
Page | 1

Verification of Clock Domain Crossing Jitter

and Metastability Tolerance using Emulation

Ashish Hari
Mentor Graphics Corp.

ashish_hari@mentor.com

 Suresh Krishnamurthy
Mentor Graphics Corp.
k_suresh@mentor.com

Amit Jain
Mentor Graphics Corp.
amit_jain@mentor.com

Yogesh Badaya
Mentor Graphics Corp.

yogesh_badaya@mentor.com

ABSTRACT

Advances in technology are leading to the creation of

complex SoCs. Design sizes are inching towards multi-

billion gates and verification of these designs is already a

big challenge. To add to the complexities of verification,

these designs use power management strategies to reduce

power consumption, plus they incorporate multiple IO

interfaces, cores and peripherals. As a result, these designs

have many asynchronous clocks.

Validation of designs with asynchronous clocks requires

clock domain crossing (CDC) verification. CDC

verification tools perform structural analysis of the design,

which identifies the boundaries of the clock domain

crossing signals. Designers add synchronizers at these

boundaries whenever necessary. Synchronizers mitigate the

impact of metastability on the design, but they do not

guarantee that data output from the synchronizers are

always correct.

In particular, CDC jitter occurs when an unpredictable

delay is introduced at a synchronizer output and the

receiving flop goes metastable. As a result, the flop’s

output might settle to a wrong value for a clock cycle. The

design logic must tolerate unpredictable delays caused by

CDC jitter. But, verifying design functionality in the

presence of CDC jitter is tricky. Typically, simulators and

formal verification engines do not model metastability

completely and accurately.

Certain simulation and formal verification modeling

techniques have been used to introduce metastability when

checking the design for functional correctness. While they

do a reasonable job modeling metastability and assisting

verification, they slow simulation and formal verification

significantly. So, they cannot be used with large designs.

In this paper, we propose a methodology to verify that a

design tolerates CDC jitter. The methodology is based on

emulation, so our metastability modeling does not

compromise accuracy, performance or the debugging

features of the verification tools.

INTRODUCTION

A clock domain crossing (CDC) occurs when a signal

generated in one clock domain is sampled in another

asynchronous clock domain. Here, the relationship between

the transmit clock (the clock on which a value is generated)

and the receive clock (the clock on which that value is

sampled) is asynchronous. A receive register might

experience setup and hold timing violations, in which case,

the register could go metastable. To avoid propagating

metastable values to downstream logic, such crossings

should include CDC synchronizers.

Synchronizers reduce the probability of metastable values

flowing into the design. However, having a synchronizer in

a crossing does not guarantee that the synchronizer’s output

has a predictable value during any cycle that its receive

register goes metastable. The synchronizer’s output value is

delayed by one cycle, is advanced by one cycle or is

correct. Functional verification of a design must verify that

the design behaves correctly in the presence of

unpredictable synchronizer output values.

Figure 1 shows how simulation behavior can differ from

silicon behavior. Simulation behavior is predictable,

whereas silicon behavior can be unpredictable when

setup/hold timing constraints are not satisfied. Verifying

design tolerance in the presence of this unpredictability is

crucial before moving to silicon.

In the following sections we first present the existing

simulation and formal methods of verifying design

tolerance of metastability effects. We show the remaining

challenges of using these methods. Then, we present our

metastability model and emulation-based verification

methodology that overcomes the limitations of the existing

methods.

HIGH-LEVEL REQUIREMENTS FOR

VERIFYING METASTABILITY TOLERANCE

Conventional simulation does not model metastability

effects. To verify a design’s tolerance of metastability

affects, a verification methodology:

 Must have a logic model that intelligently accounts for

metastability effects at any register.

 Must use these models at all appropriate points in the

design.

 Must include a debug capability to help debug

functional failures in the presence of many injections

from the metastability models.

Page | 2

Figure 1: Simulation behavior can differ from silicon

behavior when setup/hold violations occur

Requirements for the Model

To model metastability in simulation, a metastability

injection model must do the following.

 Introduce random delays

As shown in Figure 1, when a register is metastable,

its output is delayed by one cycle, is advanced by one

cycle or is correct. The metastability injection model

must be able to introduce this behavior randomly when

sampling an asynchronously-clocked register.

 Model metastability independently

In silicon, metastability might occur at any register that

samples values from an asynchronous clock domain.

