
Verification Mind Games
how to think like a verifier

Jeffrey Montesano

Verilab

Montreal, Canada

jeff.montesano@verilab.com

Mark Litterick

Verilab

Munich, Germany

mark.litterick@verilab.com

Abstract — Effective verification requires engineers to

approach problems using a very different way of thinking

compared to that normally applied by designers. Specifically, the

verification mindset is focused on finding the bugs that are

virtually guaranteed to be in the design by stressing protocols,

exploring corner cases, and applying a policy of zero tolerance

towards design inconsistencies. Designers on the other hand are

concerned with constructing components that correctly

implement the intended protocol with appropriate performance

and without defects. This paper provides examples of common

verification problems that are susceptible to more than one

approach, and explores solutions that are consistent with a

proper verification mindset, while highlighting the risks

associated with a more design-centric approach.

Keywords—mindset, corner case, debuggability

I. INTRODUCTION

The term mindset can be defined as “an established set of
attitudes held by someone”, or more precisely, “as a fixed
mental disposition that predetermines a person’s responses to
and interpretations of situations”[1]. The phenomenon is
sometimes described as mental inertia, groupthink, or
paradigm, and it is often difficult to counteract its effects upon
analysis and decision making processes[2].

As an industry, our collective mindset places far too much
emphasis on how we do verification and not nearly enough on
what we should be doing. For example if you review any job
posting for a verification engineer, what you'll find is a list of
languages, methodologies, tools and domain knowledge.
People are frequently hired because they “know UVM”, “have
experience with assertions”, understand “object-oriented
programming” and “constrained-random verification”. The
hiring process places little to no emphasis on one’s judgement
or ability to navigate the many difficult decisions that occur
over the course of a project – essentially it ignores the single
most important determinant of verification effectiveness: the
mindset of the engineer. To grasp the weight of this argument,
just imagine the absurdity of turning away a great engineering
mind like Leonardo da Vinci based on the contents of his
toolbox! With some experience most verification engineers
can learn to read a specification, build a verification plan, and
write decent enough code to implement it. However, where
many often fall short of the mark is at the key decision points
which are at the foundations of each of these subjects.

Describing a mindset in words is no easy task, and, as such
this paper will instead attempt to reveal the verification
mindset using a series of critical choices that can arise in
verification environments such as:

 Is it the verification environment’s duty to accurately
replicate the real world?

 Is it acceptable for the testbench and/or testcase to make
use of design signals?

 Is it worthwhile to target corner cases that designers
consider to be invalid?

Verification engineers often come from the design world or
sometimes oscillate between the two roles over the course of
their careers. A proper verification mindset is very different
from that of a design mindset, and can usually only be arrived
at with many years of experience, mentoring, and lessons
learned from the school of hard knocks. It permeates every
decision, every line of code, every meeting and every
interaction throughout the course of a project. It is a way of
thinking that is wary of a project veering towards a design-
centric verification approach, and is unafraid to boldly say “no,
this is not the way to do it!”

At this moment in time, “thinking verification” is both
underappreciated and underrepresented in our industry. In this
paper we will examine why this topic is so critical to
verification effectiveness. We will look at the pitfalls of
simply interoperating with a design rather than stressing it; we
will describe ways to identify corner cases when reading a
design specification; and we will talk about decisions that lead
to a testbench with improved debuggability. Overall, through
these examples, we will demonstrate what a verification
engineer should be doing rather than how they should be doing
it, in the hope that this will inspire the verification mindset in
the mind of the reader.

II. INTEROPERATING VERSUS STRESSING

One of the most challenging aspects of verification is
identifying the thin line that exists between stressing the design
and just interoperating with it. While all testbenches must
interoperate with the design at some level, only testbenches
designed with the proper mindset will know where to draw the
line and cry foul at the appropriate moment. Some common
situations that illustrate this can be found in designs that

involve clock and data recovery (CDR), handshaking for error
conditions, and status indicators for things like FIFO fullness.

A. Clock Data Recovery

Some protocols stipulate that data is to be transmitted and
received without an accompanying clock signal. In this case, a
design implementing such a protocol is required to implement
clock-data-recovery (CDR) functionality to extract the clock
from the transitions in the data. Developing a verification
component (VC) for such a design has a similar requirement –
no clock signals are to be transmitted or received from the
testbench, just data. Figure 1 shows a design-under-test (DUT)
sending and receiving data with such a VC. The DUT takes in
a reference clock from a free-running oscillator, which is a
slower version of the internal clock with which it drives data.
The DUT has a CDR component for receiving data, while the
VC has a monitor component for receiving data from the DUT.

