
Verification Environment 
Automation from RTL

Zhidong Chen, Yunyang Song, Wenting Hou, 
Junna Qiao, Junxia Wang, Ling Bai, Kei-Wang Yiu

MediaTek, Inc.

Email: zhidong.chen@mediatek.com

1



Abstract 

SoC Scale Increases 
 Complex Verification Environment

• E.g., hundreds of interfaces in DUT

 Verification Environment Automation Is A Must

• We propose a solution that can automatically build a 
verification environment from RTL. 
– Deployed in real projects
– Manual effort reduced by ~70%

2



Motivation

SoC Scale Increases 
Coordination (DV vs. designer) is painful & time-consuming
Too much manual effort in building a verification environment

3



Bus Fabric Verification Challenge

Category Challenges

VIP Interface Connection • ~6 protocol types
• > 180 interfaces
• > 4200 signal connections

VIP Configuration • AXI master VIP has >20 configurations
• > 1800 configurable variables for all VIPs

VIP Stimulus Constraint • Need to customize transaction constraints.

4



Solution: Verification Environment 
Automation from RTL

We provide a solid solution to
 Extract design information from RTL
 Provide an easy-to-use GUI for the users to review and input
 Check the acquired design information against RTL
 Automatically build the verification environment based on the design 

information

Design Information 
Database

RTL

Built-in commands

Web UI

Customized scripts

Verification 
environment

Check Extract

User review & 
revise

5



Extract Design Information from RTL

Review & Revise on GUI

Bus Interface Extraction

Bus Capability 
Extraction

Configuration

Design 
Information

Database

Correlation With RTL

#Protocol Type Signal Direction Seed

APB master pclk input N

APB master presetn input N

APB master penable output N

APB master paddr output Y

6



We can also get information by …
 Database migration
 Copy and revise the database from previous designs.

 Inherit from legacy testbench
 Extract VIP connections from existing testbench codes

Design 
information 

database

RTL
Existing VIP 

Connection Code 
(*.sv)

Previous project 
‘s database

Database 
Migration InheritExtraction

Have 
database

Legacy 
testbench

Start from 
zero

7



Verification Environment Build-up

Testbench automation can be applied to designs of various scales.

Chip level bus 
fabric design

Sub-system 
level design

Module level 
design

•>180 bus interfaces
•Bus information extraction + manually review
•VIP Interface connection, configuration, transaction constraint

•Sub-system bus TBA (~30 bus)
•User needs to write simple scripts (<50 lines)
•> 60% of the testbench can be automatically generated.

•Module level testbench
•Push button solution
•> 80% of the testbench can be automatically generated.

8



Generated templates Refinement needed? Comment

Testbench top file NO
Including DUT instantiation, VIP agent 
instantiation

VIP interface connection YES(if necessary)
Some signals do not follows bus naming 
rule, e.g., clock and reset

VIP Configuration YES

Some configuration can’t be extracted 
from RTL, e.g., AXI max outstanding 
capabilities

Scoreboard template NO
TLM connections from VIP agents’ 
subscribers to scoreboard components

Customized transaction class YES(if necessary) Only if the DUT is not full functioning

Function coverage NO Auto-generated base on bus capabilities

Script for running simulations NO -

Verification Environment Build-up
(Module level design)

 Push-button solution
As the design is relatively simple, we have simplified the above flow into a push-

button solution for module-level verification. 
 Generated templates (based on UVM)

9



Verification Environment Build-up
(Sub-system/Whole chip) 

Cross-checking with design specifications
 Memory map

 Interface locations
 Address decoding information

Region Name Start Address Size Protocol Bus Location
SRAM 0x0000_0000 0x1000_0000 AXI `TOP.u_sram0
USB0 0x1000_0000 0x1001_0000 AHB `TOP.u_usb0
USB1 0x1001_0000 0x0001_0000 AHB `TOP.u_usb0
SPI 0x1002_0000 0x0001_0000 APB `TOP.u_spi0
DRAM_BANK1 0x8000_0000 0x1000_0000 AXI `TOP.u_dram0
DRAM_BANK2 0x9000_0000 0x1000_0000 AXI `TOP.u_dram1

Region 
Name as a 
unique ID

Protocol and bus 
location are used to 

identify bus 
interfaces in RTL.

Design spec

Verification 
environmentRTL

10



 Speed up testbench stabilization
• First pattern regression passing reduced from 9 weeks to 3 weeks (reduced ~65%)
• Average testbench file revision is reduced from 11.1 to 3.4~3.6  (reduced ~70%)

 [Faster building-up + Faster iteration] = Faster regression and coverage closure

Experimental Results

Bus interface
Bus interface 

type
Regression pass 

(day) 
Coverage closure 

(day)
Single module 10 2 0.5 2
Sub-system >30 5 4 8
Whole chip >180 6 20 -

Previous Now

Information Collection 3 weeks < 1 week

Testbench Generation 2 weeks 1 day

Environment Stabilization 4 weeks 2 weeks

Total 9 weeks 3 weeks

11



Summary
 Design information can be auto-extracted from RTL with 

limited configurations.
 Configurable bus protocol, including both standard bus (AMBA, 

etc.) and user-defined bus.
 Easy-to-use GUI for design information review and revision.
 Design information can be inherited from existing testbench 

and database migration.
 Full spectrum support for different design complexity, from 

module level to SoC level design.
 Correlation with RTL and design specification, relieving DV 

from tedious debugging work.
 Verification environment building-up time for SoC designs are 

reduced from months to weeks.

12



Contact Information

MediaTek (Beijing) Inc.

Building 1-B, No. 6 Park, 
Jiuxianqiao Road, 
Chaoyang District, Beijing, 
China 100015

Telephone: 
+86-10-5690-0888

Email: 
zhidong.chen@mediatek.com

13


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

