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Abstract-As the scale of an SoC increases, the verification environment becomes much more complex. For 

example, the DUT may contain up to hundreds of interfaces. Verification environment automation becomes a 

must. In this paper, we propose a solution that can automatically build a verification environment from RTL. 

We use bus interfaces as an example to demonstrate how to extract design information from RTL. To be specific, 

we have used pattern matching to extract interface signals based on bus protocols. Besides interface signals, 

other information like data width, read/write ability can also be extracted from RTL. We have compared the 

execution of 3 projects before and after deploying this solution respectively. It is found that the effort in building 

the verification environment is reduced by ~70% after deploying this solution. 

I.   INTRODUCTION 

As an SoC scales upwards, the verification environment becomes much more complex. For example, if 

we want to verify the bus fabrics of the entire SoC, the DUT (Design Under Test) may contain up to 

hundreds of interfaces. It is prohibitive and error prone to code all the verification IP (VIP) connections by 

hand. So verification environment automation becomes a must. The design specification (either executable 

or pure documentary) is a good candidate for automatically building the verification environment. However, 

the design specification is not always well aligned with RTL changes. Therefore, it is preferable to extract 

design information directly from the RTL itself to build the verification environment.  

Fig. 1 shows a typical SoC bus architecture and the corresponding verification environment. In an SoC, 

there can be hundreds of bus interfaces under various protocols (ACE, ACE-Lite, AXI, AHB, APB, etc.). 

For each bus interface, the verification engineers need to gather the following information to build the 

verification environment: 
1. VIP interface connection: the design hierarchy and the signal names in RTL. 

2. VIP configuration: the capabilities of this bus interface. 

3. VIP stimulus constraint: the type of the transaction or sequence this bus interface can send/ receive. 

 
Figure 1. A typical SoC bus architecture and the corresponding verification environment. 



Accordingly, the challenges to build the verification environment arise from the following aspects: 

1. VIP interface connection 

a. There are many signals in a bus interface. For example, an AXI master has more than 50 

signals (including user-defined side-band signals). 

b. For a design with hundreds of interfaces, thousands of signals need to be connected. For 

example, one of our designs has more than 180 interfaces. The verification engineers need to 
connect over 4200 interface signals. 

2. VIP configuration 

a. A lot of variables need to be configured. For example, there are over 70 configurable variables 

in our AXI master VIP. Among them, 20 variables are design related. So the verification 

engineers need to collect the corresponding information from the design team. 

b. For a design with 180 interfaces, more than 1800 variables need to be configured in total. 

3. VIP stimulus constraint 

a. Taking timing and area into account, bus components are not always fully functioning. So the 

verification engineers need to customize the stimulus for each VIP. 

b. For a bus interface of master type, the verification engineers need to know what kind of 

transactions it can send. For example, an AXI master with only read channels cannot send 

write transactions. 
c. A bus interface of slave type should avoid receiving transactions beyond its capabilities. 

Otherwise it may cause false alarms. 

Traditionally, all the information is collected manually and the testbench is also hand-coded. Collecting 

such information takes a lot of time and effort. In addition, there is no auto-checking mechanism. So the 

mismatches between RTL and the design specifications cannot be found until the simulation fails. Once the 

RTL is changed, the information and the corresponding testbench will be out of date. It may take even 

more effort in debugging to find and correct the out-of-date design information. On the other hand, a lot of 

information as mentioned above can be automatically collected. For example, many of the interface signals 

and the configurable variables can be extracted from RTL. With necessary information, the testbench 

(including the stimulus constraints) can also be generated automatically.  

 Reference [1] introduces a method to automatically instantiate and connect VIPs. It can effectively 

reduce the effort to generate VIP connections, despite the fact that it still requires users‟ intervention. 
However, it does not provide a solid solution to maintain the testbench with changing RTL.  

In this paper, we propose a systematic solution to extract design information from RTL, and to build the 

verification environment automatically from the extracted information. The solution is illustrated in Fig. 2. 

