

1

Verification IP for Complex Analog and Mixed-

Signal Behavior

Thilo Vörtler, COSEDA Technologies GmbH, thilo.voertler@coseda-tech.com

Karsten Einwich, COSEDA Technologies GmbH, karsten.einwich@coseda-tech.com

Abstract—This paper presents a framework for the construction of mixed signal verification IP based on SystemC

AMS. These verification IP allow the specification of complex analog continuous time behavior, which is often part of

standard specifications. In this paper it is demonstrated how signals for analog checks are sampled, arbitrary reference

signal values can be described, and custom comparison algorithms can be implemented.

Keywords—Verification IP;analog mixed-signal; SystemC AMS

I. INTRODUCTION AND RELATED WORK

The SystemC AMS standard [1][2] allows it to model complex mixed signal systems, including digital and

analog behavior, at high abstractions levels. These designs can be used as virtual prototype of a system e.g. for

software development, or as golden reference for design implementation in hardware development. For the verifi-

cation of such systems simulation based verification methodologies like the Universal Verification Methodology

[3] can be used. However, these methodologies are tailored towards checking digital behavior, i.e. monitored values

are control signals, whose timing can be expressed as multiples of clock edges. Therefore assertion languages like

System Verilog Assertions [4] can be used that allow it to specify digital protocol behavior.

In contrast analog signals are characterized by a continuous time scale and violations are characterized in the

simplest case by violating a signal threshold that can occur at any time. A threshold is often described as an analog

function e.g. a sine wave. Furthermore, checks are often more complicated than detecting a simple threshold cross-

ing. For example analog characteristics like a frequency drift have to be considered within the check algorithm.

Related work in the field of SystemC AMS verification of analog behavior is limited. In [5] an assertion based

approach to SystemC AMS verification is given. However, no details about the library implementation are pro-

vided. Similarly, in [6] the analog assertion language STL is presented, which however has no implementation

available for SystemC AMS. Our work in contrast, is not intended to build assertions as no logical layer is provided

to connect checkers. However, the proposed framework allows it to easily describe analog reference functions in

the form f(t).

The objective of this paper is to introduce a checking framework that is flexible enough to support the construc-

tion of reusable analog verification IP, which can be used within simulation based verification methodologies. The

paper is structured as follows. In Section II the general checking framework is introduced. Section III then describes

how custom check algorithms can be implemented within the framework to build a library of custom checker ver-

ification IP. Section IV will demonstrates how complex analog behavior can be expressed for an operational am-

plifier circuit in combination with a high pass. In Section V conclusions are given.

II. CHECKER FRAMEWORK

A. Motivational Example

As an example for the checker framework the sinusoidal signal show in Figure 1 is used, which can be easily

described using SystemC AMS is shown. For the signal (diamond markers) it shall be checked, that it is always

below an upper bound reference signal with a certain offset. A check of this kind can be specified using the checker

framework using the following syntax:

2

CHECK_UPPER_BOUND_DYNAMIC(signal_s, sin_reference(0.5, 1e3), sc_time(0.0, SC_MS),

sc_time(10, SC_MS));

Whereby CHECK_UPPER_BOUND_DYNAMIC defines that the checker is an upper bounds checker. The observed

signal is called signal_s, which is passed as a reference. The next argument specifies the reference function that is

used as upper bound for the signal. In this case it is sinus function with an offset on the amplitude of 0.5 and a

frequency of 1 kHz. Afterwards, the start and end time of the checker is specified in this case checker runs from

now up to 10 milliseconds in the future. A checker function can be called within every SystemC method or thread

and will be started, when the code location is executed.

In the example it can be seen, that there is a slight frequency mismatch between the observed signal and the

reference. The checked signal crosses the upper threshold at about 7 milliseconds simulation time and an error will

occur. These errors can be printed on the console, used for coverage collection, or to stop the simulation in case of

a regression run.

B. Framework Overview

Every check that a user can specify within the checker framework consists of three basic building blocks. These

blocks are signal preprocessors, compare algorithms, and references for expected values. From those a library of

building blocks can be created, which can be combined by the user in a kind of “Lego” fashion to form a user

specified checker as shown in Figure 2 . A short description of the components follows.

