
UVM Verification Environment Based on

Software Design Patterns

D. M. Tomušilović H. J. Arbel
 Vtool LTD. Vtool LTD.

 Rajićeva 1 Rajićeva 1

 Belgrade, Serbia Belgrade, Serbia

 darkot@thevtool.com hagai@thevtool.com

 +381654662859 +972544284574

Abstract-Software design pattern is a technique utilized to tackle a commonly occurring problem in the software

development. As a significant part of work done by verification engineers includes coding in an object-oriented language,

such as SystemVerilog, many of the encountered challenges are suitable to be resolved applying certain design patterns.

Their incorporation into the code provides many benefits, contributing to the code reusability and maintainability, and

therefore improving the overall code quality. Several practical examples appropriate for employing design patterns are

presented in the paper.

I. INTRODUCTION

The paper shows how several design patterns [1] are introduced to a verification environment, to model features

implemented within the verified designed logic. The verification environment is developed using the

implementation of UVM methodology in SystemVerilog language. As apart from comprising functional verification

dedicated elements, such as assertions and covergroups, SystemVerilog supports common object-oriented

constructs, it is suitable for adoption of design patterns, a technique utilized in the process of software development.

Design patterns define a set of classes and relations between them, which interact in order to resolve a common

problem faced during software development. They target system creation, structure and its behavior. The paper

presents Memento, Chain of responsibility, Decorator, Strategy, Singleton, Template method and Iterator. Other

design patterns are briefly introduced using the practical examples from the project, including Factory, Observer,

State, Mediator and Visitor. Some of them are already well-established within the UVM library codebase. Applying

design patterns improves code readability, reusability and maintainability, which are requirements typically posed to

verification engineers, in order to reduce development cycle time. They are aimed to significantly improve the

environment’s efficiency, accelerate coding and facilitate code documentation.

II. DESIGN PATTERNS IN THE VERIFICATION ENVIRONMENT

The verified designed logic contains features whose modelling within the verification environment can be

successfully achieved using design patterns. For each of them, the paper provides a problem description, the reason

why the problem is suitable to be modelled using a certain design pattern, the UML class diagram [2] along with

implemented SystemVerilog codebase in the Appendix, and finally the benefits and drawbacks of the solution.

A. Memento

Memento is a behavioral software design pattern used to capture the state of an object and restore the object into

its previous state. In the software development context, it provides the undo mechanism in the applications,

promoting the data hiding and not violating the encapsulation principle. In the verification environment, it is utilized

to model the “restore” feature. The device is implemented using multiple power domains – PD1 and PD2, as shown

in Figure 1. While PD2 is in operational Run Mode (RM), the block configuration is defined in the appropriate

register. When the PD2 enters the low-power mode (LPM), the configuration register behaves as read-only and

reading the register results in read value isolation. During the LPM, the RM configuration is stored within always-on

PD1. Upon the PD2 LPM exit, the content of the configuration register is restored to the value before the LPM

entry. Memento is a good candidate to model the content reversal.

mailto:darkot@thevtool.com
mailto:hagai@thevtool.com

Figure 1. Device Power domains block diagram

The Memento state design pattern defines three main components:

 Memento – Represents a container class for the content to be saved and restored. In the example shown in

Figure Appendix-1, Memento class contains a single configuration register, with corresponding get/set

methods.

 Originator – Uses the Memento class to save the current state it is in, as shown in Figure Appendix-2.

 Caretaker – Requests from the Originator to save its state. It is aware of all saved states and can request a

certain state to be restored, as shown in Figure Appendix-3.

The save and restore operations are demonstrated in Figure 2, with the corresponding log output in Figure 3. Run

Mode and LPM register states are captured within the separate objects. During the operational Run Mode, the Run

Mode configuration object is set in the Originator. Displaying the current configuration, shows the value of 0x5a5a,

configured during RM. Upon the LPM entry, the Caretaker adds the configuration object to the list of saved states it

is aware of. The reference in the Originator is updated to point to the object that reflects the LPM register state, with

the value of 0. Upon the LPM exit, the Run Mode configuration, being saved by the Caretaker, is restored, as shown

in the final message in the log.

In the provided example, save and restore features are triggered by low-power mode entry and exit events. In the

UVM terminology, the events are emitted by the UVM low-power monitor, which observes the low-power interface

and uses the Memento design pattern as a client. Saving and restoring multiple configurations is natively supported,

therefore the implementation is applicable even in the case such requirement is posed.

Figure 2. Memento design pattern – Set, Save and Restore features

Figure 3. Memento design pattern - Output activity log

 Figure 4. provides a graphical representation of developed classes and the relations between them, using UML

class diagram elements.