We will use bus interfaces as an example to demonstrate how to extract design information from RTL. 

According to our observation, in practice, around 80% interface signals follow the same naming convention. 

We have used pattern matching to extract those signals based on bus protocols. Besides interface signals, 

other information like data width, read/write ability can also be extracted from RTL. Also, we provide an 

easy-to-use GUI for the users to review and revise the extracted information and to input those that cannot 

be extracted. Moreover, the users‟ input is checked against RTL to ensure its consistency with RTL and to 

eliminate human errors. With mature verification libraries at hand, the users can use built-in commands to 

generate the verification environment automatically. Besides, we also provide some APIs for the users to 

customize their own scripts. 
This solution has the following benefits: 

1. The time spent in building the verification environment can be reduced from months to weeks. 

2. It is ensured that the VIP connections are well aligned with RTL, thereby relieving DV from tedious 

debugging work. 

3. It is extendable. It can be applied to both standard bus (APB, AHB, AXI, etc.) and user-defined bus. 

Besides, it can be applied in both VMM and UVM. 

4. The verification environment can be easily migrated, either from VMM to UVM, or from one 

project to another. 

This paper is organized as follows. In Section II, we will introduce how to extract information from RTL. 

Here, we will use bus interfaces as an example. The idea can be also applied to other forms of information. 

In Section III and IV, we will introduce how to build bus bridge type verification environment for a single 

module and a sub-system respectively. Finally in Section V, we will present some results after deploying 
this solution to show its benefits. 



 
Figure 2. Flow for automatic verification environment generation. 

 

II.   INFORMATION EXTRACTION FROM RTL 

In this section, we will introduce how to extract design information from RTL for the purpose of building 

the verification environment. We will use bus interfaces as an example, but the idea can be applied to 

extraction of other information. After the design information is extracted, the users can validate the 

correctness of the information, and to input the missing information on a GUI. Then the design information 

is checked against RTL to ensure their consistency. To further reduce the users‟ effort, some information 

from previous designs can be reused. We will illustrate how to reuse this information. 

A. Information Extraction 
1) Configuration –The Bus Definition 

In order to extract a bus interface, we should know about the definition of this bus first. The job of 

defining a bus is left open to the users. In other words, we do not (and do not need to) know the definition 

of this bus beforehand. The users should provide a configuration file explaining the bus interface. Generally 

speaking, the configuration file contains the following items: bus protocol (e.g., AXI), type (master or 

slave), protocol signal name, signal direction (input or output), etc., as shown in Table I. In this way, we are 

able to extract not only standard bus interfaces but also user-defined interfaces, without the specific 

knowledge of bus protocols. For standard bus interfaces (e.g., AHB, APB, AXI), we can prepare their 

configuration files beforehand to save the trouble for users. As for user-defined interfaces, the users need to 

prepare their configuration files, using those of standard interfaces as templates. An example of APB bus 

configuration is shown in Table I. Here the last column specifies the “seed” signal of this bus protocol. The 
seed signal is used as a template for name pattern matching during the extraction. (See the next section for 

more details.) 
TABLE I. AN EXAMPLE OF APB BUS CONFIGURATION 

Protocol Type Signal Direction Seed 

APB master pclk input N 

 master presetn input N 

 master penable output N 

 master paddr output Y 

 master pready input N 

 

2) Bus Interface Extraction 

With the bus protocol configuration, we are then able to extract bus interfaces from RTL. There are 

several approaches to do the extraction. One approach is to extract all possible interface signals and then 

group them according to naming patterns. However, this approach would produce many collateral signals 
that do not belong to any bus interface. Preferably, the user may specify one or several “seed” signals in the 

configuration file. A seed signal is a bus protocol signal that is obligatory in this protocol and is most likely 

to appear in the same naming convention with other signals. It is used as a template for name pattern 

matching. In our implementation, the address signals (e.g., “paddr” in APB as shown in Table I) are always 

chosen as seed signals, so that the users do not have to worry about the selection of seed signals. Once the 



seed signals are specified, their naming patterns (e.g., prefix and postfix) are first extracted, and then used 

to find other signals in the same bus protocol. Using this approach, we are able to extract bus interfaces 

from the RTL of any instance of interest.  