Furthermore, the metastable behavior of a register is

independent of other registers’ behaviors. For example,

if the same value is sampled at two different registers,

the registers’ metastability effects must be modeled

independently. In particular, the metastability injection

model must independently introduce metastability at

each bit of a clock domain crossing’s receive register.

 Model metastability accurately

In silicon, metastability occurs only if: 1) the data

value changes, 2) the data value is sampled and 3) the

setup/hold time constraints are violated. The

metastability injection model must introduce

metastability only when these events happen. A model

that randomly injects metastability effects at any time

point does not accurately model metastability effects in

silicon.

 Model metastability completely

A register that samples values from another clock

domain can experience metastability whether or not the

crossing includes a synchronizer and regardless of the

synchronizer type. To model metastability completely,

a metastability injection model must cover these

situations.

Requirements for the Methodology

In addition to the metastability injection model, a modeling

methodology is required to apply these models to the

appropriate points in the design. The model should be

convenient and easy-to-use, for example:

 The model can be integrated seamlessly into the design

under simulation. Design instrumentation is minimal

and does not modify design files.

 The model is instrumented at all clock domain

crossings. Metastability can be injected independently

at every CDC path.

 Each instance of the model can be turned on and off

independently—to ensure flexibility.

Requirements for the Debugging Environment

Debugging functional errors resulting from metastability

injection is difficult. So, complex metastability models not

only inject metastability, but they also collect debug

information. For example, debug details might include

information about the metastability injection cycles.

Additional controls such as adjusting the metastability

window and tuning the model parameters reduce false

failures and assist in effective debugging.

Page | 3

CURRENT MODELS AND METHODOLOGY

In this section, we present some common metastability

injection models and methods.

Clock Jitter Model

A clock jitter model uses jitter in clocks to inject random

delay in the design. The model changes the locations of

clock edges randomly—and therefore causes values to be

sampled as advanced, delayed or normal values—which

means the model satisfies the random delay requirement for

a metastability injection model. Two types of clock jitter

models are:

1. Clock jitter at primary clocks

Random jitter can be introduced at the primary clocks

(Figure 2a). Such a model introduces minor changes

and has little impact on the design. But, this approach

does not model metastability independently at each

receive register.

2. Clock jitter at synchronizer clocks

A more accurate approach models metastability

independently by introducing jitter on each receiving

register clock (Figure 2b). For crossings with

synchronizers, jitter is applied to clocks internal to the

synchronizers. Such a model is not easy to implement

for unsynchronized crossings and cases where the

synchronizer is not a predefined custom cell (i.e., a

custom synchronizer).

Figure 2a: Clock jitter at primary clocks

Figure 2b: Clock jitter at a synchronizer clock

3-Flop Model

The 3-flop model replaces 2-flop synchronizers in the

design by 3-flop cells that randomly generate advanced,

delayed or normal output values (Figure 3a). This model

can be used for specific 2-flop synchronizers, but typically

not for all crossings where a model is required.

A critical issue is that this 3-flop model can generate an

output sequence that is impossible in silicon: values might

get skewed by 2 clock cycles. Some methodologies modify

the 3-flop model to only delay values by 1 cycle (Figure

3b). However, this approach cannot model the effects of

advancing cycles (which can happen for hold violations).

Figure 3a: 3-flop model for setup/hold violations

Figure 3b: 3-flop model for setup violations only

Delayed 2-Register Model

Another approach delays the input of a 2-flop synchronizer

randomly (Figure 4). As for the 3-flop model, this model

cannot replicate advance-cycle effects and the model only

works for clock domain crossings synchronized by 2-flop

synchronization.

Figure 4: Delayed 2-register CDC jitter model

Accurate Metastability Model

The accurate metastability model shown in Figure 5 is the

model we use throughout the rest of this paper. This model

handles metastability effects in the most accurate way. It

satisfies our requirements for a good metastability model.

In particular, the accurate metastability model:

 Decides when to inject metastability

The model injects metastability only if: 1) transmitting

and receiving clocks are aligned enough to violate

setup/hold time constraints; 2) the sampled data are

Page | 4

changing; and 3) the register is actually sampling the

data.

 Decides what value to inject

The model randomly injects values with and without a

delay. Since values are injected at the outputs of the

receive registers, the model produces both advance and

delay effects.