Figure 4. Memento design pattern - UML class diagram

B. Chain of responsibility

Chain of responsibility is a behavioral software design pattern that allows an action or a command to be handled

by multiple receivers. Rather than coupling the request sender to all receivers, the sender gives the request to the

first element in the chain. The request is successively propagated from one receiver to another, giving more

receivers the chance to handle the request. Depending on the application, even if the request is handled by one

receiver, it might be passed to the next receiver. In the project example, the design logic reset tree contains three

reset levels: soft, medium and hard reset, as displayed in Figure 5. Hard reset represents a power-on reset, controlled

by the voltage controller. In case that the input voltage drops under the specified value, power-on reset is asserted.

Watchdog controller is configured to track watchdog timer expiration and issue medium level reset. Soft reset is a

software reset generated according to the custom register interface towards the functional block. Bus transactions to

a certain address within the functional block address space trigger soft reset. Each reset impacts certain registers and

fields within the register space. Upon a “harder” reset event, all actions characteristic to a “softer” reset are also

applied. The design pattern addresses the register model update, taking into the consideration which register fields

are controlled by which reset level.

Figure 5. Device reset tree

The components defined by the Chain of responsibility pattern include:

 Abstract handler – Defines features and actions common to each concrete reset handler. It includes the

reference to the next handler in the chain. Its API consists of handle() method that handles the request

and propagates it to the next handler. Each handler is aware of its severity level and accordingly

performs a set of actions in case its severity level is reached. Abstract method reset() is provided as the

interface with which every concrete handler needs to comply. The definition is given in Figure

Appendix-4.

The reader should be aware of the fact that the abstract classes are not straightforward to be registered

with the UVM factory. The detailed example of their registration is presented in [3]. In the project

example, this part is skipped.

 Concrete handlers – For each of the supported reset levels, a dedicated concrete handler is provided,

giving implementation to the reset() method and handling register model updates. The mechanism is

shown in Figure Appendix-5.

 Client – In the UVM methodology, the dedicated UVM monitor component observes the low-power

interface and reset events, using the Chain of responsibility as a client.

 The first step when using the infrastructure built according to the Chain of responsibility pattern is configure the

order of request handlers. The configuration is shown in Figure 6. It is important to note that the configuration may

be dynamically changed and handlers can be added to or removed from the chain.

 The main operation is shown in Figure 7, with corresponding output log being presented in Figure 8. It is shown

that if medium reset is detected, fields within the register model controlled by soft and medium reset handlers are

reset, whereas the field controlled by hard reset handler remains untouched.

 The potential drawback of the presented pattern is that it does not assure that a request will be handled by any of

the receivers. The propagation of the unhandled requests might be time-consuming and therefore slowing down the

simulation.

Figure 6. Chain of responsibility design pattern – Request handlers configuration

Figure 7. Chain of responsibility design pattern – Medium reset level handling operation

Figure 8. Chain of responsibility design pattern – Output activity log

 The UML diagram of classes defined by the Chain of responsibility design pattern is presented in Figure 9.

Figure 9. Chain of responsibility – UML class diagram

C. Decorator

 Decorator is a structural software design pattern that provides a way of modifying a class object by adding

behavior to it, without affecting the other objects of the same class. The pattern allows for adding class functionality

without modifying the abstract class. It essentially allows for the base class code to be future-proof for unforeseen

modifications. For verification, where features are often added last moment, this feature of the decorator pattern is

powerful. The pattern is suitable for modelling complex data items by applying additional set of constraints to them.

Its main benefit comparing to class inheritance is that dynamic addition of behavior to objects is achievable. In the

project, the technique is used extensively to achieve constrained-random stimulus generation.

 To build a Decorator design pattern, it is necessary to define several main parts:

 Base item – Represents the base sequence item with fields to which various constraints shall be applied

over the course of a testcase. It is shown in Figure Appendix-6.

 Abstract decorator – Provides a wrapper around the base item, setting up the infrastructure for the concrete

decorators. Its code is displayed in Figure Appendix-7.

 Concrete decorators – Each of the concrete decorators provides its own set of constraints, as it can be seen

in Figure Appendix-8.

 The main idea behind the Decorator design pattern is that various concrete decorators can be active over the

course of a simulation, and furthermore, multiple decorators can be active simultaneously. Therefore, at any given

moment, any desired combination of constraint sets can be provided to the base item.