Besides interface signals, other information can be extracted from RTL too, if we know how and where 

to get this information. Specifically, once a bus interface is extracted from a certain instance, its capabilities 

(e.g., address width, data width and read/write ability) can be also extracted from the RTL. For example, 
after bus interface extraction, if an AHB interface is found to exist in an instance, its address width can be 

obtained from the width of the port connecting to “haddr”; its data width can be obtained from the width of 

the port connecting to “hrdata” or “hwdata”; its read/write ability can be determined by if this interface has 

read or write signal. This information can be used to decide the capabilities of the VIP agents issuing or 

receiving transactions. Again, the extraction of this information can be specified by the users through a 

configuration file, similar to the one in Table I. 

After extraction, all of the information is saved, including the corresponding RTL hierarchies. This 

information will be shown on a GUI, as shown in Fig. 3. There are two panels in this GUI. The left panel 

displays the design hierarchies. And the right panel displays the information related to a selected bus 

interface. As there can be multiple interfaces under the same hierarchy, there will be several Tab pages on 

the right panel, each interface per Tab. Inside a tab page, the capabilities of the selected interface are shown 

on the top section, while the signal mapping between the bus protocol and the RTL is shown on the bottom. 
Moreover, the information that cannot be extracted or is not aligned with RTL will be highlighted (see 

Section II.B and II.C for more details). 

 
Figure 3. An example of extracted information shown in GUI.  

B. Manual Effort As A Complement 
In order to be able to extract a complete interface from RTL, all of the signals within this interface 

should follow the same naming convention (i.e., with the same prefix and postfix). Unfortunately, this is 

not always true. According to our experience, about 80% of interface signals follow the same naming rule, 

and hence can be extracted from RTL. That is to say, 80% of manual effort in binding VIPs can be saved. 

On the other side of the coin, the remaining 20% interface signals have to be manually input by the users. 

For example, generally speaking, the clock and reset signals do not follow the same naming rule with other 

signals. As a result, the users have to manually provide the clock and reset signals in order to form a 

complete interface. As for the information that has been successfully extracted, there is no guarantee that it 
will be exactly correct. Therefore, it is vital that the users can review and revise the extracted information 

and to input those that cannot be extracted, before rushing to generate the verification environment. We 

have provided an easy-to-use GUI (as shown in Fig. 3) for the users to access the extracted information and 

to collect the users‟ input. Through the GUI, the users are able to trace an instance by its hierarchy, to 

review and revise the extracted information, and to input the information that is still missing or is incorrect. 

C. Correlation With RTL 

To ensure the obtained information is well aligned with RTL, this information is then checked against 

RTL. The checking results will be back-annotated to the GUI automatically. From this GUI, the users can 



know whether the information is correct. It could ensure the correctness of the verification environment 

generated from this design information, thereby relieving the users from tedious debugging work. 

There is another benefit of this checking mechanism: it can help to make the acquired design information 

keeping up with RTL changes. Once the RTL is changed, the design hierarchy might be changed, and the 

bus interfaces might also be different from the original ones. In other words, the original information might 

be out of date. The users need to review the information again to ensure its correctness. However, it is 
painful and time-consuming to manually review the information one by one. In our implementation, the 

original information will be checked against the new RTL. Once there is an error found, the users will be 

prompted to make the corresponding revision. 

D. Correlation With Design Specifications 

Besides RTL, it is also possible to check between the acquired design information and some design 

specifications. For example, if we have a memory map (See Table II for example.) indicating the bus 

interfaces on corresponding instances, we are able to do cross-checking between the memory map and the 

extracted bus interfaces. Specifically, we can check whether the hierarchy information inside the memory 
map is correct, and whether the types of bus interfaces match those in the acquired design information, etc. 