 Satisfies our model requirements

The model works directly on receive registers, so it can

be used for unsynchronized crossings as well as

synchronized crossings. The synchronized crossings

can be synchronized by any method without impacting

the model’s functionality. The model can be applied at

each point independently of the other injection points.

Figure 5: Accurate metastability model

METHODOLOGY IN A TRADITIONAL

FRAMEWORK

The models and methods described in the previous section

are simulation based. That is, a design is modified to

appropriately use the models and then the modified design

is verified with traditional simulation.

In this section, we present our methodology within this

traditional framework. However, our flow uses our version

of the accurate metastability model, which is formal

friendly (i.e. the model is compatible with formal methods).

For this paper, we present a simulation-based flow. But a

parallel, formal-based verification flow works as well.

Verification Flow

Our verification flow has the following steps based on the

flow shown in Figure 6:

1. Analyze the design’s CDC structure

Structural CDC analysis identifies all CDC signals in

the design. For each CDC signal, structural CDC

analysis identifies whether the crossing has a good, a

bad or a missing synchronizer.

Figure 6: Simulation-based CDC-jitter verification flow

2. Instrument the design with instances of the

metastability models

Use the accurate metastability model described

previously. Using the results of structural CDC

analysis, identify all points where metastability can

occur. Connect an instance of the metastability model

to the logic surrounding the receive register.

This design instrumentation uses SystemVerilog bind

constructs generated in separate files that can be

simulated with the original design files (without the

need for altering the original design). A Verilog force

statement injects value based on the metastability

algorithm.

3. Simulate the design with the model instances

Run the standard design verification flow with the files

created to instrument the design.

Each instance of our model can be independently

enabled and disabled, so each injection point is

separately controlled. In particular, metastability

injection can be controlled across the entire design.

4. Debug and resolve any functional issues

If functional errors occur because of metastability

injections, a robust debug environment is crucial for

identifying their associated causes. Debugging such

issues is difficult because the source of a problem

could propagate through many metastability injection

points before being detected as a test error.

Discovering which injection point or which multiple

injection points caused the failure can be quite tricky.

Since the models are defined in standard

SystemVerilog, a designer can use any preferred debug

tool.

Page | 5

Our model collects information to help designers debug

issues resulting from metastability injection, including the

following:

 Details on the points where metastability caused an

injection of delay or advance.

 Details on setup/hold violations and information about

data changing or being sampled during this period.

Our model also controls metastability injection in the

following ways:

 Metastability injection can be independently enabled

and disabled to ease debugging.

 Metastability windows can be controlled: the

setup/hold time conditions can be specified separately

for each model instance.

Limitations of the Flow

The above verification flow works well for simulation (and

for formal verification). But, CDC verification must be run

on the whole design. So, the methodology has limitations

for large designs:

 Introducing metastability models in a design degrades

standard simulation performance by 3X to 4X. This is

okay for smaller designs—but for larger and larger

designs, this slow-down makes the traditional flow

impractical.

 Because of simulation performance and capacity

limitations, simulation with metastability injection of

large designs can be done only for small testbenches.

Or, only a small number of cycles can be verified,

 Formal methods work well only for small, block-level

designs—not for the typical system-level designs.

PROPOSED VERIFICATION FLOW BASED

ON EMULATION

Emulation-based verification is typically used for very

large designs because it provides a significant run-time

performance gain—often 1000X—over simulation-based

flows. In particular, using emulation might overcome the

limitations of our simulation based flow. Here, we propose

modifications to our simulation-based flow to support

metastability tolerance verification on an emulator.

Emulation-friendly Metastability Injection

Model

For this work, we chose the accurate metastability model

and targeted virtual emulation environments based on the

SCE-MI 2.0 standard, which is supported by all emulation

vendors.

When to inject metastability

SCE-MI 2.0 compliant emulation platforms provide full

simulation interoperability. They support simulation style

clock generation on the emulator—including accurately

tracking model simulation time inside the emulator. In

particular, these emulators provide clock proximity

detection based on simulation time.

Clock proximity detection is a key feature of the accurate

metastability model. It first measures the distance in model

time between transmit clock arrival and receive clock

arrival. It then compares these times with the appropriate

setup/hold time parameters and determines whether or not

the edges are too close. Clock proximity detection does

require arithmetic logic involving large values—but this

logic is shared by CDC points that have a common

transmit-receive clock pair. So, the impact of adding this

logic is minimized.

