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Abstract - This paper presents the verification of an image processing mixed-signal ASIC containing a 

custom CPU.  The work was performed at EM Microelectronics-US, Inc. 
 

I. INTRODUCTION 

This paper presents the verification of an image processing mixed-signal ASIC containing a custom CPU.  This 

ASIC is a major enhancement to the ASIC reported in [1]. The work was performed at EM Microelectronics-US, 

Inc. 

The ASICs that EM Microelectronics-US develops are typically very lower power with standby current in the 

uA range and operating current in the 100’s of uA range. Low power modes are used extensively. Their ASICs are 

optimized for area, hence, memory is to be kept to a minimum. The ASICs are typically dominated by analog, and 

the design teams are small, 1 or 2 designers and a similar number of verification engineers. Their design cycles are 

short, concept to tapeout in less than 12 months. Their ASICs must sell in a market that is typified by low cost and 

high volume. 

For this project Mr. Becvar, a co-author, was the architect, digital designer, and firmware engineer. Mr. Buescher 

was the analog designer. Dr. Tumbush was contracted to perform the mixed signal chip-level simulations and 

develop analog models in SystemVerilog using real number modeling. Mr. Jenkins, also a co-author, was contracted 

to integrate Dr. Tumbush’s models and perform the digital top-level verification. This paper will focus on the mixed 

signal chip-level and digital top-level verification, while [1] focused on the custom CPU of the previous generation. 

Three major improvements were made to the previous verification environment: migration to a UVM-based 

testbench, real number modeling of analog blocks, and rigorous chip-level AMS verification.  These improvements 

will be expanded upon in the following sections along with results.  In this paper the term top-level digital testbench 

will refer to the testbench testing the digital logic. This testbench will use SystemVerilog models of the analog 

blocks. The term chip-level testbench will refer to the testbench testing the entire ASIC including digital logic, 

analog, memories, and pads.  

 

II. MIGRATION TO A UVM-BASED TESTBENCH 

It was decided to migrate the digital top-level VHDL testbench used in [1] to a modern UVM-based testbench. 

There were many reasons for this decision.  First and foremost, for re-use and to simplify the verification of follow-

on devices.  UVM provides a standardized methodology with industry wide support – both from a tool or IP 

availability and also resource accessibility.  Working within a standardized methodology ensures a consistent 

approach, an approach that supports (1) re-use: (a) with-in the current project by the extension of classes, shared 

methods, code templates, etc. (b) simpler extension to the next project or (c) with the potential use of external 

vendor IP; (2) built-in constructs for constrained randomization; and (3) allows for the partitioning of work.  

Alternative to migration to a UVM-based digital top-level testbench was modification and reuse of a VHDL-

based testbench used in previous generation of devices. In many cases this is a very attractive short-term approach 

minimizing verification effort. In our case the underlying Device Under Verification (DUV) design changed in so 

many aspects that the level of testbench reuse was severely limited. In addition, the original verification team was 

not available and it was expected that the new verification team would spend significant time learning a non-

standardized VHDL testbench before any real work could be done. Consequently, it was estimated that the effort 

associated with modifying the VHDL testbench was comparable with migration to a UVM-based testbench. 
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The new digital top-level testbench is depicted in Figure 1. Using randomization and functional coverage the 

number of tests was reduced from 165 to less than 50.  The DUV is the yellow block.  The real number models of 

the analog blocks are in dark purple. The Image Processing Logic (IPL) contains the custom CPU which was 

verified using a block-level UVM testbench described in [1]. The CPU itself was enhanced by new instructions 

which were easily integrated into the existing UVM-based ISA model. Integration of the new CPU was therefore a 

relatively straightforward task. 
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Figure 1: Digital Top-Level Testbench 

 

A. Consideration and Pitfalls 

Although the previous generation VHDL based test-bench will not be used for the top-level digital testbench it 

can still be of use. For example, it can be very useful to re-run simulations on the previous generation design to 

understand functionality.  For this project the previous generation VHDL based test-bench was migrated to the new 

design and used to create production test patterns.   

Management needs to be aware that the new UVM-based testbench will likely take longer than migrating the 

VHDL based testbench.  The same education on the benefits of UVM and randomization needs to be provided as 

describe in [1].  In addition, the time to find the first bug will also likely be longer as shown in Figure 2. Directed 

testing finds the first bugs quicker because less time is spent on testbench infrastructure to support randomization. 