Moreover, we can also check the addresses inside this memory map to see if there exists overlapping or an 

unexpected gap. In this way, we are able to achieve the consistency between RTL, design specifications 

and the acquired design information. This is helpful in building the verification environment. 

E. Information From Previous Designs 

Using the approach described above, the effort in building the verification environment is greatly 

reduced. However, it should be noted that the users‟ manual effort is still required. As will be explained 

below, the users‟ manual effort can be further reduced by exploiting the design information from previous 
designs. 

In today‟s SoC designs, many of the modules and/or IPs are reused among different designs. In other 

words, the RTL codes of many modules remain unchanged or only contain minor changes when migrating 

from one design to another. As a result, the information that we have acquired from previous designs can 

be reused. The users will only need to run the checker described above, to check whether the design 

hierarchies have been changed, and to examine if any of the design information has been revised. If an 

instance is simply moved from one hierarchy to another, the users merely need to revise the hierarchy of 

this instance, instead of re-extracting and re-inputting the design information. If the RTL of this instance is 

not dramatically different from the original one, the users just need to revise the design information 

accordingly. Therefore, by reusing the design information acquired from previous designs, we are able to 

reduce users‟ manual effort to the minimum. 

III.   VERIFICATION ENVIRONMENT FOR SINGLE MODULE 

For module-level verification, as the design is relatively simple, the above flow can be simplified into a 

push-button solution. Specifically, the testbench is immediately generated after the information extraction. 

The users can review and revise the generated testbench directly.  

Take a bus bridge type design as an example. Based on the information extracted from RTL, we can 
know the bus protocol of each interface and configure the VIP accordingly. A typical verification 

environment involves DUT instantiation, VIP interface connections, VIP construction, stimulus and 

checking mechanism etc., as shown in Fig. 4. So the following templates based on UVM methodology will 

be generated. The users can do further customization based on these templates if necessary. 

1. Testbench‟s top files for DUT instantiation, VIP interface connection, VIP agent instantiation, and 

VIP configuration. 

2. Default scoreboard connections, i.e., TLM connections from VIP agents‟ subscribers to 

scoreboard components. 

3. A text file for transaction constraint template. Using the method “Dynamic Constraint” [2], the 

text file can be parsed to generate transaction constraints. (See below for more details.) 

4. Functional coverage definition based on bus capabilities.  

5. A script to run simulations, e.g., a Makefile that includes default compilation and simulation 
command. 



 
Figure 4. A typical UVM verification environment. 

 

After the environment is built, the users will only need to do the following before running a simulation: 

1. Adjust a few signal connections if necessary; 

2. Add some VIP constraints; 

3. Modify the default VIP configurations. 

Then the users could simply type in “make” to run the testbench and get the simulation results. 

Take the bus interfaces in Fig. 3 for example. The testbench‟s top file as shown in Fig. 5 will be 

generated. Here the interface connections “user_interface.svi” is shown in Fig. 6. Similarly, template codes 

for UVM agents, UVM envs, UVM test classes, etc. can be generated. 
/// Testbench's top 

module top; 

    // Customized transaction classes per bus agent 

    `include "user_transactions.sv" 

     

    // UVM compilance environment, 

    // including all necessary components 

    // for bridge verification 

    `include "user_env.sv" 

     

    // Template test files. 

    // The users can customize it if necessary. 

    `include "user_test.sv" 

     

    // DUT instantiation 

    dut_top  u_dut(); 

     

    // VIP interface connections. See Fig. 5. 

    `include "user_interface.svi" 

     

    // UVM run 

    initial begin 

      run_test(); 

    end 

     

endmodule 

 // user_interface.svi 

 

// Define a macro for RTL hierarchy. 