 Signal preprocessors: Generates the samples which are used within checkers to compare values with a ref-

erence signal. For each time point, which is relative to the start time of the checker, one sample is generated.

Samples can be extracted from SystemC AMS signals using sample generator classes provided by the

framework, or be read from an input files (see Section II.C for details on sampling semantics). It is possible

to combine samples from different signals, extracted at different time points, e.g. to build a preprocessor

which calculates the difference of two signals.

Figure 1: Checking upper bound for a sinusoidal signal compared to a reference signal.

Figure 2: Basic building blocks for creating check functions from a library of building blocks.

3

The signal preprocessor is the only part of a checker that is allowed to consume time. It has to provide

samples from the specified check function start time till the end time.

 Compare algorithms: The basic functionality of the compare algorithm is to decide whether the generated

sample value received from the preprocessor is correct compared to reference values. The compare algo-

rithm is called with a sample value and an associated time point to which the sample belongs. As check

algorithms are objects they can contain arbitrary complex computations, as they can store values received

from previous calls.

 References: Provide expected values for a specified time point. The reference values can be either calculated

or read from a file source. Depending on the kind of used compare block, also several reference values can

be provided for a time point. This is for example useful when the reference specifies an upper and lower

bound signal bound. The simplest form of a reference function returns a constant value, independent of the

specified time point.

As the comparer is passed the reference calculation object it can request arbitrary many reference values at

different time points. Furthermore, a comparer can store sample values for more complex checking algorithms in a

local history-

The principle interaction between the building blocks when running a checker is depicted in Figure 3. The

preprocessor provides samples, which are passed to the comparer. Based on the sample time the comparer then

requests reference values. All computations are triggered by the preprocessor, when a new sample is generated and

no delay is allowed in the chain between preprocessor and reference, so that evaluation is immediate. When sample

values need to be reused they have to be stored either in the preprocessor (for interpolating preprocessors) or in the

comparer for complex checking algorithms.

C. Sampling Semantics for SystemC AMS Signals

As part of the preprocessor the samples used for checking can be extracted from the digital event based SystemC

signals, or from calculation points within the SystemC AMS domain, e.g. when an equation is solved or the dataflow

cluster calculates new values.

Three kinds of checkers, depending on the time point when they are executed, are differentiated. Immediate

checkers sample signals within the same SystemC delta cycle of their creation. Delayed checkers run at a specified

time point in the future. Dynamic Checkers are specified with start and end times, relative to their creation time,

and can generate multiple samples for checking. An overview of the used sampling semantics to extract values with

preprocessors is given in Table 1. The sampling in case of the immediate and delayed checkers always happens in

the last delta cycle of the specified time point.

Figure 3: Interaction between the different checker components.

4

More complex is the sampling for the dynamic checkers. In case of event driven SystemC signals, a sample is

generated when an event on the signal occurs during the runtime of the checker. As in this case for constant SystemC

signals no sample would be generated, the signal is always sampled at the beginning of the interval.

Table 1: Sampling semantics for SystemC AMS signals.

Checker type SystemC event driven signals SystemC AMS signals (TDF, LSF, ELN)

Immediate
checker

Signal is sampled in the same delta cycle. Signal is sampled in the same delta cycle and no
interpolation is performed.

Delayed

checker

Signal is sampled at the specified time point using the last delta

cycle value of the checked signal (last visible signal value).

Signal is sampled at the specified time point and

no interpolation is performed.

Dynamic

checker

Signal is sampled at each SystemC time point , for which an

event occurs within the specified time range. The sampled value

is the value of the last delta cycle (last visible signal value). A

sample is always generated at the start point of the interval.

Signal is sampled at each SystemC AMS

calculation time point in the specified time range.

In case of SystemC AMS signals values are updated at the calculation time points of the AMS cluster. Therefore

SystemC AMS has been extended with additional callbacks that allow it to create events when new values in a

cluster are generated. Thereby it is also possible to react on dynamic TDF time steps as sampling is based on the

cluster calculation time points. Whenever a new calculation is performed a new sample is generated.

