
Verification Mind Games 
how to think like a verifier 

 

Jeffrey Montesano 

Verilab 

Montreal, Canada 

jeff.montesano@verilab.com 

Mark Litterick 

Verilab 

Munich, Germany 

mark.litterick@verilab.com

 

 
Abstract — Effective verification requires engineers to 

approach problems using a very different way of thinking 

compared to that normally applied by designers.  Specifically, the 

verification mindset is focused on finding the bugs that are 

virtually guaranteed to be in the design by stressing protocols, 

exploring corner cases, and applying a policy of zero tolerance 

towards design inconsistencies.  Designers on the other hand are 

concerned with constructing components that correctly 

implement the intended protocol with appropriate performance 

and without defects.  This paper provides examples of common 

verification problems that are susceptible to more than one 

approach, and explores solutions that are consistent with a 

proper verification mindset, while highlighting the risks 

associated with a more design-centric approach. 
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I. INTRODUCTION  

The term mindset can be defined as “an established set of 
attitudes held by someone”, or more precisely, “as a fixed 
mental disposition that predetermines a person’s responses to 
and interpretations of situations”[1].  The phenomenon is 
sometimes described as mental inertia, groupthink, or 
paradigm, and it is often difficult to counteract its effects upon 
analysis and decision making processes[2]. 

As an industry, our collective mindset places far too much 
emphasis on how we do verification and not nearly enough on 
what we should be doing.  For example if you review any job 
posting for a verification engineer, what you'll find is a list of 
languages, methodologies, tools and domain knowledge.  
People are frequently hired because they “know UVM”, “have 
experience with assertions”, understand “object-oriented 
programming” and “constrained-random verification”.  The 
hiring process places little to no emphasis on one’s judgement 
or ability to navigate the many difficult decisions that occur 
over the course of a project – essentially it ignores the single 
most important determinant of verification effectiveness: the 
mindset of the engineer.  To grasp the weight of this argument, 
just imagine the absurdity of turning away a great engineering 
mind like Leonardo da Vinci based on the contents of his 
toolbox!  With some experience most verification engineers 
can learn to read a specification, build a verification plan, and 
write decent enough code to implement it.   However, where 
many often fall short of the mark is at the key decision points 
which are at the foundations of each of these subjects. 

Describing a mindset in words is no easy task, and, as such 
this paper will instead attempt to reveal the verification 
mindset using a series of critical choices that can arise in 
verification environments such as: 

 Is it the verification environment’s duty to accurately 
replicate the real world? 

 Is it acceptable for the testbench and/or testcase to make 
use of design signals? 

 Is it worthwhile to target corner cases that designers 
consider to be invalid? 

Verification engineers often come from the design world or 
sometimes oscillate between the two roles over the course of 
their careers.  A proper verification mindset is very different 
from that of a design mindset, and can usually only be arrived 
at with many years of experience, mentoring, and lessons 
learned from the school of hard knocks.  It permeates every 
decision, every line of code, every meeting and every 
interaction throughout the course of a project.  It is a way of 
thinking that is wary of a project veering towards a design-
centric verification approach, and is unafraid to boldly say “no, 
this is not the way to do it!” 

At this moment in time, “thinking verification” is both 
underappreciated and underrepresented in our industry.  In this 
paper we will examine why this topic is so critical to 
verification effectiveness.  We will look at the pitfalls of 
simply interoperating with a design rather than stressing it; we 
will describe ways to identify corner cases when reading a 
design specification; and we will talk about decisions that lead 
to a testbench with improved debuggability.  Overall, through 
these examples, we will demonstrate what a verification 
engineer should be doing rather than how they should be doing 
it, in the hope that this will inspire the verification mindset in 
the mind of the reader. 

II. INTEROPERATING VERSUS STRESSING 

One of the most challenging aspects of verification is 
identifying the thin line that exists between stressing the design 
and just interoperating with it.  While all testbenches must 
interoperate with the design at some level,  only testbenches 
designed with the proper mindset will know where to draw the 
line and cry foul at the appropriate moment.  Some common 
situations that illustrate this can be found in designs that 



involve clock and data recovery (CDR), handshaking for error 
conditions, and status indicators for things like FIFO fullness.  