 The example showing various concrete decorators being wrapped around the base item and affecting the

randomization process is in Figure 10. The output log file confirming that adequate constraints have been

successfully applied is in Figure 11. The first message shows the outcome of the bare base item randomization,

without any applied constraints. It can be seen that all three fields – address, data and delay have a random value

within the scope of their legal ranges. Prior to the second randomization, the decorator constraining the address is

applied. Therefore, the address is constrained to the range defined by the constraint within the decorator, whereas

the data and delay fields still take random values, as seen in the second message. For the third randomization, the

data and delay constraining decorators are applied, leaving the address as the only field without applied constraints.

Finally, for the last randomization, all three decorators are wrapped around the base item, constraining all three

fields.

 Despite its advantages, the code in which the Decorator design pattern is overused tends to be hard to maintain,

therefore the developer must be careful not to create too many too small classes, increasing the code complexity.

 The reader might additionally familiarize themselves with the Decorator design pattern through the UML class

diagram shown in Figure 12.

Figure 10. Decorator design pattern – Randomization

Figure 11. Decorator design pattern – Randomization outcome

Figure 12. Decorator design pattern – UML class diagram

D. Strategy

The designed logic contains a complex arbitration logic upon the memory access, in which the priority is

determined using several algorithms, including fixed-priority and round-robin arbitration. The input to the arbiter are

multiple requester signals, as well as the configuration that selects the arbitration type to be applied. According to

the selected type and the values of the requester signals, the arbiter determines the source with the highest priority,

granting it the right to access the memory, as shown in Figure 13. The arbitration type can be dynamically

configured, which is why the feature lends itself to be modelled using Strategy design pattern, in which a certain

algorithm to be applied can be selected at run-time out of a family of provided algorithms. Additionally, in case it

proves required, it is straightforward to add new algorithms for the arbitration. It is worth noting the Decorator

design pattern is also used to dynamically change behavior. The key difference is that, while the Decorator is used to

add to the existing core functionality, the Strategy targets the change in the core functionality itself. To quote, the

StackOverflow: “Strategy lets you change the guts of an object. Decorator lets you change the skin.” [4]

Figure 13. Arbitration logic block diagram

The model compliant with Strategy design pattern guidelines includes the following elements:

 Strategy – Defines a general set of operations that the model should support. In the project, the

Strategy defines a general operation of arbitration, which can be performed in several different ways.

The abstract Strategy class is shown in Figure Appendix-9.

 Concrete Strategy – For each of the necessary algorithms, a Concrete Strategy class is defined,

providing the implementation to the certain algorithm. Wrapping each algorithm into a separate class

improves code readability and extensibility. Various arbitration rules implemented in corresponding

classes are displayed in Figure Appendix-10.

 Context – Context is a class that uses the Strategy. In the example, the UVM Scoreboard component,

relying upon the Strategy, checks that the arbitration logic within the device is implemented correctly.

The code extract in Figure Appendix-11 shows the Context class.

 A simple usage example is shown in Figure 14. with the corresponding output log being in Figure 15. In the

example, the arbitration winner is the one with the highest index, as indicated by configuring strategy_high_prio

arbitration type. Since the active sources are the ones with index 2 and 3, the expected arbitration winner is the one

with index 3, as determined by executing the strategy. The predicted arbitration winner can be compared against the

grant signal within the design, to determine whether the designed arbitration logic is implemented correctly.

Supposing the configuration changed, it would simply be required to update the context with a new strategy of a

different corresponding type.

The UML class diagram is shown in Figure 16.

Figure 14. Strategy design pattern – Usage example: Arbitration logic modelling

Figure 15. Strategy design pattern – Usage example: Arbitration logic modelling output

Figure 16. Strategy design pattern – UML class diagram

E. Singleton

Singleton is a simple creational design pattern restricting the number of class objects that can be instantiated and

providing the global access to the objects. The environment configuration class and the timeout logic handling class

are implemented as singletons. Each component in the environment that needs to monitor for the timeout event on a

certain interface during a certain scenario, can rely on the timeout handling class to determine the moment of the

timeout expiration. Assuring that all components access the same object of the timeout handling class facilitates

debugging.

The design pattern defines two main components:

 Singleton class – The class of which only a limited number of objects, typically one, can be created. To

achieve this, the constructor method of the class is defined as protected. The object is accessed using

the static Instance() method, which performs “lazy initialization” upon its first call. The example is

shown in Figure Appendix-12.

 Client – Any UVM component may use the Singleton’s Instance() method to get access to the class

object.

The main drawback is that a single class performs two separate tasks, taking care of its initialization as well as

its core functionality.

The example code showing the Singleton design pattern usage is shown in Figure 17, with the corresponding

output presented in Figure 18. The output log shows that the timeout handling class is capable of tracking multiple

timeout events simultaneously, signalizing the expiration of the first timeout – at time = 500, and later of the second

timeout – at time = 1000. The UML class diagram is given in Figure 19.