`define APB_SLV_SRAMROM  \ 

             top.u_dut.u_infrasys.u_sramrom 

apb_slv_if   intf_apb_slv_sramrom( 

  .paddr (`AHB_SLV_SRAMROM.paddr), 

  .psel   (`AHB_SLV_SRAMROM.psel), 

  // all other APB signals 

); 

 

`define AXI_SLV_SRAMROM_A \ 

             top.u_dut.u_infrasys.u_sramrom 

axi_slv_if   intf_axi_slv_sramrom_a( 

  .araddr   (`AXI_SLV_SRAMROM_A.ARADDR), 

  .awaddr (`AXI_SLV_SRAMROM_A.AWADDR), 

  // all other AXI signals 

); 

 

// Connect to VIP agents through uvm_config_db 

initial begin 

  uvm_config_db #(virtual apb_slv_if)::set( 

        null, "uvm_test_top.env.APB_SLV_SRAMROM", 

        "vif", top.intf_apb_slv_sramrom); 

  uvm_config_db #(virtual axi_slv_if)::set( 

        null, "uvm_test_top.env.AXI_SLV_SRAMROM_A", 

        "vif", top.intf_axi_slv_sramrom_a); 

end   
Figure 5. Testbench‟s top file for DUT “u_sramrom” in Fig.3.                         Figure 6. Interface connections for DUT.

 

For bus bridge type verification, we have a mature verification library [2] that contains stimulus and 
scoreboard template classes. For example, instead of generating the constraints directly, a text file as shown 

in Fig. 7 is generated based on the „Capability‟ information in Fig. 3. In this text file, some frequently used 

transaction constraints are defined. The verification library will parse this text file during simulation, and 

randomize the transactions based on the selected master VIP and the target address region. This method is 

called Dynamic Constraint [2]. For example, in Fig. 7, if the AXI master “AXI_MST_A” wants to access 

REGION_X, it can only send READ transaction, and the burst size can only be 32 or 64. Using this method, 

the users can run simulations with limited verification knowledge. Even those who are not familiar with 

constraint random verification (CRV) can benefit from this method. Besides, from the point of the users, it 

is much easier to review the text file than to review the stimulus and scoreboard classes. Finally, the users 

can override the template classes if necessary. 



Figure 7. A text file used for creating transaction constraints. 

IV.   VERIFICATION ENVIRONMENT FOR SUB-SYSTEM OR WHOLE CHIP  

For sub-system or chip level verification, the structure of the verification environment is not much 

different from that of module-level verification.  However, the design complexity increases dramatically, as 

there might be hundreds of bus interfaces. Therefore, we will need additional information that describes the 

overall picture of the bus fabrics. For example, in order to decode the addresses correctly, we will need a 

pre-defined memory map table as shown in Table II. 
In this table, a memory region is defined with a unique name, along with its starting address and memory 

size. In addition, some essential information is also required. This information can be used to help extract 

design information from RTL. For example, the bus location and protocol type can be used to indentify bus 

interfaces in RTL. Every time a memory map is submitted, the cross-checking between it, the RTL code 

and the acquired design information will be performed. This can help to find errors in early stage, thereby 

reducing the effort to find bugs when a simulation fails. 
Table II. MEMORY MAP EXAMPLE 

Region Name Start Address  Size  Protocol  Bus Location 

SRAM  0x0000_0000  0x1000_0000  AXI  `TOP.u_sram 

USB0  0x1000_0000  0x0001_0000  AHB  `TOP.u_usb0 

USB1  0x1001_0000  0x0001_0000  AHB  `TOP.u_usb0 

SPI  0x1002_0000  0x0001_0000  APB  `TOP.u_spi 

DRAM_BANK1  0x8000_0000  0x1000_0000  AXI  `TOP.u_dram0 

DRAM_BANK2  0x9000_0000  0x1000_0000  AXI  `TOP.u_dram1 

 

With the design information (acquired as described in Section II) and this memory map table, the 

testbench of a sub-system or the whole chip can be generated, similar to the one in Section III. Again, for 

bus bridge type verification, the aforementioned verification library can be used to generate template 
classes for stimulus and scoreboard. Furthermore, the memory map in Table II can be turned into 

executable System-Verilog code to check the address decoding. 