Figure 1 Verification component with design that does CDR

When implementing the VC’s monitor, the verification
engineer must decide which approach to take in order to
receive the data coming from the DUT. Should a CDR
algorithm be implemented in the monitor, as is done by the
design? Approaching the question from a design-centric
mindset would usually lead to the answer “yes, CDR should be
done in the monitor”, as the VC respects the same protocol as
the design it interacts with, and CDR is specified in the
protocol. However, when one approaches the question from a
verification mindset it leads to just the opposite answer. Let’s
look at why this is the case.

Doing CDR in the VC’s monitor would create a situation
where the VC can adapt to the data rate output by the DUT.
Paradoxically, the more robust the monitor’s CDR algorithm
is, the less checking the VC will be doing, because it will be
increasingly tolerant of invalid data rates coming from the
DUT.

An improvement on this would be a CDR algorithm that
performs checks on the incoming data rate, but there exists an
even better solution: implement a phase-lock-loop (PLL)
algorithm based on the same reference clock that the DUT uses
as its reference, and use the output of that PLL to sample the
incoming data (see Figure 2).

Figure 2 Verification mindset approach for CDR designs

This approach accomplishes the following:

 It verifies that the DUT’s data stream is in sync with the
reference clock

 It avoids any possibility of the testbench masking a
problem because the CDR algorithm is too tolerant

 It has better simulation performance than doing costly
checks on data rates

 It is faster and simpler to implement than CDR

At this time, take pause and notice just how different the
topic of handling a protocol with CDR is when looked at from
a design perspective as compared to a verification perspective.
When building an RTL CDR component, the designer strives
to build the most robust algorithm possible, capable of
interoperating with the widest range of external devices. When
building a CDR verification component, the verification
engineer instead should strive to build the least robust
algorithm possible (or avoid doing CDR at all as suggested
above), so it stresses the design and fails on the slightest
deviation from the protocol specification. Also note that in the
real world, there is no way for the DUT’s reference clock to
also be reliably sent to another component in the system –
otherwise there would be no need for CDR in the first place.
This illustrates the point that verification’s aim is not to
replicate reality, but to verify the design in the most thorough
manner possible, even if it means doing so in spite of reality.

Finally, note that doing CDR in a VC with the proper
checks in place is not an inherently bad solution; rather, it is an
approach that runs counter to the verification mindset we are
advocating here.

B. Handshaking Error Handling

Oftentimes protocols require that feedback in the form of
an acknowledge/not-acknowledge (ACK/NACK) telegram be
sent to indicate if an error was detected in the most recently
received transfer. Let’s look at what happens when creating a
VC that implements such a protocol, employing a design-
centric approach versus a verification-centric one.

Figure 3 Packet transfers with acknowledgement handshaking

Figure 3 shows transfers and acknowledgements being sent
in both directions. As was the case with CDR, a design
mindset would lead an engineer to implement the VC
according to the protocol specification, that is, to automatically
send ACK telegrams when it receives error-free transfers from
the DUT and to automatically send NACK telegrams when it
receives transfers with errors. This is how a real design would
be expected to interact with the DUT after all.

The problem with this approach is that it ignores the fact
that under normal simulation conditions (i.e. simulations
without any error injection by the testbench), the DUT should
never have errors in its transfers. This implies that the
testbench should never have to automatically respond to
anything with a NACK. Doing so would potentially mask
DUT errors and allow a simulation which should have failed to
continue running. The verification mindset recognizes that in
the event that the DUT generates a transfer with an unprovoked
error, rather than automatically replying with a NACK, the
VC’s duty is to output an error to the log file and cause the test
to fail.

For situations where the DUT is provoked into generating
errors (usually restricted to specific directed testcases where
the testbench does error injection), the testcase writer must be
able to manually control the VC to send a NACK in response.
As such, the VC does need to support the ability to send
NACKs manually.

To drive the point home, let’s take one more example that
illustrates the problem of a VC doing automatic handshaking
under abnormal circumstances. Let’s assume that the protocol
states that when design sends a transfer, it must retransmit it
again after a given time elapses without a response.

Figure 4 Packet retransmission due to timeout

Upon timing out, a VC built with a design mindset might
retransmit the same transfer again, exactly according to the

protocol, and in the worst case, without flagging an error for
the DUT timeout that occurred. The same VC built with a
verification mindset would instead log an error after the
transfer timed out, while recognizing that it’s a waste of time to
implement any automatic retransmission capabilities. Manual
retransmission capabilities however are needed to support error
injection testcases.