Other checks for determining when to inject metastability

are whether or not data are changing and are sampled. We

borrowed these straightforward checks from the simulation

model.

Randomizing metastability values

When the model encounters a metastability point, it must

randomly decide whether to let the data pass as is, or to

invert it. This decision is random in multiple dimensions:

 For each transmit-receive clock pair, the associated

CDC points should show random (i.e., un-correlated)

metastability decisions.

 For a specific receive register, random metastability

behavior should be observed over time as well as over

different types of metastability violations (such as

setup violations, hold violations, violations when data

are rising and violations when data falling).

Simulation uses a $random call to make this decision. In

emulation, $random can be implemented as a stream of

random values coming in from the workstation. But, this

implementation has a high cost in terms of the logic needed

to distribute the random values to different CDC points,

and in the extra runtime needed to transfer the random

values. Although these problems are not insurmountable,

the present work has chosen to use an LFSR-based random

sequence generator, which solves the problem within the

emulator.

The generator uses simple LFSR logic to model an

appropriate number of bits that are shared. Each CDC point

sources a specific bit in the sequence. The bit distribution is

static and is chosen randomly. The number of bits in the

LFSR sequence is increased based on the maximum

number of CDC points within a transmit-receive boundary.

Different transmit-receive boundaries cause metastability at

different points in time, so they can share LFSR bits.

Page | 6

How to inject metastability

Most emulation environments support force/release

mechanisms that alter design registers to put the design into

a state that is interesting from a verification standpoint. The

present work uses this mechanism to modify receive

registers where necessary to inject values.

Modified Verification Flow

The CDC analysis and metastability model insertion

process is largely the same for both simulation and

emulation. The present work uses these same tools.

However, existing tools in this area were designed with

simulation environments in mind. So, such tools most

likely must be re-architected to scale up to handle very

large emulation-sized designs.

That said, the basic principles behind how metastability

insertion works is not different. The design is fed to the

native emulation compile steps. The flow uses our

emulation-friendly metastability injection model and

beyond that point, all use-model steps—how to run the

emulator, how to debug and so on—follow those provided

by the native emulation environment (Figure 7).

Figure 7: Emulation-based verification flow

Debug Methodology

Functional problems caused by CDC metastability injection

exhibit themselves in a manner no different from other

functional bugs in the RTL. All of the debugging

techniques of the native emulation platform are available.

Today’s emulators support sophisticated debug

methodologies. Almost all of the powerful simulation-like

debug features are available with the virtual emulation

environments (especially the SCE-MI 2.0 compliant

emulators). These features include: model simulation time

recognition for interactive run control and waveform

display, full trace of waveforms, time- or space-selective

trace of waveforms, waveform viewers, source code

editors, path browsers and schematics browsers.

Emulation has its own traditional debug techniques which

are useful for large designs. For example, emulators can

run large numbers of cycles under trigger-based debug,

which allows the on-the-fly creation of trigger state

machines to look for complex sequences of events in the

design execution.

Modern emulation environments also support some of the

newer verification paradigms, such as assertion-based

verification. Here, functional assertion points are compiled

into the emulator as part of the model. Violations are

reported immediately—just as with simulation. These

assertions can be collected in a log file for post-process

analysis or emulation can stop at the violation. Waveforms

of assertion failures can be captured and debugged.

Assertion-based capabilities are especially relevant to the

current work. Problems introduced by CDC injections can

show up a long time after injection and in a different part of

the design. Assertions used effectively can cause violations

to manifest sooner and much closer to the point of the CDC

injection, which makes debug easier and more productive.

The emulation solution supports the enabling and disabling

of individual metastability injection points. In addition,

virtual emulation is repeatable and is much faster than

simulation methods. These features support an effective

elimination strategy that narrows analysis down to specific

culprit CDC effects. Once a problem is detected, CDC

injection points are disabled based on certain classifications

(such as injection points that are not in specified design

scopes and injection points that are outside of specific

transmit-receive clock pairs). Then, emulation tests are

repeated to see whether or not the problem persists. This

strategy narrows the possible candidate CDC points that

caused the problem, which reduces the problem’s degrees

of freedom during debug.