From the user point of view all calls to the user checker functions are non-blocking i.e. they return in the same

delta cycle, without any time passing. Therefore, the framework automatically spawns processes in case of the

delayed and dynamic checker functions.

D. Additional Framework Features

In addition to providing base classes for implementing the checker building blocks the framework provides

features for regression runs and debugging of failed checks:

 All checkers are automatically registered within a central registry for creation of post simulation summary.

 Logging of checker statistics including number of failed checks, checked samples, which can be used for

coverage collection.

 User definable, SystemC based severity mechanism for checkers, allowing it to stop simulation when a

check fails. Log messages can be filtered using standard SystemC mechanism.

 Debugging of failed checks using automatic tracing of samples and reference values in a file as shown in

Figure 1.

 A library of pre-defined check components like differential signal preprocessors, bound based compare al-

gorithms (upper, lower, range) and reference functions.

III. BUILDING CUSTOM VERIFICATION IP

The proposed framework provides base classes and utility functions for implementing custom building blocks.

This section demonstrates how these can be used to create a library of checker verification IP. A user of the verifi-

cation IP can call a dynamic checker (running in a specified time range) with arbitrary library blocks, using the

following syntax:

CHECK_DYNAMIC(preprocessor(arguments), comparer(arguments), reference(arguments),

start_time, end_time);

Typical arguments for the preprocessor are the SystemC signals used for sampling. For the comparer and ref-

erence optional arguments for configuration of the blocks can be passed.

One challenge for implementing the blocks, is to make them generic by using C++ templates, so that different

SystemC datatypes can be used. In the following section, based on code examples, the implementation of the build-

ing blocks using the APIs provided by the checker framework is shown.

5

A. Preprocessor Multiplying Signal With Constant Factor

1
2
3
4
5
6
7
8
9
10
11
12

template<class Tsignal, class Tsample>
class factor_preprocessor: public check_pre_processor_base<Tsample> {
public:
 factor_preprocessor(Tsignal& signal, Tsample factor) : factor(factor) {
 this->register_sample_gen(new sc_gen<Tsignal>(signal));
 }
 void operator() (const sc_core::sc_time& sample_t, const Tsample& sample) override {
 this->sample_valid(sample_t, sample * factor);
 }
private:
 Tsample factor;
};

This example demonstrates how a preprocessor that multiplies samples received from a SystemC Signal with a

constant factor is implemented. A custom preprocessor is derived from the template base class check_pre_pro-

cessor_base<Tsample>, whereby the template parameter Tsample defines the type of samples the preproces-

sor produces. The constructor (line 4) takes as argument the SystemC AMS signal, which shall be observed and a

constant factor for multiplication of the sample values. In line 5 the signal is registered within the checker frame-

work using the register_sample_gen method using a predefined sample generator. A sample generator ex-

tracts samples from SystemC AMS signals as described in Table 1. Thereby all SystemC and AMS signal and port

types are supported. It is also possible to sample values from multiple signals, by registering several sample gener-

ators with corresponding processing callbacks.

The actual function the user has to implement is the operator(), which is called by the checking framework

whenever a new sample is available on the registered signals. The extracted sample can then be modified with an

arbitrary algorithm creating one final sample, e.g. samples from different sources can be added. The resulting sam-

ple is passed to the comparer using the function sample_valid, which takes as argument a sample of type

Tsample and the corresponding sample time. It is also possible to register multiple sample generators as source

for a sample

B. Upper Bound Compare Algorithm

1
2
3
4
5
6
7
8
9
10
11
12
13

template<class Tsample, class Tref>
class check_upper_bound_comp: public check_comp_base<Tsample, Tref> {

 bool operator()(const sc_core::sc_time& checker_time,
 const Tsample& value, check_ref_base<Tref>& ref) override {
 last_sample = value;
 last_ref = ref(checker_time);
 return (last_sample <= last_ref);
 }
private:
 Tsample last_sample;
 Tref last_ref;
};

A custom compare algorithm is implemented by deriving from the class check_comp_base<Tsample,

Tref>, whereby the template parameters define the type of the samples and reference values the comparer accepts.