But once the testbench infrastructure is in place verification closure occurs sooner than with directed testing. 
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Figure 2: Directed vs random testing 

 

 

III. REAL NUMBER MODELING OF ANALOG BLOCKS 

This ASIC, being mixed-signal, required models of some of the analog blocks for the top-level digital testbench. 

The accuracy of the model needs to be appropriate. A very detailed model takes a long time to develop and verify 

and possibly to simulate.  Too little detail may miss bugs.  For example, should the model of an oscillator simply 

model the oscillator frequency?  Which frequency should be modeled, slow, fast, or somewhere in the middle? 

Should the oscillator trim be modeled?  What about the enable? In [1] VHDL models of the analog were used. These 

models were not verified against the “golden” analog schematics so their accuracy was questionable.  Now, AMS 

simulations of the real-number model against the schematic are performed to ensure correctness as depicted in 

Figure 3. 
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Figure 3: Verify Real-Number Models Against Analog Schematic 

 

The development of the analog models (schematic and RN) was done using a “4 eyes approach”.  That is, the 

actual analog schematic circuits were designed completely independent from the RN models by different designers.  

This technique allowed for a unique ability to cross-check the schematic and the RN model design simultaneously 

and reduced the chance of misunderstanding the block specifications. 

Since both the schematic and the analog models were designed from the device specification with little 

interaction between the individual designers the probability of catching design “bugs” was greatly improved.  Each 

designer (the schematic and the RN model) had to interpret the specification correctly and create a “bug free” design 

in order for the final analog output streams to match.  Thus any discrepancies in the output were due to one of four 

possibilities: 1) the schematic designer misinterpreted the spec, 2) the schematic designer made a design 

functionality error, 3) the RN model designer misinterpreted the spec, or 4) the RN model designer made a mistake 

in the RN model functionality. 

This approach for verification definitely provided better analog fault coverage for the entire analog processing 

chain and improved test time efficiency.  It allowed more structured test cases in addition to a better systematic 

method to evaluate the final analog output stream. The authors were able to directly compare the results between the 

analog schematics and the analog models for a few reference test cases to ensure that both paths produced the 

correct output.  Once this step was completed the authors could rely solely on the models to complete the other test 

vectors in a significantly shorter timeframe. 

 

A. Design of Pixel Processing Real Number Model  
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The Pixel Processing real number (RN) Model, shown in Figure 1, takes as input a 2-dimensional (2-D) array of 

pixel intensity values represented as real, processes them, and outputs a single 1-dimensional (1-D) array of 

processed values represented as real. A code snippet of the module declaration is below.  Details have been obscured 

due to the proprietary nature of this ASIC. 

 

    
 

B. Verification of Pixel Processing Real Number Model  

The Pixel Processing RN Model was verified against its analog schematic equivalent using the high-level 

methodology shown in Figure 3.  A snippet of the extracted analog netlist is below. As can be seen from the snippet 

below, the schematic representation requires bias currents and voltages and pix_bus is no longer 2-D but is 

NUM_ROWS 1-D arrays. 

 
 

To provide the bias currents and voltages the schematic was wrapped with a Verilog-AMS wrapper.  

 

  
 

 

The testbench splits the 2-D arrays of reals into NUM_ROWS 1-D arrays of reals for input to the Verilog-AMS 

wrapper.  This was done in the testbench instead of the Verilog-AMS wrapper because a 2-D array of wreal is not 

allowed [4]. Also, note that the input port of the wrapper is of type wreal as opposed to real due to the fact that ports 

cannot be of type real in a Verilog-AMS description. A detailed block diagram of the final block level testbench is 

in Figure 4. 

subckt pixel_processing_ana 
   pix_bus0\<0\> pix_bus0\<1\> …… 
   Vdd Vss Ibias 
   // Other inputs to control pixel processing 
   pix_out\<0\> pix_out\<1\> ……. 