A. Clock Data Recovery 

Some protocols stipulate that data is to be transmitted and 
received without an accompanying clock signal.  In this case, a 
design implementing such a protocol is required to implement 
clock-data-recovery (CDR) functionality to extract the clock 
from the transitions in the data.  Developing a verification 
component (VC) for such a design has a similar requirement – 
no clock signals are to be transmitted or received from the 
testbench, just data.  Figure 1 shows a design-under-test (DUT) 
sending and receiving data with such a VC.  The DUT takes in 
a reference clock from a free-running oscillator, which is a 
slower version of the internal clock with which it drives data.  
The DUT has a CDR component for receiving data, while the 
VC has a monitor component for receiving data from the DUT. 

 

Figure 1 Verification component with design that does CDR 

When implementing the VC’s monitor, the verification 
engineer must decide which approach to take in order to 
receive the data coming from the DUT.  Should a CDR 
algorithm be implemented in the monitor, as is done by the 
design?  Approaching the question from a design-centric 
mindset would usually lead to the answer “yes, CDR should be 
done in the monitor”, as the VC respects the same protocol as 
the design it interacts with, and CDR is specified in the 
protocol.  However, when one approaches the question from a 
verification mindset it leads to just the opposite answer.  Let’s 
look at why this is the case. 

Doing CDR in the VC’s monitor would create a situation 
where the VC can adapt to the data rate output by the DUT.  
Paradoxically, the more robust the monitor’s CDR algorithm 
is, the less checking the VC will be doing, because it will be 
increasingly tolerant of invalid data rates coming from the 
DUT. 

An improvement on this would be a CDR algorithm that 
performs checks on the incoming data rate, but there exists an 
even better solution: implement a phase-lock-loop (PLL) 
algorithm based on the same reference clock that the DUT uses 
as its reference, and use the output of that PLL to sample the 
incoming data (see Figure 2).   

 

Figure 2  Verification mindset approach for CDR designs 

This approach accomplishes the following: 

 It verifies that the DUT’s data stream is in sync with the 
reference clock 

 It avoids any possibility of the testbench masking a 
problem because the CDR algorithm is too tolerant 

 It has better simulation performance than doing costly 
checks on data rates 

 It is faster and simpler to implement than CDR 

At this time, take pause and notice just how different the 
topic of handling a protocol with CDR is when looked at from 
a design perspective as compared to a verification perspective.  
When building an RTL CDR component, the designer strives 
to build the most robust algorithm possible, capable of 
interoperating with the widest range of external devices.  When 
building a CDR verification component, the verification 
engineer instead should strive to build the least robust 
algorithm possible (or avoid doing CDR at all as suggested 
above), so it stresses the design and fails on the slightest 
deviation from the protocol specification.  Also note that in the 
real world, there is no way for the DUT’s reference clock to 
also be reliably sent to another component in the system – 
otherwise there would be no need for CDR in the first place.  
This illustrates the point that verification’s aim is not to 
replicate reality, but to verify the design in the most thorough 
manner possible, even if it means doing so in spite of reality. 

Finally, note that doing CDR in a VC with the proper 
checks in place is not an inherently bad solution; rather, it is an 
approach that runs counter to the verification mindset we are 
advocating here. 

B. Handshaking Error Handling 

Oftentimes protocols require that feedback in the form of 
an acknowledge/not-acknowledge (ACK/NACK) telegram be 
sent to indicate if an error was detected in the most recently 
received transfer.  Let’s look at what happens when creating a 
VC that implements such a protocol, employing a design-
centric approach versus a verification-centric one. 



 

Figure 3 Packet transfers with acknowledgement handshaking 

Figure 3 shows transfers and acknowledgements being sent 
in both directions.  As was the case with CDR, a design 
mindset would lead an engineer to implement the VC 
according to the protocol specification, that is, to automatically 
send ACK telegrams when it receives error-free transfers from 
the DUT and to automatically send NACK telegrams when it 
receives transfers with errors.  This is how a real design would 
be expected to interact with the DUT after all. 