The above examples illustrate the verification mindset’s
approach to implementing handshaking protocols: a VC is
responsible for implementing the protocol, but only up to a
point; implementing the full protocol as a design could very
well lead to poor verification results and wasted effort.

C. Status Indicators and Clocks

Let’s look at an example of a design which indicates buffer
fullness with output ports such as “empty” and “full”. Any
non-error-injecting testcase will want to avoid overflowing and
underflowing the design’s buffer, and so it will likely want to
make use of those flags. However, using the flags without
taking the proper precautions is an example of the design
mindset at work. It creates the potential for a situation
whereby the testbench listens blindly to the DUT, and risks
missing out on bugs lurking in the things it is listening to.

Figure 5 DUT outputting status indicators to testbench

The verification mindset, on the other hand, asks the
question “how do we know for sure that the empty/full status
indicators don’t have any bugs in them?” The answer to this is,
“we don’t”, at least, not until we’ve done some more work.
This could be in the form of a white-box assertion which
checks the RTL’s read and write pointers versus the status flag
values; or it could be done with a monitor in the environment
which tracks the number of items written to and read from the
buffer; or even with a dedicated testcase that runs in a
regression alongside other tests which blindly make use of the
flags.

 Another classic example of this arises with clock signals –
under almost all circumstances, a testbench should never
“snoop” the DUT’s internal clock signal to use as its own,
unless it is doing cycle-by-cycle checks on it (which can
hinder simulation performance). Engineers coming from a
design mindset fall into this trap because it results in fewer
failing tests and faster environment bring-up time, but it also
poses a huge risk in terms of masking clocking bugs in the
DUT. The proper approach is for the testbench to generate its
own clock instead, and for the verification engineer to be
prepared to deal with any testcase failures that arise due to
clocking bugs (both in the DUT and the testbench). The only
circumstance in which clock snooping is a valid approach is
when the clock rate is changing according to a random pattern
(likely for security purposes) that the testbench cannot predict.

The bottom line is that whenever feasible, the verification
environment should only make use of DUT signals if it has
first performed checks on them. Anything short of this boils
down to a ‘blind leading the blind’ situation, leaving the door
open for bugs to go unnoticed.

III. OUTSIDE-THE-BOX VERIFICATION PLANNING

When someone with a design mindset does verification
planning, they most likely will read the specification and come
up with scenarios to test each of the specified features. In
addition, they will plan on doing error injection for the
situations that the DUT can detect (e.g. CRC errors in a
communication protocol). While this is a fine approach for
finding the more obvious bugs in a design, as we will show in
this section, it does not go far enough to find the more obscure
bugs which are every bit as critical.

A. Corner Case Identification

1) Function Input Parameters
Imagine a design that draws circles of varying radii, with

the radius being an input to the design’s
“draw” function. A designer might decide to test this by
sending a variety of input radii from the smallest possible valid
circle to the largest possible one, and, once they all pass,
declare that the design is verified. The verification mindset
however will do all of that plus ask the question “what happens
if we try to draw a circle of radius zero?”. A designer might
very well answer that question with “a circle of radius 0 is
invalid, so there’s no need to test it”. While there’s no reason
to doubt what the designer has said, the verification mindset
doesn’t stop there. Whether or not something is valid or
invalid is in fact irrelevant; what is important is, can such a
scenario ever happen, and if the answer it “yes”, then it must be
simulated to ensure that the design recovers from it. A circle
of radius zero is as valid a case as simulating a CRC error in a
communications protocol: should it happen? No. Should we
verify how the device recovers if it does happen? Yes. As it
turns out, in a specific circle-drawing design encountered by
the authors, unbeknownst to the RTL designer, zero-radius
circles were in fact being frequently generated by software
under certain conditions. It was the responsibility of the
verification engineer to take a higher-level view of things in
order to build the best possible verification environment.

2) Register Accesses
Take the following scenario: a design is specified to have a

low-power mode that can be activated by writing a ‘1’ to a
given register bit. The bit’s default value is ‘0’, making the
device be in normal mode by default. In the verification
planning stage, testing of this low-power mode is put into a
directed testcase. When it comes time to implement the test, an
engineer creates a test that does the following:

 Write ‘1’ to the low-power bit

 Check that the device enters low-power mode

 Write ‘0’ to the low-power bit

 Check that the device exits low-power mode

The test is added to the regression and passes repeatedly
until tapeout. As such, the feature is considered to be verified.

