of stimulus we take a limited look at the

'time' axis.

Typically we randomize one transaction based upon the previous

one(s) to build up coverage of 'follow-on' or 'turnaround' conditions,

for example transaction type B after A, A after A, A after B, etc.

The goal of this kind of variation is to flush turnaround or 'built up'

corner cases such as buffers filling up or multiplexers switching

around or pipelines that are out of step with others.

How to improve on the current state of the art? We have available

tools like Mentor's InFact which are good at assisting the verification

expert to crunch the random stimulus space down by representing it

as a 2D graph, into a shorter set of guided random values that will

flush out maximum coverage.

With InFact, it is possible to explore interesting combinations of

randomized values within a transaction, and from one transaction to

the next. This effectively makes our random stimulus work harder,

and achieves a dimension of coverage closure, but is not sufficient to

find the kind of bugs lurking in a multicore design where datapaths

are merged together.

Another goal of temporal succession is to find all the possible states

in known internal state-machines in order to achieve state coverage.

This kind of grey-box testing approach can have good payback.

But yet in a multi-core / multi-threaded, pipelined design we may

still not achieve high quality verification closure without brute force,

because of the space that defects can occupy; across pipeline stages

and across functional sub-blocks. To find these typical bugs we need

to enable multiple streams of stimulus on multiple interfaces,

colliding with functionality in the combining logic: multiplexing,

arbitration, and coherency. Our goal is to create a rendezvous of

stimulus deep within the design, and explore that space.

Both LLC cache architectures and memory controllers with multi-

channel front ends typically have to deal with a subset of these kinds

of multiple channels, multiple pipeline depth combining logic:

arbitration, burst coherency; all kinds of concurrency.

Memory controllers can often be less tightly coupled, but they still

have to deal with buffer allocation corner cases. In all cases, there are

traffic rules, and exceptions to those rules, and exceptions to the

exceptions, and orthogonal or parallel events to consider.

3.3 Third dimension: temporal interaction

We postulate that there is a third dimension to good stimulus, one

which looks across multiple interfaces, but is really concerned with

time. This is the juxtaposition of interesting stimulus on multiple

interfaces, both main traffic streams and also orthogonal events, with

the intent of propagating that juxtaposition in to where the bugs lie.

This 'interest space' is bounded by the set of orthogonal states on one

side, and the pipeline depth on the other side. The techniques here

are often called Micro-timing, because it is key to try different timing

alignments of concurrent events along the depth of the pipeline.

Start with a verification plan item that says 'arrange for X

simultaneous with Y within the design; then rewind back to the

stimulus on the pins required to achieve that, and finally vary those

stimulus plus or minus the pipeline depth of the design. Bugs will

drop out like flies when we explore the concurrency in our design.

As ever, random stimulus control is required. And graphing tools

like InFact could assist that. All three kinds of stimulus above may

be required to fully verify a design without using just brute random

force. When we have all three in place we can consider the stimulus

to be comprehensive, capable of filling the entire defect space in 3D.

4. PATTERN-DRIVEN VERIFICATION

Now that we are thinking about our stimulus having some concrete

geometric 'shape' within the DUT, whether 1D, 2D or 3D, we can

look for patterns of abstract stimulus in that space, and randomize

those. This technique seeks especially to target the 3D zone with

interesting stimulus, rather than wild randomization, because at the

3D level we can get more return from a little upfront guidance.

Coverage of the pattern space should be complete, whereas coverage

of wild randomization, even if crossed and run indefinitely, may

never lead to all interesting combinations of state and stimulus. The

random space is vast, so slicing it across using one of the

dimensional abstractions we have defined is a means to achieve

closure.

4.2 Verification Pattern Sources

So where do the patterns come from? There is currently no

equivalent of the InFact tool to generate or assist generation of 3D

stimulus, although it is only a matter of time before techniques are

formalized and algorithms emerge.

In reality these tools tend only to leverage the power of thought. So

some serious thought is required in order to make use of the third

dimension. Really, such patterns come only from experience - both

experience in verification generally, and also experience in the

design domain of concern.