`include "constants.vams" 
`include "disciplines.vams" 
   
  module pixel_processing_vams( input wreal  pix_bus0 [NUM_COLUMNS-1:0], 
                                                            // pix_bus 1 to NUM_ROWS-1 
                                                            // Other inputs to control pixel processing 
                                                            output wreal pix_out [NUM_ROWS-1:0]); 
 
   electrical Vdd, Vss,  Ibias; 
   ground Vss; 
 
   analog begin 
      V(Vdd) <+ 2.0;       // Set Vdd=2.0V 
      I(Ibias) <+ 0.001;   // Set Ibias=1mA 
   end 
 
pixel_processing_ana pixel_processing_ana(.pix_bus0(pix_bus0), . pix_bus1(pix_bus1), …. 
                                                                                .Vdd(Vdd), .Vss(Vss), .Ibias(Ibias), 
                                                                                // Other connections to control pixel processing 
                                                                                .pix_out(pix_out)); 
endmodule 

module pixel_processing( 
   input real pix_bus [NUM_ROWS-1:0] [NUM_COLUMNS-1:0], 
   // Other inputs to control pixel processing 
   output real pix_out [NUM_ROWS-1:0] 
); 



5 

 

The Stimulus Generator shown in Figure 4 is simply a NUM_ROWS by NUM_COLUMNS array of pixel values 

and some control signals.  The pixel values are real and can be directed to test a particular function or random. 

The SystemVerilog code for the checker is shown below Figure 4.  The function check_pix_out takes a pix_out 

array from the analog schematic and the real number model. These two real arrays are passed as reference (as 

opposed to an input) to not make a copy of the real array. This is more memory efficient.  The function 

close_enough_real, not shown, compares the two real values.  Since the real values rarely match exactly a tolerance 

is also provided. The tolerance can be in terms of a percentage or in absolute terms. In this case the tolerance is 

specified to be 1mV. If the two reals are not within the tolerance an error is displayed and an error counter is 

incremented. In the case of the two reals being within tolerance a correct counter is incremented.  It is important to 

count the number of times a checker was correct, as well as the number of times a checker was incorrect, for the test 

to not pass vacuously. At the end of the test the expected value of error and correct is checked. 
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Figure 4: Testbench for Verifying Pixel Processing real number model 

 

 
 

 

C. Consideration and Pitfalls 

During verification of the pixel processing model an issue was found with the accuracy of signals pix_out from the 

pixel_processing_ana spice netlist.  The analog value in pixel_processing_ana and pixel_processing_vams would be 

as expected but when passed through the Verilog-AMS wrapper to the testbench the pix_out values did not 

accurately represent the voltages.  The voltages were often slightly off (10’s of mV).  An example is seen in Figure 

5.  The analog value of pix_out<0> is ~108mV both in the spice netlist and the Verilog-AMS wrapper. But when 

passed to the testbench as pix_out[0] the value is ~102mV.  The discrepancy of 6mV is not acceptable. 

 

function automatic void check_pix_out(ref real pix_out_sv [NUM_ROWS-1:0],  

                                                                ref real pix_out_ana [NUM_ROWS-1:0]); 

   for (int row=0; row<NUM_ROWS; row++) begin 

      if (close_enough_real(.real1(pix_out_sv[row], .real2(pix_out_ana[row], .tolerance(0.001)) 

         correct++; 

      else begin 

         $display("ERROR: %0t: For pix_out[%0d] SV=%1.3f and ANA=%1.3f", $time, row, pix_out_sv[row],   

                                                                                                                                                    pix_out_ana[row]); 

              error++; 

      end // if 

   end    // for 

endfunction 
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Figure 5: pix_out[0] error with default connrules 

 

The solution was to override the vdelta parameter in the electrical to real (E2R) connect rule. By default the vdelta 

parameter is the supply (2.0V) divided by 64 which allows a resolution of only 31mV.  The syntax to override this 

parameter for the Cadence AMS simulator is below.  These directives would be placed in a simulation control file. 

As can be seen in Figure 6 the value of pix_out[0] is the same from analog schematic to SystemVerilog testbench.   

 

 
 

 

   

 
Figure 6: pix_out[0] with vdelta=0.001 in connrules 

 

IV. RIGOROUS CHIP-LEVEL AMS VERIFICATION 

Previous Chip-Level AMS verification in [1] was ad-hoc, unable to be run as regressions, and not self-checking.  

The testbench shown in Figure 7 eliminates these 3 deficiencies by adding self-checking transactors on the spi and 

test bus.  All chip-level AMS tests are self-checking and run as part of regressions. 

 

amsd { 

     ie vsup=2.0 connrules=E2R vdelta=0.001 

     config cell=pixel_processing_ana use=spice 

} 
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Figure 7: Chip-Level Testbench 

 

A. Chip-level Verification Methodology 

Due to the very long simulation times of chip-level AMS simulations it is important for all interested parties to 

agree on what functionality will be tested.  The goal is not to verify analog functionality. That is what analog 

simulations are for. Likewise, there is no reason to verify digital functionality in an AMS simulation. The focus 

should be on verifying connectivity between digital and analog and device startup.   