If you haven’t realized it yet, the above approach, while
appearing sound, has left a critical case uncovered: what
happens when a ‘0’ is written to the bit when the bit is already
‘0’ (or a ‘1’ when it is already ‘1’)? From a design mindset
perspective this might seem like a nonsensical case, but as it
turns out, in a design encountered by the authors, simulating
this case uncovered a critical bug: writing a ‘0’ to the low-
power bit when it was already ‘0’ caused the design to
incorrectly enter low-power mode.

Outside-the-box verification planning involves looking at
all of the things that could conceivably happen, regardless of
whether or not the DUT is designed to handle them, and
regardless of what designers may say. A verification effort that
does not do error injection is quite simply incomplete. As you
can imagine, doing error injection in creative ways greatly
expands the search space for finding bugs, and so experience
and a degree of gut-feeling is required to target those areas
most likely to be concealing real bugs. The examples given
above illustrate the kinds of places one can look for them.

IV. PRIORITIZING DEBUGGABILITY

With the exception of white-box assertions and code
comments, RTL code is not usually designed for debuggability.
This is to be expected, because RTL code is often used by the
same people who develop it (with the notable exception of
reusable design IP). Testbenches, on the other hand, are
mostly used by engineers who are tasked with writing
testcases, who have had no part in the testbench development.
For this reason, a well-written testbench puts emphasis on
debuggability, so that its users can efficiently write and debug
things as issues come up.

Let’s look at an example where the verification mindset
applies this principle.

A. Protocols with Bi-Directional Ports

Some devices try to save on pins and board trace routing by
employing bi-directional ports for data and/or clock signals.
The nature of such protocols is that there will always be at least
two communicating devices responsible for driving the data
and/or clock signals (otherwise there would be no need for bi-
directional ports at all). Some devices can be masters (i.e. they
initiate transfers), some can be slaves (i.e. they respond to
transfers), and some can handle both roles depending on the
situation.

Figure 6 Bi-directional bus with multiple masters and slaves

When building a VC for such a protocol, a design mindset
might lead an engineer to follow the letter of the protocol and
implement the VC interface with bi-directional ports as
follows:

Copyright © 2014 Verilab & DVCon

Figure 7 Design-centric approach for bi-directional interface

Figure 8 Design-centric approach for bi-directional testbench

While this approach allows the VC to fulfill the protocol
requirements, it offers users of the VC a low degree of
debuggability. Let’s look at an example to examine why this is
the case: in any verification environment of a design with bi-
directional ports, at a minimum there will be one such VC
connected to one DUT. However in verification environments
for some protocols like I2C there is the potential to have
multiple VCs connected to multiple DUTs, each acting as
masters, slaves, or both (see Figure 9).

Figure 9 Bi-directional bus with multiple VCs and DUT

Because all of the DUTs and VCs connect to the same
bidirectional ports, debugging a waveform quickly becomes a
painstaking experience because it is impossible to tell which
component is driving what value.

Using a verification mindset, we make use of both
unidirectional and bi-directional signals to achieve both ease of
debug and adherence to the protocol. This is shown in the
following example, in which a pull-up is used on both the data
and clock lines:

Figure 10 Improved approach for bi-directional interface

(In Figure 10, “(highz1, strong0)” means “when signal is
assigned with a ‘1’, it takes on ‘Z’; when it is assigned to with
a ‘0’, it takes on ‘0’ ”).

The testbench then needs to connect to the interface as
follows:

Figure 11 Improved approach for bi-directional testbench

hookup

From this point on, components inside the VC only interact
with the unidirectional versions of the signals. So for example
driver code will drive the “_o” versions of clk and data, and
will read the “_i” versions of them:

Figure 12 VC driver interacting with bi-directional interface

 With this approach, a waveform can show what any VC
agent is driving and observing at any time, leading to greatly
improved debuggability for users of the VC. This illustrates

class protocol_driver extends uvm_driver;

 …

 task drive_bit(input bit data);

 …

 m_vif.driver.clk_o <= 0;

 # 10ns;

 m_vif.driver.clk_o <= 1;

 if (m_vif.driver.clk_i == 0)
 @(posedge m_vif.driver.clk_i);
 …

 endtask: drive_bit

endclass: protocol_driver

module testbench;

 …

 wire data;

 wire clk;

 pullup(data);

 pullup(clk);

 protocol_if vc_if(data, clk);