Figure 17. Singleton design pattern – Usage example

Figure 18. Singleton design pattern – Usage example output log

Figure 19. Singleton design pattern – UML class diagram

F. Template method

Template method defines a set of operations to be performed orderly, leaving the implementation of some steps

to the derived classes while maintaining the overall algorithm structure. The technique is commonly exploited to

provide pre-processing and post-processing hooks to a main operation. While it is already used massively in the

UVM library (e.g. pre_body and post_body hooks to a body method of uvm_sequence), in a similar way it is

employed in monitor components, to allow the main monitor operation to be further extended in the project:

 Base class – Base monitor component defines non-virtual collect_transactions() template method,

providing empty pre-processing and post-processing hooks. The component is shown in Figure

Appendix-13.

 Extended class – Provides project-specific operation, by implementing the provided hooks, as seen in

Figure Appendix-14.

To replace an object of the base class with an object of an extended class, the developer utilizes UVM Factory

override concept. Output log files without and with applied override, demonstrating the Template method pattern are

shown in Figure 20. and 21, respectively. In the former, the messages are produced by the base monitor with empty

pre_collect() and post_collect() hooks. In the latter, the instance of the extended monitor is used instead, with

implemented hooks that can be used for project-specific checking and similar project-specific features, without

modifying the base monitor code. The main collect() operation is inherited from the base monitor and, therefore,

remains the same in both cases, producing the same output. The template method collect_transactions() assures that

the hooks will be invoked at the appropriate spots, before and after the main operation, both in the base and the

extended component.

A very common approach is defining the base class as abstract, with abstract methods that the extended classes

should implement.

The main drawback of the described pattern is that it may complicate the debugging process in case that both

base and extended class implement complex logic.

 The simple UML diagram is displayed in Figure 22.

Figure 20. Template method design pattern – Base monitor with empty hooks: usage output log

Figure 21. Template method design pattern – Extended monitor with implemented hooks: usage output log

Figure 22. Template method design pattern – UML class diagram

G. Iterator

The verification environment includes a complex scoreboarding mechanism, which operation underlies upon

modifications performed on the transactions collected by the interface monitors. For example, a dedicated

configuration register field is used to enable or disable ECC calculation. Upon its change, it is necessary to iterate

through the transactions within the scoreboard and modify the values of collected data, to achieve correct prediction.

Any scenario in which traversing is performed upon a collection of objects, regardless of its internal structure, is

suitable to be modelled using the Iterator design pattern. The main advantage of the solution is that the internal

structure storing the data is not exposed and can therefore be modified without affecting the rest of the environment.

The usage of Iterator design pattern typically increases the flexibility, without any major drawback.

The design pattern defines several key components:

 Abstract Iterator – General Iterator that defines the operations necessary to iterate through a collection.

It is shown in Figure Appendix-15.

 Abstract Container – Defines a general collection that can be iterated with an Iterator. An example is

presented in Figure Appendix-16.

 Concrete Iterator – Implements the “iterate” operation through a given data structure, such as queue,

array, linked list, and more general, any structure that can contain data. It is displayed in Figure

Appendix-17.

 Concrete Container – Represents a wrapper around a certain data structure and creates a Concrete

Iterator that can iterate the data structure, as shown in Figure Appendix-17.

The usage example that shows how to add items to the data container in the scoreboard, and later iterate the

container, performing actions upon the collected items, is shown in Figure 23, whereas the corresponding output is

displayed in Figure 24. The output log shows that for each item within the data container, the method

recalculate_data() is invoked, updating the data used for prediction and producing the output message.

The UML class diagram showing the relations between the presented classes is in Figure 25.

Figure 23. Iterator design pattern – Iteration through a collection of items

Figure 24. Iterator design pattern – Iteration outcome

Figure 25. Iterator design pattern – UML class diagram

H. Other utilized patterns

Apart from all aforementioned design patterns, which were discussed in detail, several other design patterns are

utilized within the verification environment in the project. Here, they will be briefly introduced.

Factory is a design pattern already implemented in the UVM library, to create an object of the requested type. [5]

The pattern is massively used in the project. For example, by wrapping covergroups within UVM wrapper object,

the UVM Factory is used to achieve coverage creation on demand, dynamically controlling the coverage model to

be instantiated within a certain testcase. The implementation is in detailed discussed in [6].