Summary of Benefits

 Emulation handles very large design capacities (on the

order of a billion gates). It is more effective for CDC

verification of complete chips.

 Emulation is much faster than simulation. It can run

much longer simulations, which increases the

possibility of exposing more CDC problems.

 Emulation can stimulate the design with realistic

stimulus traffic, so CDC verification can model

relevant activity.

 Emulation can connect to more realistic environments

(such as static in-circuit targets). Some emulators also

can capture real driver traffic for some standard

interfaces (Ethernet, PCI, and so on) and feed it to

models on the emulator.

Page | 7

 Emulation continues to extend itself to support

advanced verification methodologies, including

assertion-based coverage, SystemVerilog UVM/OVM

and SystemC TLM. These new methodologies support

CDC verification in a variety of emulation

environments.

BENCHMARK DATA AND RESULTS

Experiments are done on two designs with the following

characteristics.

 Design 1 Design 2

Crossing 1100 6071

Design Flops 17603 66724

Number of Clocks 8 38

Following are the results for the designs. Both designs

exhibit about 1000X performance improvement when

compared with simulation.

 Design 1 Design 2

Performance Gain

(compared against s/w simulation)

1050X 950X

Area penalty

(compared against Emulation area

requirement without CDC

metastability Instrumentation)

9% 12%

Emulation has a proven track record for maintaining the

performance levels even as design sizes grow, whereas

simulation performance suffers significantly from design

size growth.

We ran these designs as a proof-of-concept for our

methodology. They do indeed illustrate key advantages of

our methodology. CDC verification can be performed on

emulation and with significant performance gains! The

results also show that CDC metastability verification has an

adverse impact on simulation performance—even for small

designs. For this reason, we observed very good

performance gains even on our small experimental designs.

LIMITATIONS

Emulation-based methodology can work only with

emulation-friendly verification environments. Those

environments that use behavioral models for testbenches or

use non-RTL models inside the DUT are not suitable for

emulation.

Our solution does not work if the emulation environment

involves traditional dynamic in-circuit targets.

Emulation also does not support some elaborate statistical

information—such as which CDC points were hit and

which types of violations occurred—that is supported by

our simulation model.

CONCLUSION AND FUTURE WORK

Ever-increasing design sizes and shrinking verification

schedules are making emulation technology more popular.

Emulation technologies are increasingly easier to use and

they provide the capability to enter the verification flow

earlier in the development cycle. CDC verification using

emulation is a viable option that drastically reduces

verification time and leads to comprehensive CDC

robustness.

Emulation allows CDC verification to be executed in a

context closer to real systems. Emulation-based CDC

verification can cover the entire SoC; it can apply realistic

stimulus; and it can run for a sufficiently long time. At the

same time, it provides the ability to effectively debug

functional errors.

Future work in this area is to evolve our emulation-based

CDC verification paradigm as emulation technologies and

methodologies themselves evolve. We want to merge the

CDC analysis and metastability insertion phases with the

emulation clock analysis phase. This would make the

modeling methodology naturally scalable to handle design

sizes encountered by emulation methodologies. Plus, more

work is needed to reduce the impact of CDC

instrumentation logic on capacity.

REFERENCES

[1] Tai Ly, Neil Hand, Chris Ka-Kei Kwok, Formally verifying

clock domain crossing jitter using assertion-based

verification.

[2] Chris Kwok, et al, “Using Assertion-Based Verification to

Verify Clock Domain Crossing Signals”, DVCon, February

2003

[3] Mark Litterick, “Pragmatic Simulation-Based Verification of

Clock Domain Crossing and Jitter using System Verilog

Assertions”, DVCon, 2006

[4] Alex Genusov, et al, “Verification of Skew and Jitter

Tolerance and Compensation in High-Speed Interfaces”,

DVCon, February 2003

[5] A. Saha, K. Suresh, A. Jain, V. Kulshrestha, S. Gupta, “An

Acceleratable OVM Methodology Based on SCE-MI 2,”

DVCon, 2008

[6] H. van der Schoot, J. Bergeron, “Transaction-Level

Functional Coverage in SystemVerilog,” DVCon, 2006

[7] Hans Van der Schoot, et al, “Off To The Races With Your

Accelerated SystemVerilog Testbench” , DVCon, 2011