 …

 design_t dut_inst (.data(data), .clk(clk))

 …

endmodule: testbench

interface protocol_if(inout data, inout clk);

 logic clk_o = 1;
 logic clk_i;
 logic data_o = 1;
 logic data_i;

 assign (highz1,strong0) data = data_o;

 assign (highz1,strong0) clk = clk_o;

 assign data_i = data;
 assign clk_i = clk;

endinterface: protocol_if

module testbench;

 …

 wire data;

 wire clk;

 protocol_if vc_if(data, clk);

 …

 design_t dut_inst (.data(data), .clk(clk))

 …

endmodule: testbench

interface protocol_if(inout data, inout clk);

endinterface: protocol_if

how the verification mindset puts a high priority on
debuggability, by finding solutions that allow users to resolve
issues more quickly.

V. ROUNDING OUT THE MINDSET

There are several remaining topics that need to be touched
upon in order to round out the scope of this paper.

A. No Coverage Without Checking

The example presented earlier regarding writing a ‘0’ to a
low-power bit when it’s already ‘0’ highlights another aspect
of the verification mindset, which is to never do coverage on
anything in the absence of doing checks. This rules out doing
register value coverage, because it is misleading at best and a
waste of compute resources in a large system-on-a-chip (SOC).
Coverage would say “yes we have put the values ‘0’ and ‘1’ in
the low-power bit”, giving the false sense of security that there
are no bugs hiding there.

B. Approach to Debugging

Designers usually use waveforms to debug issues in a
simulation, such as failing monitor checkers and assertions.
This makes perfect sense, as almost all information regarding
the DUT’s state can be observed in waves.

This is not true for VCs however, because of the many
operations they do are in zero time, and the dynamic data
structures they use for things such as sending stimulus. While
simulators are always getting better at making this type of
information available to both waveforms and other debug
windows, the verification mindset recognizes that one of the
best tools for doing debug is the logfile itself.

For the logfile to be of use, the VC needs to have an
appropriate and consistent messaging scheme (the contents of
which are beyond the scope of this paper). Sufficeth it to say
that verification engineers in general should not be debugging
their testbench using waveforms, but rather they should be
relying on logfiles. If they are unable to debug things using the
logfile, then this is an indication that the testbench’s messaging
scheme needs improvement.

C. Zoom-In, Zoom-Out Thinking

Something that verification engineers sometimes struggle
with when doing system-level verification is the fact that they
must be able to switch from low-level thinking (what we will
call “zoom-in”) to higher-level thinking (what we will call
“zoom-out”). When zoomed-in the engineer does tasks such as:

 Understand design specifications

 Write verification plans based on the specification

 Write code to implement the verification plan

 Write testcase code

 Debug failing testcases

Verification engineers must also do a series of tasks while
zoomed-out such as:

 Decide which design features to focus on to maximize
bug discovery

 Devise creative ways to tease bugs out

 Allocate time so as to get the most important checking
and coverage for the effort

The main reason for this is difference is that verifiers need
to deal with a larger scope than designers do. In addition,
unlike designers, who must complete their design before
tapeout, verifiers can continue verifying past tapeout and
therefore must prioritize what is to be accomplished before
tapeout, what can be put off until afterwards, and what can be
dropped altogether. To do this effectively, a verifier needs to
be constantly aware of a wide array of information such as
system architecture, design hot-spots, project schedule, and
client deliverables. The fact that each of these items can
change from one week to the next means that zoom-out
thinking needs to be done on a regular basis, to ensure that the
right things are being focused on. For this reason, it is not
enough for a verification engineer to just be proficient in the
skills that comprise his or her toolbox; there is a need to stand
back, listen, and choose the best path forward in order to truly
be effective.

D. What Are We Trying to Accomplish Here?

In the business world, an important question that
organizations must continuously ask themselves is “what
business are we in?”. The notion is that by answering it, a
business can identify where it needs to focus its attention, who
its competitors really are, and, what types of things it can
outsource to third parties.

In the verification world, a similar question is “what are we
trying to accomplish here?” Will the task at hand lead to a
device with fewer bugs? Is it already being accomplished by
other elements in the environment?

A good example of verification engineers not asking this
question is when they do coverage on DUT outputs. While this
looks fine on the surface, when one asks “what are we trying to
accomplish here?” the answer that comes back is usually “not
very much!”. With coverage on the testbench’s stimulus and
checks on the DUT’s outputs, there is usually no need to do
coverage on DUT outputs. The result is just wasted effort that
should have been spent elsewhere.