The problem with this approach is that it ignores the fact 
that under normal simulation conditions (i.e. simulations 
without any error injection by the testbench), the DUT should 
never have errors in its transfers.  This implies that the 
testbench should never have to automatically respond to 
anything with a NACK.  Doing so would potentially mask 
DUT errors and allow a simulation which should have failed to 
continue running.  The verification mindset recognizes that in 
the event that the DUT generates a transfer with an unprovoked 
error, rather than automatically replying with a NACK, the 
VC’s duty is to output an error to the log file and cause the test 
to fail.   

For situations where the DUT is provoked into generating 
errors (usually restricted to specific directed testcases where 
the testbench does error injection), the testcase writer must be 
able to manually control the VC to send a NACK in response.  
As such, the VC does need to support the ability to send 
NACKs manually.  

To drive the point home, let’s take one more example that 
illustrates the problem of a VC doing automatic handshaking 
under abnormal circumstances.  Let’s assume that the protocol 
states that when design sends a transfer, it must retransmit it 
again after a given time elapses without a response. 

 

Figure 4 Packet retransmission due to timeout 

Upon timing out, a VC built with a design mindset might 
retransmit the same transfer again, exactly according to the 

protocol, and in the worst case, without flagging an error for 
the DUT timeout that occurred.  The same VC built with a 
verification mindset would instead log an error after the 
transfer timed out, while recognizing that it’s a waste of time to 
implement any automatic retransmission capabilities.   Manual 
retransmission capabilities however are needed to support error 
injection testcases. 

The above examples illustrate the verification mindset’s 
approach to implementing handshaking protocols: a VC is 
responsible for implementing the protocol, but only up to a 
point; implementing the full protocol as a design could very 
well lead to poor verification results and wasted effort. 

C. Status Indicators and Clocks 

Let’s look at an example of a design which indicates buffer 
fullness with output ports such as “empty” and “full”.  Any 
non-error-injecting testcase will want to avoid overflowing and 
underflowing the design’s buffer, and so it will likely want to 
make use of those flags.  However, using the flags without 
taking the proper precautions is an example of the design 
mindset at work.  It creates the potential for a situation 
whereby the testbench listens blindly to the DUT, and risks 
missing out on bugs lurking in the things it is listening to.  

 

Figure 5 DUT outputting status indicators to testbench 

The verification mindset, on the other hand, asks the 
question “how do we know for sure that the empty/full status 
indicators don’t have any bugs in them?”  The answer to this is, 
“we don’t”, at least, not until we’ve done some more work.  
This could be in the form of a white-box assertion which 
checks the RTL’s read and write pointers versus the status flag 
values; or it could be done with a monitor in the environment 
which tracks the number of items written to and read from the 
buffer; or even with a dedicated testcase that runs in a 
regression alongside other tests which blindly make use of the 
flags.  

  Another classic example of this arises with clock signals – 
under almost all circumstances, a testbench should never 
“snoop” the DUT’s internal clock signal to use as its own, 
unless it is doing cycle-by-cycle checks on it (which can  
hinder simulation performance).  Engineers coming from a 
design mindset fall into this trap because it results in fewer 
failing tests and faster environment bring-up time, but it also 
poses a huge risk in terms of masking clocking bugs in the 
DUT.  The proper approach is for the testbench to generate its 
own clock instead, and for the verification engineer to be 
prepared to deal with any testcase failures that arise due to 
clocking bugs (both in the DUT and the testbench).  The only 
circumstance in which clock snooping is a valid approach is 
when the clock rate is changing according to a random pattern 
(likely for security purposes) that the testbench cannot predict. 



The bottom line is that whenever feasible, the verification 
environment should only make use of DUT signals if it has 
first performed checks on them.  Anything short of this boils 
down to a ‘blind leading the blind’ situation, leaving the door 
open for bugs to go unnoticed. 