The user has to implement the operator(), which is passed the time point of the sample, the sample value and a

reference function object. The function returns bool signaling whether the check was successful or failed. In line

7 the reference function is called with the current checker time, to access a value from the reference. A comparer

can request can values from the reference at different time points for more complex calculations. The actual upper

bound comparison is performed in line 8 and the return value is determined.

C. Sinus reference function

1
2
3
4
5
6

class sin_reference: public check_ref_base<double> {
public:

 sin_reference(double offset, double freq): offset(offset), freq(freq){}

 const double& operator ()(const sc_core::sc_time& tm) override {

6

7
8
9
10
11
12
13
14
15

 // Calculation of the new sinus value
 current_value = sin(2.0*M_PI*freq*tm.to_seconds()) + offset;
 return current_value;
 }

private:
 double current_value;
 double offset,freq;
};

Similar to the preprocessor and comparer, a custom reference function is derived from the base class

check_ref_base<Tref>. In this case the reference function provides samples of type double. Again the oper-

ator() has to be implemented by the creator of the reference block, which takes as argument the time of the expected

reference value. For this reference an offset and frequency are specified within the constructor (line 4). The actual

calculation of the sinus value, depending on the arguments is performed in line 8.

IV. APPLICATION EXAMPLE – OP-AMP WITH FAULT INJECTION

To demonstrate the flexibility of the framework for the verification of an analog applications consider the op-

amp circuit shown in Figure 4. This is a typical circuit, as it can be simulated using the electric linear network

(ELN) computation model of SystemC AMS. The basic operation of this circuit is adding two analog input signals

inp1 and inp2 with the result being signal outp. Each of the input signals is dc decoupled using a high pass

filter. Using the digital control signal contr1 it can be chosen, whether inp1 shall be added to the signal. In

addition the circuit supports a mode, where an additional feedback capacitor can be activated (signal contr2, low

pass behavior).

The expected behavior of the circuit can be calculated from the equations of a first order high pass and the op-

amp for a sinusoidal signal, when disabling the feedback capacitor (contr2 = false). The output amplitude of

a first order high pass is:

𝑈𝑜𝑢𝑡 =
𝜔𝐶𝑅

√1 + (𝜔𝐶𝑅)2
∗ 𝑈𝑖𝑛 (1)

Similarly the phase response can be calculated as:

𝜑(𝜔) = arctan(
1

𝜔𝐶𝑅
) (2)

p n
i_r8

value = 10.0e3
p n

i_r4

value = 10.0e3

p n
i_r5

value = 10.0e3

gnd

nn

np

i_opv1

outp

OPV

p n

i_c1

value = 0.1e-6
q0 = 0.0

p n

i_c2

value = 0.1e-6
q0 = 0.0

p n

i_c4

value = 0.1e-6
q0 = 0.0

p n

i_ry1

ron = 0.1e-6
roff = 1e8
false

p n

i_ry2

ron = 0.1e-9
roff = 1e8
false

p n

i_c3

value = 0.047e-6
q0 = 0.0

inp1

s_out_opv

s_opv_n

inp2

s_vi1_hp

outp

s_vi2_hp

cont r1 cont r2

Figure 4: op-amp circuit for adding analog input voltage signals

7

To easily implement this specification a generic reference function was implemented (compare Section III.C)

that allows the expression of an arbitrary function f(t). This reference function takes as constructor argument a

C++11 lambda function, which describes the reference behavior. A checker with the reference behavior can thus

be implemented in SystemC AMS as shown below:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// Define sinus input lambda function
auto f_inp1=[=](double t){ return sin(2.0*M_PI*f1*t); };
auto f_inp2=[=](double t){ return sin(2.0*M_PI*f2*t); };

// Amplitude of high pass (wCR)/sqrt(1.0 + (wCR)^2)
double a_vinp1 = 2.0*M_PI*f1*c1*r4/sqrt((1.0+pow((2.0*M_PI*f1*c1*r4),(2.0))));
double a_vinp2 = 2.0*M_PI*f2*c2*r5/sqrt((1.0+pow((2.0*M_PI*f2*c2*r5),(2.0))));

