

Verification of a Multi-language Components

A case Study: Specman E Env with SV UVM VIP

Eran Lahav eranl@veriests.com

SYSTEMS INITIATIVE[™]

Introduction

Multi-language Verification requires special considerations: Synchronization of test phases and events and moving data objects between the language's worlds. In some cases, re-writing part of the code, (either manually or automatically) could be a more reasonable solution. In this paper, we discuss the trade-off between the two alternatives: re-write the code and co-running with original languages.

The System

SOC with peripheral I3C, Driven by ARM trough

Configuration and Execution Options

Translate SV-UVM VIP sequences to E and use them within the SoC virtual sequences

Master Seq. I3C VIP Slave Seq. I3C I3C VC I3C Stand SV I3C I3C Alone ENV sv E I3C VIP E VE DUT Slave Seq. DUT ENV I3C VC I3C I3C CORE Master 🔶 Slave

DESIGN AND VERIFICAT

CONFERENCE AND EXHIBITION

ELROPE

- Full E environment for SOC, including configurations, registers model, sequence, interrupt handling, bus drivers, etc.
- **I3C UVM VIP from** external vendor.

Consideration Compare Translation/Rewrite vs. co-run Rewrite Write in Notes Translate UVM

Translation

Sequences translation was done with Python program:

- RAL to Specman register (vr_ad like)
- UVM sequence library to E sequences (mostly body() task to body() TCM)
- It covers only small portion of the Language and uses shortcuts (as macro translation instead of expand)
- Neither all cases nor all commands are supported (less then 10%)
- It took 3-person week to complete
- We estimate a full SV to E Translator to require one person-year

Synchronization

1	\Box (\mathbf{C}	~	\sim

			to E	execute	from Spec	С
1	Coding Effort	Of Sequences	MED	LOW	HIGH	HIGH
2	Env Effort	Test flow	LOW	HIGH	LOW	LOW
3	Tests Debug Effort		MED	LOW	HIGH	HIGH
4	Preserve Test Suit	Run exact Vendor scenario and checks	HIGH	FULL	LOW	LOW
5	Flexibility	Running a different scenario. Post silicon debug	LOW	LOW	HIGH	MED
6	SW reusability	Using sequences as reference to SW	LOW	LOW	MED	HIGH

Synchronization between sequences and data objects between languages can be done either by E method ports or by TLM (Transfer Level Model) ports.

Code Examples

Conclusions

Combining a component with a different language into an existing verification environment depends on the characteristics of the system and the verification requirement. In some cases, partially translation can be more efficient and time/cost-effective than applying a standard language-tolanguage porting. We found that for sequences, particularly for those which produce memory access command, translation of the code is beneficial.

Using UVM-ML Open Architecture is a valuable way to connect

function void get_uvm_test_name_from_e(string name);

sv_test_name = name; \$display(\$sformatf("I3C DTE Test is %s",sv_test_name)); endfunction

and run together components with different languages. Yet, the implementation of these kinds of systems requires a special attention for synchronization. Ports (TLM) between the components should close this gap and enable effective verification.

Project was done in collaboration with **Nuvoton** Technologies

© Accellera Systems Initiative