III. OUTSIDE-THE-BOX VERIFICATION PLANNING 

When someone with a design mindset does verification 
planning, they most likely will read the specification and come 
up with scenarios to test each of the specified features.  In 
addition, they will plan on doing error injection for the 
situations that the DUT can detect (e.g. CRC errors in a 
communication protocol).  While this is a fine approach for 
finding the more obvious bugs in a design, as we will show in 
this section, it does not go far enough to find the more obscure 
bugs which are every bit as critical. 

A. Corner Case Identification 

1) Function Input Parameters 
Imagine a design that draws circles of varying radii, with 

the radius being an input to the design’s  
“draw” function.  A designer might decide to test this by 
sending a variety of input radii from the smallest possible valid 
circle to the largest possible one, and, once they all pass, 
declare that the design is verified.  The verification mindset 
however will do all of that plus ask the question “what happens 
if we try to draw a circle of radius zero?”.  A designer might 
very well answer that question with “a circle of radius 0 is 
invalid, so there’s no need to test it”.  While there’s no reason 
to doubt what the designer has said, the verification mindset 
doesn’t stop there.  Whether or not something is valid or 
invalid is in fact irrelevant; what is important is, can such a 
scenario ever happen, and if the answer it “yes”, then it must be 
simulated to ensure that the design recovers from it.  A circle 
of radius zero is as valid a case as simulating a CRC error in a 
communications protocol: should it happen? No.  Should we 
verify how the device recovers if it does happen? Yes.  As it 
turns out, in a specific circle-drawing design encountered by 
the authors, unbeknownst to the RTL designer, zero-radius 
circles were in fact being frequently generated by software 
under certain conditions.  It was the responsibility of the 
verification engineer to take a higher-level view of things in 
order to build the best possible verification environment. 

2) Register Accesses 
Take the following scenario: a design is specified to have a 

low-power mode that can be activated by writing a ‘1’ to a 
given register bit.  The bit’s default value is ‘0’, making the 
device be in normal mode by default.  In the verification 
planning stage, testing of this low-power mode is put into a 
directed testcase.  When it comes time to implement the test, an 
engineer creates a test that does the following: 

 Write ‘1’ to the low-power bit 

 Check that the device enters low-power mode 

 Write ‘0’ to the low-power bit 

 Check that the device exits low-power mode 

The test is added to the regression and passes repeatedly 
until tapeout.  As such, the feature is considered to be verified.  

If you haven’t realized it yet, the above approach, while 
appearing sound, has left a critical case uncovered: what 
happens when a ‘0’ is written to the bit when the bit is already 
‘0’ (or a ‘1’ when it is already ‘1’)? From a design mindset 
perspective this might seem like a nonsensical case, but as it 
turns out, in a design encountered by the authors, simulating 
this case uncovered a critical bug: writing a ‘0’ to the low-
power bit when it was already ‘0’ caused the design to 
incorrectly enter low-power mode.   

Outside-the-box verification planning involves looking at 
all of the things that could conceivably happen, regardless of 
whether or not the DUT is designed to handle them, and 
regardless of what designers may say.  A verification effort that 
does not do error injection is quite simply incomplete.  As you 
can imagine, doing error injection in creative ways greatly 
expands the search space for finding bugs, and so experience 
and a degree of gut-feeling is required to target those areas 
most likely to be concealing real bugs.  The examples given 
above illustrate the kinds of places one can look for them. 

IV. PRIORITIZING DEBUGGABILITY 

With the exception of white-box assertions and code 
comments, RTL code is not usually designed for debuggability.  
This is to be expected, because RTL code is often used by the 
same people who develop it (with the notable exception of 
reusable design IP).  Testbenches, on the other hand, are 
mostly used by engineers who are tasked with writing 
testcases, who have had no part in the testbench development.  
For this reason, a well-written testbench puts emphasis on 
debuggability, so that its users can efficiently write and debug 
things as issues come up.   

Let’s look at an example where the verification mindset 
applies this principle. 