Another important decision is at what level the analog blocks will be represented.  For example, schematic 

models of oscillators lead to long simulation times due to the continuous and high frequency oscillations. Keeping as 

many oscillators as possible in the digital domain will result in greatly improved simulation times. Usage of memory 

schematics may also lead to long simulations times or non-convergence. An RTL level model of the digital logic 

will simulate faster than a gate level representation.  For a startup test, though, perhaps all analog blocks and pads 

will be represented as a schematic.   

It is not necessary to go through the startup sequence for the regulator, POR circuitry, etc for every test.  Use an 

initial condition to set the regulator output to the expected regulated voltage and toggle POR.  

Due to the simulation time being dominated by SPI and test bus transactions it is imperative to get these correct 

prior to running an AMS simulation.  Be sure to have a switch to run a quick digital simulation to debug these 

transactions. All chip-level tests were executed at the command line and were self-checking, a necessity for 

regression testing. 

 

For this ASIC a Full Chip Test Plan document was created.  An example of the description of 2 tests is below. 
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An example of setting an initial condition on the regulator output is below: 

 

 
 

B. Chip-level Regressions 

Just as it is important to run periodic regressions on the digital logic, periodic regressions must be run at the chip-

level to ensure a change late in the project does not introduce a bug.  Automatically executing regressions at the chip 

level is more challenging than for the digital due to the need to check out data from disparate revision control 

systems. For example, SVN for the digital, and ICManage for the analog.  Also, a spice netlist will need to be 

extracted from the schematic.  

Unfortunately for this project the analog schematics were revision controlled with a home grown revision control 

system. This system was gui based and did not support a script to check out schematics.  Schematic updating and 

spice netlist extraction was done manually which relied on good communication with the analog designer to know 

when a schematic changed.  Because the chip-level tests were run from the command line executing a regression 

script with a cron job was easy. 

 

V. RESULTS 

In this chapter the impact of each improvement, both positive and negative, will be presented.  First, the most 

important result, is that the ASIC was found to be a first-pass success. 

  

A. Migration to a UVM-based testbench 

The VHDL-based testbench was the evolution of 3 previous generations of image processing chips. A block 

diagram of the testbench is shown in Figure 8. The testbench utilized simplified VHDL models of analog blocks 

instantiated inside duv_top together with the digital logic (dig_top) and pad I/O models. Duv_top was converted 

from ASIC top-level schematics in order to verify top-level interconnection of logic and analog blocks. Duv_top 

was instantiated inside tb_top containing models of the external environment (model of SPI master – spi_mod and 

external clock generator). The testbench was controlled from a generator/monitor (gen_mon) block which was 

1) startup_gates 
a. Objective: Show that the ASIC will startup, release reset, and the regulator will 

supply the correct regulated voltages 
b. Views: gate level views of digital, schematic views for analog and pads 
c. Steps:  

i. Ramp VPWR 
d. Correctness: 

i. POR release 
ii. Regulator regulates at 2.0V 

iii. Oscillators startup when needed 
iv. Note current consumed by logic, memory, and analog 

2) pixel_processing 
a. Objective: Show that the pixels are processed correctly 
b. Views: RTL level views of digital, high level model of oscillator in digital 

domain, high level model of regulator and memory, schematic views for 
remaining analog and pads. 

c. Steps:  
i. Set initial condition of 2.0V on regulator output 

ii. Toggle POR 
iii. Send SPI bus transaction to enable pixel processing 
iv. Read processed pixels through Test bus transactions 

d. Correctness: 
i. Processed pixels are read as expected. 

ic chip_top_tb.chip_top.regulator.vpwr=2.0 
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unique to every testcase. In order to control the analog models across hierarchy, gen_mon used a VHDL package 

instantiated signal bus to send model specific commands (package based signals in VHDL are connected to each 

block including the package alleviating the need to connect such information through the block interface).  

The testbench supported stimulating pixel_array from images stored in a file as well as pseudorandom image 

generation. Unlike the new UVM-based testbench a top-level model predicting DUV responses does not exist in this 

testbench. Logic to pixel array protocol is checked using a FSM-based model inside pixel_array_mod – allowing 

autonomous checking of this functionality.  