V.   EXPERIMENTAL RESULT 

We have applied this solution to verify bus fabrics in designs of different scales, i.e., module-level, sub-
system-level and chip-level.  

1. For module-level verification, the push-button solution described in Section III is adopted. With 

this solution, a typical testbench with less than 10 bus interfaces can pass simulation within 4 

hours.  

2. For a sub-system with 30 bus interfaces (5 different types of bus protocols in total), we are able to 

setup the verification environment and pass the first pattern within 4 days. Besides, coverage 

closure can be reached within 1.5 weeks. As the solution becomes more and more mature, it is 

estimated that the verification can be finished within 1 week. 

3. For chip-level designs, this solution can also speed up the building of the verification environment 

dramatically, and improve the stability of the testbench codes in the meantime. Generally speaking, 

adopting this solution can reduce the overall time from months to weeks. The time spent in 

building the verification environment before and after deploying this solution is listed in Table III. 
a. Design Information Collection: 

Previously, we needed 3 weeks to collect the information regarding bus interfaces, VIP 

configuations and design limitations. Using this solution, we need less than 1 day to prepare 

the configuration files, and to extract the desgin information. After that, the design team can 

finish reviewing the information within 3 days. In total, the collection of design information 

can be finished within 1 week. 

AXI Protocol Constraint 

Name                           Direction     Burst_length       Burst_Size       Valid_ID 

AXI_MST_A                  ALL             ALL                   32/64                ALL 

AXI_MST_B                  ALL            10~16                  16/32/64           0~8 

REGION_X                    RD               ALL                    ALL                 ALL 

REGION_Y                    WR              ALL                    32                     ALL 



b. Testbench Generation: 

Previously, we needed about 2 weeks to connect the VIP interfaces, to configure the VIPs,  

and to pass the first pattern. With the help of this solution, all of these codes can be generated 

by a simple script in 1 day. The users will only need to do a few refinements (as described in 

Section III) before running a simulation. The actual effort in writing codes is greatly reduced. 

c. Environment Stabilization: 
Previously, there were a lot of human errors in the hand-coded testbench. We needed 4 weeks 

to pass the regression test for the first pattern. After using this solution, the environment is 

always well aligned with the RTL. As most of the codes are generated automatically, the time 

spent in debugging is greatly reduced. Now the environment can be stabilized within 2 weeks. 
Table III.  

COMPARISON OF THE TIME SPENT IN BUILDING CHIP-LEVEL VERIFICATION ENVIRONMENT 
 Previous Now 

Design Information Collection 3 weeks < 1 week 

Testbench Generation 2 weeks 1 day 

Environment Stabilization 4 weeks 2 weeks 

Total 9 weeks 3 weeks 

 

From the perspective of project execution, less file revisions mean less effort in writing codes, and 

lead to faster iteration. So we will use file revision counts to estimate the users‟ effort. The file 

revision counts of 3 SoC designs (1 does not use this solution, and the other two use this solution) 
are shown in Fig. 8. The 3 designs all contain ~180 bus interfaces. After deploying this solution, 

the average revision count per file is reduced from 11.1 to 3.4 and 3.6 respectively. Therefore, it is 

concluded that the users‟ effort can be reduced by about 70%. 

  
Figure 8. File revision counts before and after using the solution in this paper. 

 

VI.   SUMMARY 

In this paper, we have proposed a systematic solution to extract design information from RTL, to provide 

an easy-to-use GUI for the users to review and input, to check the acquired design information against RTL, 

and to build the verification environment based on the information. This solution can be applied to designs 

of module, sub-system and chip level. In addition, for module-level verification, we have further simplified 

this solution into a push-button one. Using this solution, the time spent in building the verification 

environment can be greatly reduced. Moreover, the generated testbench is ensured to keep aligned with 
RTL changes. Finally, we have compared the execution of 3 different projects before and after deploying 

this solution. It is found that the users‟ effort can be reduced by about 70% after using this solution. 
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