A. Protocols with Bi-Directional Ports 

Some devices try to save on pins and board trace routing by 
employing bi-directional ports for data and/or clock signals.  
The nature of such protocols is that there will always be at least 
two communicating devices responsible for driving the data 
and/or clock signals (otherwise there would be no need for bi-
directional ports at all).  Some devices can be masters (i.e. they 
initiate transfers), some can be slaves (i.e. they respond to 
transfers), and some can handle both roles depending on the 
situation.   

 

Figure 6 Bi-directional bus with multiple masters and slaves 

When building a VC for such a protocol, a design mindset 
might lead an engineer to follow the letter of the protocol and 
implement the VC interface with bi-directional ports as 
follows: 
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Figure 7 Design-centric approach for bi-directional interface 

 

Figure 8 Design-centric approach for bi-directional testbench 

While this approach allows the VC to fulfill the protocol 
requirements, it offers users of the VC a low degree of 
debuggability.  Let’s look at an example to examine why this is 
the case: in any verification environment of a design with bi-
directional ports, at a minimum there will be one such VC 
connected to one DUT.  However in verification environments 
for some protocols like I2C there is the potential to have 
multiple VCs connected to multiple DUTs, each acting as 
masters, slaves, or both (see Figure 9). 

 

Figure 9 Bi-directional bus with multiple VCs and DUT 

Because all of the DUTs and VCs connect to the same 
bidirectional ports, debugging a waveform quickly becomes a 
painstaking experience because it is impossible to tell which 
component is driving what value. 

Using a verification mindset, we make use of both 
unidirectional and bi-directional signals to achieve both ease of 
debug and adherence to the protocol.  This is shown in the 
following example, in which a pull-up is used on both the data 
and clock lines: 

 

Figure 10 Improved approach for bi-directional interface 

(In Figure 10, “(highz1, strong0)” means “when signal is 
assigned with a ‘1’, it takes on ‘Z’; when it is assigned to with 
a ‘0’, it takes on ‘0’ ”). 

The testbench then needs to connect to the interface as 
follows: 

 

Figure 11 Improved approach for bi-directional testbench 

hookup 

From this point on, components inside the VC only interact 
with the unidirectional versions of the signals.  So for example 
driver code will drive the “_o” versions of clk and data, and 
will read the “_i” versions of them: 

 

Figure 12 VC driver interacting with bi-directional interface 

  With this approach, a waveform can show what any VC 
agent is driving and observing at any time, leading to greatly 
improved debuggability for users of the VC.  This illustrates 

class protocol_driver extends uvm_driver; 

  … 

  task drive_bit(input bit data); 

    …     

    m_vif.driver.clk_o <= 0; 

    # 10ns; 

    m_vif.driver.clk_o <= 1;  

    if (m_vif.driver.clk_i == 0) 
      @(posedge m_vif.driver.clk_i); 
    … 

  endtask: drive_bit 

endclass: protocol_driver 

module testbench; 

  … 

  wire data; 

  wire clk; 

   

  pullup(data); 

  pullup(clk); 

 

  protocol_if vc_if(data, clk); 

  … 

  design_t dut_inst (.data(data), .clk(clk)) 

  … 

endmodule: testbench 

 

interface protocol_if(inout data, inout clk); 
 
  logic clk_o = 1; 
  logic clk_i; 
  logic data_o = 1; 
  logic data_i; 

 
  assign (highz1,strong0) data = data_o; 

  assign (highz1,strong0) clk  = clk_o; 
 
  assign data_i = data; 
  assign clk_i  = clk; 

 

endinterface: protocol_if 

 

 

 

module testbench; 

  … 

  wire data; 

  wire clk; 

   

  protocol_if vc_if(data, clk); 

  … 

  design_t dut_inst (.data(data), .clk(clk)) 

  … 

endmodule: testbench 
 

interface protocol_if(inout data, inout clk); 

endinterface: protocol_if 
 



how the verification mindset puts a high priority on 
debuggability, by finding solutions that allow users to resolve 
issues more quickly.  

V. ROUNDING OUT THE MINDSET 

There are several remaining topics that need to be touched 
upon in order to round out the scope of this paper.  