Having real project experience in Multicore designs, and being able

to benefit from bugs observed, whether captured or escaped, is the

key to creating improved stimulus shapes for successive projects.

4.3 Verification Experience Required

Here's a trivial example: take an addressable control register, what

are the verification patterns we can apply to that?

There are some obvious first order 'spot' patterns we can apply: try

each of the set of possible operations: the read, the write, the reset;

do that in conjunction with randomized values of the data.

Then we have some 2D sequential patterns we can apply to traverse

the edges of the bug space: read followed by write, write followed by

read, the two back-to-back reads, or two back-to-back writes, a reset

followed by a read, a reset followed by a write then a read, and so on.

What about 3D patterns? At a first glance most of us would not think

of any - after all we believe that we have already verified everything

about the register, so our register is 100% covered if we do the

above? This is a fair conclusion, because it covers the limits of our

experience, and we have derived a 'complete' set of patterns to

stimulate and cover for a control register.

But then we encounter an escaped bug that would have been caught

if we had had more experience, or borrowed some patterns. Here are

an additional two pieces of coverage which I class as 3D stimulus:

One that most people fail to spot: cover that a reset causes the

register to switch from its non-reset value to its reset value. Most

folks just perform [reset then read] and then claim that the register

reset VALUE is covered, but omit to test that the RESET is covered.

It may have read back as its reset value by complete accident rather

than by design. For proper coverage you need to test [write then reset

then read].

Many of us in this audience will already know that pattern, but that

just means that some folks experience is greater than others. But now

that you know that pattern, you've added it to your own personal

pattern repository for verification. When we formalize these things,

projects can benefit greatly.

Another register pattern in the 3rd dimension: we achieve 100%

coverage of all interesting values of a control register setting, without

actually checking whether the EFFECT of the control register was as

intended. This is one of the most common failures of coverage-

driven methodology - where we tape out based on meaningless

coverage.

To summarize: 100% coverage is often a shallow, hollow guarantee

of verification. Often only experience can mobilize the effectiveness

of stimulus by extruding it into the 3D pattern space.

4.4 Capturing, Describing, Deploying Patterns

It is worthwhile to find a way to capture a verification pattern, in

order that team members and future projects may gain the benefit of

that experience.

This kind of capture is best done independently of the test

environment coding, where any single pattern may get lost in the

general complexity. Good teams make note of domain-specific

verification strategies, and code them separately for reuse. The form

that "separately" takes can be code-based, for example a well-

commented object-oriented approach capturing verification intent, or

documentation-based.

This author's preference is for lightweight modular documentation

that remains near the verification team's fingertips while planning

and coding; a wiki or similar solution.

Our colleagues in the software design and engineering world utilize

pattern techniques extensively, and the topic often raises

controversy; namely because it is difficult to achieve agreement on

the attributes of the taxonomy of such patterns when applied to an

environment as diverse as software design.

However, that is the nature of the problem: identifying patterns

which work well and therefore which ought to be captured and used

again by successive projects. The reason we are equating the need for

this in conjunction with more complex '3D' well-thought-out

constrained random stimulus, is that such stimulus does not come

from a tool for free: it relies on accumulated knowledge. Do your

successors a favor and capture that knowledge formally for use in

successive projects.

5. MULTICORE VERIFICATION PATTERNS

Now that we have described an abstraction that may help us to

stimulate bugs in a concurrent / parallel design, what are the patterns

that we can usefully apply to the multicore coherency problem?

Some of the patterns below apply to an L1/L2 cache/LLC situation

with a snooping bus protocol, other apply to traditional multi-

channel shared memory controllers aware of DDR semantics.

The set of patterns included here are only scratching the surface of

the multicore / coherency / concurrency verification challenges in a

typical SoC.