Note that doing coverage on internal DUT signals is
another matter, and can often be useful towards achieving
quality tapeouts.

E. Coverage, Not Testcases

The design mindset sometimes places too much emphasis
on testcase writing and evaluating passing rates. This line of
thought is based on the belief that writing more testcases
translates to more things being tested, and more passing
testcases translates to more coverage of the DUT’s
functionality. It is the way things were done before
constrained-random pre-silicon verification came into fashion,
and continues to be used in many emulation and validation
setups. The benefits of it are that it is easy to explain and
understand, and simple to track progress with.

The verification mindset, on the other hand, recognizes that
the “holy grail” is achieving coverage closure, provided that

the coverage is accompanied by proper checks (as previously
mentioned). It views testcases as nothing more than a vehicle
by which coverage closure can be reached. As such, the
number of testcases is viewed as being an incidental artifact of
the planning process, and the passing rate is viewed as being
important only inasmuch as it contributes to coverage (failing
tests should not be counted towards coverage).

F. Liaison between Design Architect and Design Engineer

A key difference between designers and verifiers is the
level of abstraction at which they operate. Digital designers
usually work at a lower level of abstraction, implementing a
single module that performs a specific aspect of a larger design
or protocol. Verification engineers, on the other hand, work at
a higher level, creating a VC that implements all aspects
required to interface with and check a given design. While this
is well understood, the unique role that this creates for a
verification engineer is less so.

The standard situation is one where a design architect
writes out a specification, and a design engineer implements a
block according to their understanding of it. During the
implementation phase, the verifier is in fact the liaison between
the two groups that ensures communication and coherency
between them. This could involve identifying aspects of the
architecture that will lead to increased verification effort such
as a lack of consistency, or the introduction of additional
modes that are “nice-to-haves” rather than essential features.
In such cases, while it’s everyone’s responsibility to take care
to avoid such things, it is the verification effort that will usually
be most impacted, and therefore the verification engineer’s
principle responsibility to speak up and say “here’s why we’re
not going to do it that way”.

G. Quitting on First Error

When a simulation encounters an error, the verification
engineer must decide to either let the simulation continue
running, or exit right there and then. While there are some
situations where it can be advantageous to continue running,
for the vast majority of cases, quitting immediately is the right
thing to do. Let’s look at why this is so.

When the testbench discovers an illegal condition in the
DUT, there’s a decent chance that from that simulation time
onward, the testbench is no longer doing proper checking
anymore. For example, imagine a protocol with a start-of-
frame (SOF) and end-of-frame delimiter.

If the DUT sends a corrupted EOF, the testbench monitor
will likely interpret it to be just another data byte, and could
eventually raise an error for some type of data length violation.
If another SOF is sent before such a length violation is
declared, the monitor might interpret it as an illegal symbol in
the data stream. At this point, depending on the protocol, the
VC could be in a situation where it cannot recover and do its
job of checking properly. Note that this is perfectly acceptable.
The testbench is not a DUT, and does not need to be able to
recover from error scenarios. It can be thought of a kind of
mousetrap which, upon catching a bug in a given simulation, is
closed for catching subsequent ones. The verification mindset
recognizes that putting in any effort to make the testbench
recover after detecting an error is wasted effort that should be
directed elsewhere.

The situation in which it is useful to run beyond an error is
when the time comes to debug that error, and simulating longer
will provide information to help diagnose the issue. This can
be setup using a simulator command-line directive, which
would override the default behaviour of quitting on the first
error.

VI. CONCLUSION

In this paper we have demonstrated that the verification
mindset is very different from that of a design mindset, and,
when properly applied, will lead to improved results with
respect to bug-free device tape-outs. The mindset itself is
anchored upon finding bugs by any means necessary, even if it
means not replicating reality or faithfully implementing a given
protocol specification. It recognizes that building
debuggability into a testbench, through architectural and
messaging decisions, will lead to improved ease of use, and
that identifying difficult corner cases requires one to think
outside of the design specification. Finally, it involves some
softer skills to avoid the pitfall of not seeing the forest for the
trees.

ACKNOWLEDGMENTS

Special thanks to Mike Warner (Cirrus Logic) for sharing
his thoughts and performing valuable reviews.

REFERENCES

[1] http://www.thefreedictionary.com/mindset

[2] http://en.wikipedia.org/wiki/Mindset

http://www.thefreedictionary.com/mindset
http://en.wikipedia.org/wiki/Mindset