Each of the 165 testcases corresponded to a unique architecture of the gen_mon block – expected DUV 

responses were modeled in each testcase (in some cases they were hardwired constants, more frequently the VHDL 

behavioral modeling was used to calculate DUV response from hand generated or pseudorandom stimuli).  

There are many similarities between the legacy VHDL-based testbench and the UVM-based testbench, however 

many features are missing. Pseudorandom generation is severally limited in VHDL and lacks constraining 

capabilities. There is very limited use of assertions (checking mostly clear invalid states). Requirement coverage is 

collected by a script parsing testcases gen_mon source code. Each verification engineer was responsible for 

including covered requirement numbers in the testcase header. 

A downside to creating the UVM-based testbench was that more time was spent in the up-front development of 

the testbench instead of developing directed tests.  The first reporting of bugs occurred later in the project than with 

the original VHDL-based testbench (see Figure 2).  Another difficulty is finding verification engineers fluent in 

SystemVerilog and experienced in UVM.   
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Figure 8: Original VHDL-based Digital Top-Level Testbench 

 

 

B. Real number modeling of analog blocks 

Once the RN models for the analog blocks were available, they were integrated into the top-level digital testbench.  

Configuration data was fed to the predictors and RN models along with transactions at stable points in the 

processing path.  These points were picked to gather data at intermediate points or the final results.  Resulting 

transactions were generated and passed to the scoreboard.  These ‘predicted transactions’ were queued by the 

scoreboard to be compared with the ‘observed transactions’ when they arrived.  The scoreboard is quite simple, 

really just a checker because of the use of predictors.  A code snippet of the scoreboard is shown below: 
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From an analog designers point of view the analog RN model was an extremely valuable tool which allowed 

more test cases to be examined and ultimately greatly improved the confidence in the design.  In a design such as 

this with a large repetitive array there are hundreds if not thousands of nodes that, while are typically predictably 

connected, there are many cases such as on the array edges or in the multiplexers where mistakes can occur.   These 

mistakes can be hidden until the right signal pattern comes along to expose them and use of analog RN modeling 

allowed a much better probability to uncover these bugs due to larger test case and structured output analysis. 

 

C. Rigorous chip-level AMS verification 

Having a rigorous methodology for chip-level AMS verification provided confidence in the results, as opposed to 

an ad-hoc methodology.  By documenting in a full-chip test plan the functionality that would be tested along with 

the views of all blocks (schematic, high level, etc) the chip-level verification task was transparent and methodical.  

A self-checking testbench allowed regressions to be run which enhanced confidence that a late change did not 

introduce a bug.  

 

VI. CONCLUSIONS 

As was stated before, this ASIC was found to be a first pass success.  This is quite an accomplishment for a full 

custom mixed signal ASIC.  The UVM-based testbench along with the RN models of the analog blocks allowed the 

verification team to concentrate on finding bugs and generating interesting stimulus.  The chip-level verification 

ensured that the analog to digital connections were correct and that the ASIC would startup.   

`uvm_analysis_imp_decl(_expected) 
`uvm_analysis_imp_decl(_observed) 
class tb_scoreboard #(type T=uvm_sequence_item) extends uvm_scoreboard; 
  `uvm_component_param_utils(tb_scoreboard #(T)) 
 
   uvm_analysis_imp_expected#(T, tb_scoreboard #(T)) expected_ap; // Analysis port for expected transactions 
   uvm_analysis_imp_expected#(T, tb_scoreboard #(T)) observed_ap; // Analysis port for observed transactions 
   uvm_tlm_analysis_fifo #(T) expected_results_af;                                   // Analysis fifo 
 
   // Other attributes to track count, enable logging, etc. 
   … 
   virtual function void write_expected (input T t); 
     … simplified… 
      expected_results_af.try_put(t);  // Put an expected transaction in the analysis fifo 
   endfunction 
 
   virtual function void write_observed (input T t); 
      T expected_transaction; 
    …simplified… 
      expected_results_af.try_get(expected_transaction);  // Get expected transaction from analysis fifo 
      compare_results(expected_transaction, t);   // Call compare function for expected transaction and observed 
   endfunction 
 
   virtual function void compare_results (T expected, T observed); 
     .. simplified… 
      if (observed.compare(expected)) begin 
         // MATCH 
      else 
         `uvm_error({ … notification … }) 
   endfunction 
endclass : tb_scoreboard 
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