5.1 Pattern A: In-N-Out Cache Line Swapout

Applicability: this pattern applies to a Shareability Domain

Sandwich cache, e.g. an L2 which is part of a system-wide

shareability domain, but which has as input a coherent bus which is a

shareability domain representing a subgroup of cores each with a

snoopable L1 cache.

Situation: L2 cache cleans out a dirty line (to memory or an adjacent

coherent cache) at the same time as L1 coherent bus writes back the

same address.

Exploration: sweep the timing overlap between the L1 and L2 bus

activity from the start (where L2 will accept the L1 write to existing

unique dirty line, beating the L2 bus activity) to last (where L2 has

completed eviction and accepts the L1 write as a new unshared line).

No need to explore all stimulus offsets in the dead zone in the

middle, while line is flushing out, maybe a few random ones, but

focus on the relevant DUT pipeline depth zone at each boundary.

Finally, explore both cases when the outgoing and incoming lines are

different lines as above, or the same line (by pre-filling other lines).

5.2 Pattern B: Core Power Cycle with Activity

Applicability: a multicore complex with independent power islands

for each core or core group plus their tightly coupled caches, which

are on a shared coherent bus. Appropriate power management

hardware is deployed on boundaries.

Description: The pattern is a 3D cross of each coherent bus activity,

orthogonal with each of the significant steps in the power cycle.

Examples of significant internal state changes to rendezvous are:

disable cache from accepting new coherency pushes, flush all dirty

lines, unshare all shared lines, fully disable cache, reduce clock,

reduce voltage, isolation/retention component protocol, internal

reset, clock off, voltage off ... voltage on, clock on, out of reset,

isolation and retention protocol, volts up, clock up, cache enabled)

Exploration: perform coverage of simple offsets between significant

traffic boundaries and the orthogonal power state changes, plus-or-

minus pipeline depth.

5.3 Pattern C: Cache Refill Boundary Activity

Applicability: all coherent cache subsystems. Different coherency

schemas (MSI, MOSI, MESI, MOESI, MERSI, MESIF, etc.) will

have different boundary conditions to explore.

Description: this pattern may appear obvious but is not often

addressed. During cache operations, cache lines take time to refill,

during which their state must reflect the true situation.

The boundary activity patterns seek to co-locate stimulus affecting

for example the same cache line that is in the middle of an existing

operation. This can be the rendezvous of two simultaneous events,

e.g. existing line flush with new request from core, or three events:

add an additional snoop operation to the above.

Exploration: as ever, when we say 'simultaneous', and here is the

crux of the 'making our stimulus more 3-dimensional' argument, we

mean simultaneous plus-or-minus the depth of the pipeline in the

DUT. Sweeping the temporal possibilities in a guided manner is

going to close coverage well before random X-after-Y stimulus can.

5.4 Pattern D: DDR Page Table Swapout

Applicability: DDR-aware reordering multi-threaded shared

memory controller, connected to independent non-coherent cores and

other sources. This kind of controller maintains a coherency point

somewhere within, and is typically optimized to do reordering within

constraints, depending on the capabilities of the memory involved;

the ultimate goal of the controller is to keep memory bandwidth fully

utilized.

Description: Core #0, Core #1 and other sources have built up a

series of reads occupying the memory controller's buffers as much as

possible; randomization is steered to open DDR pages across banks

until the memory controller page table is saturated. We then co-

ordinate stimulus from Core #0 and Core #1 which exercise bank

page opens/closes simultaneously with key orthogonal events such as

refresh stalls.

5.5 Pattern E: Same Line Simultaneous Request

Applicability: all coherent cache subsystems or shared memory

controllers.

Description: All cores access the same address simultaneously.

Cross this stimulus, as ever, with timing offsets between the cores,

designed to collide on the coherent bus, and cross it with all possible

states of the shared data in question: Missed, Clean/Dirty,

Owned/Unique, Shared, and all possible states of the caches:

full/need to evict, empty. Also checkpoint flush if supported.

Summary: Knowing how your coherency fabric will respond

robustly when all possible masters request access to the same shared

data is key.

