
© Accellera Systems Initiative

Multi-language Verification requires special considerations: Synchronization of test
phases and events and moving data objects between the language’s worlds.
In some cases, re-writing part of the code, (either manually or automatically) could
be a more reasonable solution. In this paper, we discuss the trade-off between the
two alternatives: re-write the code and co-running with original languages.

Introduction Configuration and Execution Options

The System
• SOC with peripheral I3C,

Driven by ARM trough
DMA

• Full E environment for
SOC, including
configurations, registers
model, sequence ,
interrupt handling, bus
drivers, etc.

• I3C UVM VIP from
external vendor.

Consideration
Compare Translation/Rewrite vs. co-run

Option 1: Translate

Eran Lahav

Verification of a Multi-language Components
A case Study: Specman E Env with SV UVM VIP

eranl@veriests.com

Code Examples

Synchronization

Combining a component with a different language into an
existing verification environment depends on the
characteristics of the system and the verification requirement.
In some cases, partially translation can be more efficient and
time/cost-effective than applying a standard language-to-
language porting. We found that for sequences, particularly
for those which produce memory access command, translation
of the code is beneficial.
Using UVM-ML Open Architecture is a valuable way to connect
and run together components with different languages. Yet,
the implementation of these kinds of systems requires a
special attention for synchronization. Ports (TLM) between the
components should close this gap and enable effective
verification.

Option 2: Run UVM sequences (both peers), Port Memory accesses

Options 3,4: Write from Spec

Conclusions

Translation

Translate SV-UVM VIP
sequences to E and
use them within the
SoC virtual sequences

Run SV-Sequences
and call E methods
from SV for each
memory accesses.

Write the sequences in
E/C from scratch

Sequences translation was done with Python program:
• RAL to Specman register (vr_ad like)
• UVM sequence library to E sequences (mostly body() task to body() TCM)
• It covers only small portion of the Language and uses shortcuts (as macro

translation instead of expand)
• Neither all cases nor all commands are supported (less then 10%)
• It took 3-person week to complete
• We estimate a full SV to E Translator to require one person-year

Synchronization between
sequences and data objects
between languages can be
done either by E method
ports or by TLM (Transfer
Level Model) ports.

Project was done in collaboration with Nuvoton Technologies

	Slide Number 1