Next design pattern that is utilized is Observer. While the Observer design pattern already finds its application

within a common UVM-compliant verification environment, through the usage of TLM analysis ports, it enhances

the class communication even further in the project. It is utilized to achieve dynamic connections between the

components, as opposed to static connections, offered by TLM analysis ports. The solution heavily relies upon the

implementation presented in [7]. The solution targets another major limitation of TLM analysis ports, as the

interface between the class publisher and the class listener is not limited to a single transaction type.

The combination of State and Mediator design pattern proved suitable for modelling the finite-state machines

within the designed logic. The designed logic consists of several finite-state machines, which extensive verification

is a part of the functional verification process. To facilitate the checking of the logic correctness and to incorporate

FSM related parameters into the functional coverage metric, it is suitable to develop a state machine reference

model. The methodology describing how to model the static component of the state machine (states) using State

pattern, and the dynamic component of the state machine (state transitions) using Mediator pattern is in detail

presented in [8]. The proposed implementation improves code readability and reusability on both active generation

side and passive checking and coverage collection side. It also facilitates the maintainability, by localizing the

changes upon the addition of new FSM states.

Visitor is a design pattern used to add a new operation to each class in an existing class structure, suitable to be

implemented for classes within a well-defined class hierarchy, such is the UVM based environment. It is utilized to

perform reporting over the course of a simulation. The infrastructure for the usage of Visitor is provided within

UVM library and is described in [9].

IV. SUMMARY

Design patterns are a proven solution, targeting code reusability and extensibility, as well as facilitating its

maintenance. A code based on design patterns, accompanied with UML class diagrams, is more readable and easier

to document, as the role of certain components and the relation between them is straightforward to understand.

Many challenges encountered within a verification environment are suitable to be overcome using a certain design

pattern, as shown in the given examples, resulting in the improved code quality and reduced development effort.

The potential room for code improvement is to incorporate SystemVerilog interface classes [7], which are a

common construct in the software development world, but are yet to be fully utilized in the verification. The

authors’ main goal was to come up with fully UVM-compliant solution, and they, therefore, mainly relied upon the

language elements that are straightforward to integrate into the codebase developed according to the UVM

methodology.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented Software” Addison-Wesley, 1994.
[2] http://www.uml.org/

[3] http://blog.verificationgentleman.com/2016/02/abstract-classes-uvm-factory.html, Tudor Timisescu, referenced on 1. 11. 2017.

[4] https://stackoverflow.com/questions/26422884/strategy-pattern-v-s-decorator-pattern
[5] Accellera, “UVM User Guide, v1.1”, page 131, www.uvmworld.org

[6] D. Tomušilović, “Functional Coverage of Register Access via Serial Bus Interface using UVM”, DVCon U.S. 2017.

[7] S. Sokorac, “SystemVerilog Interface Classes – More Useful Than you Thought”, DVCon U.S. 2016.

[8] D. Tomušilović, M. Minović, “Modelling Finite-State Machines in the Verification Environment using Software Design Patterns”, DVCon

Europe 2017.

[9] https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/base/uvm_traversal-svh.html

http://www.uml.org/
http://blog.verificationgentleman.com/2016/02/abstract-classes-uvm-factory.html
https://stackoverflow.com/questions/26422884/strategy-pattern-v-s-decorator-pattern
http://www.uvmworld.org/
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/base/uvm_traversal-svh.html

APPENDIX

A. Memento

Figure Appendix-1. Memento design pattern - Memento class

Figure Appendix-2. Memento design pattern - Originator class

Figure Appendix-3. Memento design pattern - Caretaker class

B. Chain of responsibility

Figure Appendix-4. Chain of responsibility design pattern – Abstract handler

Figure Appendix-5. Chain of responsibility design pattern – Concrete handlers

C. Decorator

Figure Appendix-6. Decorator design pattern – Base item

Figure Appendix-7. Decorator design pattern – Abstract base decorator

Figure Appendix-8. Decorator design pattern – Concrete decorators

D. Strategy

Figure Appendix-9. Strategy design pattern – Abstract Strategy class

Figure Appendix-10. Strategy design pattern – Concrete Strategy classes implementing various arbitration

mechanisms

Figure Appendix-11. Strategy design pattern – Context class executing a Strategy

E. Singleton

Figure Appendix-12. Singleton design pattern – Timeout logic handler implemented as Singleton

F. Template method

Figure Appendix-13. Template method design pattern – Base monitor with empty hooks

Figure Appendix-14. Template method design pattern – Extended monitor with implemented hooks

G. Iterator

Figure Appendix-15. Iterator design pattern – Abstract Iterator

Figure Appendix-16. Iterator design pattern – Abstract Container with Iterator

Figure Appendix-17. Iterator design pattern – Data container with Queue iterator