Extruding that situation into different temporal shapes within your

bus pipelines by juxtaposing those requests makes for interesting

bug-finding. Save this kind of cache stress pattern for last - once you

have the timing situation set up you can repeat with lots of random

variety.

As mentioned already, these few patterns are just examples, and

barely scratch the surface of the multicore verification space. They

are representative of ones you may want to define from your own

personal or team experience, in order to have the guidance available

project-after-project; in a similar manner to yesterday's legacy

testcase libraries.

5.5 Scope and reuse

SoC verification following the traditional single-core approach

described at the beginning of this paper will suffer from two

problems: lack of coverage quality, the solution being to look at 3D

stimulus and apply known patterns in a semi-directed manner, and

inefficiency / perceived performance problems, the solution being to

divide and conquer.

Multicore pattern-based verification should be performed at the unit-

level, where the unit in question is the coherency point: either a last-

level-cache with multiple core bus inputs, or an external memory

controller with multiple bus inputs, buffers, arbitration, and

request/response fabric, or some other kind of multiple-to-single or

multiple-to-multiple coherency fabric.

That is the level at which exhaustive verification should be applied:

not at subsystem or SoC-level, where it takes too long.

CPU cores should be replaced with accurate, capable bus-functional

models in any case. Of course, verifying the CPU core itself is

another matter. Once one coherency domain is verified, it can be

abstracted in its entirety for the next level up, until SoC-level.

This area is as contentious as the topic of over-reliance on random

stimulus. It is perceived to be desirable that verification stimulus or

components are reused from unit-level to subsystem or system-level

verification environments. The reality is often that such reuse is

counterproductive, and can be a contributory cause to the project

outcome heard so often: difficulty closing coverage.

Achieve maximum coverage quality at the coherency point, and the

rest of your test environment can rely on that feature to be robust.

When new use cases are found at SoC level, capture their essence as

a verification pattern, and add that you your repository, which lives

with the unit-level test environment. It's too valuable to leave that

information out at SoC level, and its presence there perpetuates the

situation of stimulus being applied at the wrong level to get the most

out of your simulation resources, and becomes your next 'legacy'

problem.

The standard test of how applicable / efficient a verification strategy

is, boils down to the following three questions:

1. What are we verifying?

2. How can we achieve verification as cheaply as possible?

3. How will we know when we are done?

Asking these questions of every test environment and test database

that we create or reuse can help to steer effort and test focus up or

down the hierarchy of unit-level/cluster-level/chip-level/system-level

environments.

6. SUMMARY

We have described some specific aspects of multicore design

requirements which need special treatment in verification and which

are prone to bugs. We have speculated on the weaknesses of

traditional black-box stimulus / coverage approaches in trying to

achieve meaningful coverage quality and timely closure.

We introduced the concept of multi-dimensional stimulus which

seeks to exploit a defect space within the DUT by injecting a

temporal pattern on multiple or orthogonal interfaces.

We introduced the concept of Verification Patterns, which are

domain-specific abstractions of verification intent, based on

experience, and captured for use by future verification efforts or, in

time, the 3D stimulus generation and coverage tools of the future.

Finally, we described some examples of Verification Patterns

applicable to the multicore design domain. There are many more.

7. ACKNOWLEDGMENTS

Thanks are due to my Verification Technology colleagues at Mentor

Graphics for their contributed experiences.

8. REFERENCES & BIBLIOGRAPHY
[1] Shacham, O., Wachs, M., Solomatnikov, A., Firoozshahian, A.,
Richardson, S., and Horowitz, M. 2008. Verification of Chip Multiprocessor

Memory Systems Using A Relaxed Scoreboard. The 41st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-41). Stanford
University

[2] Wagner, I., Bertacco, V., 2008. MCjammer: Adaptive Verification for
Multi-core Designs. 978-3-9810801-3-1/DATE08 © 2008 EDAA

[3] Janick Bergeron. Writing Testbenches: Functional Verification of HDL

Models. Kluwer Academic Publishers, 2nd edition, 2003.