A. No Coverage Without Checking 

The example presented earlier regarding writing a ‘0’ to a 
low-power bit when it’s already ‘0’ highlights another aspect 
of the verification mindset, which is to never do coverage on 
anything in the absence of doing checks.  This rules out doing 
register value coverage, because it is misleading at best and a 
waste of compute resources in a large system-on-a-chip (SOC).  
Coverage would say “yes we have put the values ‘0’ and ‘1’ in 
the low-power bit”, giving the false sense of security that there 
are no bugs hiding there. 

B. Approach to Debugging 

Designers usually use waveforms to debug issues in a 
simulation, such as failing monitor checkers and assertions.  
This makes perfect sense, as almost all information regarding 
the DUT’s state can be observed in waves.   

This is not true for VCs however, because of the many 
operations they do are in zero time, and the dynamic data 
structures they use for things such as sending stimulus.  While 
simulators are always getting better at making this type of 
information available to both waveforms and other debug 
windows, the verification mindset recognizes that one of the 
best tools for doing debug is the logfile itself.   

For the logfile to be of use, the VC needs to have an 
appropriate and consistent messaging scheme (the contents of 
which are beyond the scope of this paper).  Sufficeth it to say 
that verification engineers in general should not be debugging 
their testbench using waveforms, but rather they should be 
relying on logfiles.  If they are unable to debug things using the 
logfile, then this is an indication that the testbench’s messaging 
scheme needs improvement. 

C. Zoom-In, Zoom-Out Thinking 

Something that verification engineers sometimes struggle 
with when doing system-level verification is the fact that they 
must be able to switch from low-level thinking (what we will 
call “zoom-in”) to higher-level thinking (what we will call 
“zoom-out”). When zoomed-in the engineer does tasks such as: 

 Understand design specifications 

 Write verification plans based on the specification 

 Write code to implement the verification plan 

 Write testcase code 

 Debug failing testcases 

Verification engineers must also do a series of tasks while 
zoomed-out such as: 

 Decide which design features to focus on to maximize 
bug discovery 

 Devise creative ways to tease bugs out 

 Allocate time so as to get the most important checking 
and coverage for the effort  

The main reason for this is difference is that verifiers need 
to deal with a larger scope than designers do.  In addition, 
unlike designers, who must complete their design before 
tapeout, verifiers can continue verifying past tapeout and 
therefore must prioritize what is to be accomplished before 
tapeout, what can be put off until afterwards, and what can be 
dropped altogether.  To do this effectively, a verifier needs to 
be constantly aware of a wide array of information such as 
system architecture, design hot-spots, project schedule, and 
client deliverables.  The fact that each of these items can 
change from one week to the next means that zoom-out 
thinking needs to be done on a regular basis, to ensure that the 
right things are being focused on.  For this reason, it is not 
enough for a verification engineer to just be proficient in the 
skills that comprise his or her toolbox; there is a need to stand 
back, listen, and choose the best path forward in order to truly 
be effective. 

D. What Are We Trying to Accomplish Here? 

In the business world, an important question that 
organizations must continuously ask themselves is “what 
business are we in?”.  The notion is that by answering it, a 
business can identify where it needs to focus its attention, who 
its competitors really are, and, what types of things it can 
outsource to third parties. 

In the verification world, a similar question is “what are we 
trying to accomplish here?”  Will the task at hand lead to a 
device with fewer bugs?  Is it already being accomplished by 
other elements in the environment?   

A good example of verification engineers not asking this 
question is when they do coverage on DUT outputs.  While this 
looks fine on the surface, when one asks “what are we trying to 
accomplish here?” the answer that comes back is usually “not 
very much!”.  With coverage on the testbench’s stimulus and 
checks on the DUT’s outputs, there is usually no need to do 
coverage on DUT outputs.  The result is just wasted effort that 
should have been spent elsewhere. 

Note that doing coverage on internal DUT signals is 
another matter, and can often be useful towards achieving 
quality tapeouts. 