// Phase of high pass arctan(1.0/(wCR))
double ph_hp_inp1 = atan(1/(2.0*M_PI*f1*c1*r4));
double ph_hp_inp2 = atan(1/(2.0*M_PI*f2*c2*r5));

// Check result
CHECK_RANGE_EPS_DYNAMIC(outp,
 f_t([=](double t) //reference (expected) function
 { return -(a_vinp1*f_inp1(t+ph_hp_inp1/(2.0*M_PI*f1)) +
 a_vinp2*f_inp2(t+ph_hp_inp2/(2.0*M_PI*f2)));
 }) ,
 0.1, sc_time(1.0, SC_MS), sc_time(4.0, SC_MS));

In lines 1-3 the input signal behavior is defined for the two inputs inp1 and inp2, whereby f1 and f2 describe

the chosen frequencies of the signals. Similarly in lines 5-7 and lines 9-11 the output amplitude and the phase

response of the high pass are calculated according to equations (1) and (2).

The actual definition of the checker for the signal outp is shown line 14-19. The checker is a range checker,

which uses for comparison an absolute epsilon range of 0.1 (line 19) around the defined signal reference. The

reference function is passed a lambda function (lines 15-18), which calculates the (negated) sum of the two input

signals. In Figure 5 simulation results for an input frequency of f1 = 2.73 kHz and f2 of 1 kHz are shown. At the

top output signal outp is shown, with the allowed boundaries calculated from the reference function. Below the

corresponding input values are shown. It can be seen that the output signal stays within the specified range.

For demonstrating the error detection capabilities a fault was injected in the op-amp circuit. Therefore, an ad-

ditional resistor was added at inp1. This resistor leads to a different behavior of the input high pass, corresponding

to a deviation from the system specification. As the reference is unchanged the checker framework is able to detect

Figure 5: Simulation results of the op-amp with reference values calculated using the checker framework.

8

theses errors, without any change on the verification part. The simulation results with the added resistor are shown

n Figure 6. The allowed boundaries are shown in black as in Figure 5. When the signal violates the defined bound-

aries the output signal is marked red. The current tool integration within the COSIDE® tool environment from

COSEDA technologies allows it to graphically highlight the time points when checker violations occurred, select

violation points and to collect statistics.

V. CONCLUSIONS

This work presents a verification framework for the construction of custom analog verification IP for SystemC

AMS. As shown in the example it is possible to easily describe expected complex analog behavior as in a specifi-

cation document and independently from a SystemC AMS model of computation. With these checks it is for ex-

ample possible to automatically detect errors during fault simulation or regression runs. Furthermore, checks can

be created dynamically and can also be easily integrated in complex verification environments like UVM SystemC.

REFERENCES

[1] “IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual," in IEEE Std 1666.1-2016,

vol.,no.,pp.1-236, April 6 2016 doi: 10.1109/IEEESTD.2016.7448795

[2] “IEEE Standard for Standard SystemC Language Reference Manual," in IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005) , vol.,

no., pp.1-638, Jan. 9 2012 doi: 10.1109/IEEESTD.2012.6134619

[3] “Universal Verification Methodology 1.2 Class Reference," Accellera System Initiative (2014).

[4] “IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language," in IEEE Std 1800-2012

(Revision of IEEE Std 1800-2009) , vol., no., pp.1-1315, Feb. 21 2013 doi: 10.1109/IEEESTD.2013.6469140

[5] Lämmermann, Stefan, et al. "Checking heterogeneous signal characteristics applying assertion-based verification." Frontiers in Analog

Circuit Verification-FAC (2009).

[6] Nickovic, Dejan, and Oded Maler. "AMT: A property-based monitoring tool for analog systems." Formal Modeling and Analysis of

Timed Systems (2007): 304-319.

[7] „COSIDE® 2.4“, Coseda Technologies GmbH, http://www.coseda-tech.com/ .

Figure 6: Simulation result for failing checker within the COSIDE® tool environment [7].

http://www.coseda-tech.com/