E. Coverage, Not Testcases 

The design mindset sometimes places too much emphasis 
on testcase writing and evaluating passing rates.  This line of 
thought is based on the belief that writing more testcases 
translates to more things being tested, and more passing 
testcases translates to more coverage of the DUT’s 
functionality.  It is the way things were done before 
constrained-random pre-silicon verification came into fashion, 
and continues to be used in many emulation and validation 
setups.  The benefits of it are that it is easy to explain and 
understand, and simple to track progress with. 

The verification mindset, on the other hand, recognizes that 
the “holy grail” is achieving coverage closure, provided that 



the coverage is accompanied by proper checks (as previously 
mentioned).  It views testcases as nothing more than a vehicle 
by which coverage closure can be reached.  As such, the 
number of testcases is viewed as being an incidental artifact of 
the planning process, and the passing rate is viewed as being  
important only inasmuch as it contributes to coverage (failing 
tests should not be counted towards coverage). 

F. Liaison between Design Architect and Design Engineer 

A key difference between designers and verifiers is the 
level of abstraction at which they operate.  Digital designers 
usually work at a lower level of abstraction, implementing a 
single module that performs a specific aspect of a larger design 
or protocol.  Verification engineers, on the other hand, work at 
a higher level, creating a VC that implements all aspects 
required to interface with and check a given design.  While this 
is well understood, the unique role that this creates for a 
verification engineer is less so.   

The standard situation is one where a design architect 
writes out a specification, and a design engineer implements a 
block according to their understanding of it.  During the 
implementation phase, the verifier is in fact the liaison between 
the two groups that ensures communication and coherency 
between them.  This could involve identifying aspects of the 
architecture that will lead to increased verification effort such 
as a lack of consistency, or the introduction of additional 
modes that are “nice-to-haves” rather than essential features.  
In such cases, while it’s everyone’s responsibility to take care 
to avoid such things, it is the verification effort that will usually 
be most impacted, and therefore the verification engineer’s 
principle responsibility to speak up and say “here’s why we’re 
not going to do it that way”. 

G. Quitting on First Error 

When a simulation encounters an error, the verification 
engineer must decide to either let the simulation continue 
running, or exit right there and then.  While there are some 
situations where it can be advantageous to continue running, 
for the vast majority of cases, quitting immediately is the right 
thing to do.  Let’s look at why this is so. 

When the testbench discovers an illegal condition in the 
DUT, there’s a decent chance that from that simulation time 
onward, the testbench is no longer doing proper checking 
anymore.  For example, imagine a protocol with a start-of-
frame (SOF) and end-of-frame delimiter. 

If the DUT sends a corrupted EOF, the testbench monitor 
will likely interpret it to be just another data byte, and could 
eventually raise an error for some type of data length violation.  
If another SOF is sent before such a length violation is 
declared, the monitor might interpret it as an illegal symbol in 
the data stream.  At this point, depending on the protocol, the 
VC could be in a situation where it cannot recover and do its 
job of checking properly.  Note that this is perfectly acceptable.  
The testbench is not a DUT, and does not need to be able to 
recover from error scenarios.  It can be thought of a kind of 
mousetrap which, upon catching a bug in a given simulation, is 
closed for catching subsequent ones.  The verification mindset 
recognizes that putting in any effort to make the testbench 
recover after detecting an error is wasted effort that should be 
directed elsewhere.   

The situation in which it is useful to run beyond an error is 
when the time comes to debug that error, and simulating longer 
will provide information to help diagnose the issue.  This can 
be setup using a simulator command-line directive, which 
would override the default behaviour of quitting on the first 
error. 

VI. CONCLUSION   

In this paper we have demonstrated that the verification 
mindset is very different from that of a design mindset, and, 
when properly applied, will lead to improved results with 
respect to bug-free device tape-outs.  The mindset itself is 
anchored upon finding bugs by any means necessary, even if it 
means not replicating reality or faithfully implementing a given 
protocol specification.  It recognizes that building 
debuggability into a testbench, through architectural and 
messaging decisions, will lead to improved ease of use, and 
that identifying difficult corner cases requires one to think 
outside of the design specification.  Finally, it involves some 
softer skills to avoid the pitfall of not seeing the forest for the 
trees.   
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