IIIIIIIIIIIIIIIIIIIIII

CONFERENCE AND EXHIBITION

UVM Verification Environment
Based on
Software Design Patterns

Darko M. Tomusilovic Hagai Arbel

¥ viool ...

svess loday In your local cinema...
Design Patterns

* What are design patterns?

* What types of design patterns are there?
* What are their benefits?

* Can they help verification engineers?

* What is UML?

2018

DESIGN AND VERIFICATION™

DV

EYoiens Suggestion 1: Memento

IIIIIIIIIIIIIIIIIIIIII

VLI M emen t O

* Capture the state of an object and restore the object into Iits previous
state

* Promotes data hiding, not violating encapsulation
* “Undo” application

* Example from the Verification world: Multiple power domains modelling
— save configuration register content upon LPM entry and restore it
upon LPM exit

2018

DESIGN AND VERIFICATION™

g *B 1. .
& = B Nl -
bemerd Yoo U

Exdzisly Memento — UML diagram

Originator
-M_reg Memento
+save_state_to_memento(): memente | . Mg Caretaker
+get_state from_memento/m_memento | memento) " l+set_reg(m_reg : dvoon_reg)
+set_state(m_reg : dvoon_neg) +get_reg() : dvoon_megq
+get_state() : dvoon_meg

r—'r—j
:rx

l e RBALE AnN ML KASSAR AR N 9 N 7
. !
. - o 10 com st WMD),

IIIIIIIIIIIIIIIIIIIIII

VLI I t er at or

* Traverse a collection of objects, regardless of its internal structure

* The internal structure storing the data is not exposed and can therefore
be modified without affecting the rest of the environment

* Improves flexibility

* Example from the Verification world: Add data items to the container in
the reference model and upon ECC enable and disable, iterate the
container and perform updates to achieve correct prediction

2018

DESIGN AND VERIFICATION™

DV CIN

Y Ite I at o — U M L d | ag Fam

conlainer iterator
+get_iteratorf) ; terator +has_next() : bit
+next() : base item

i}

£y

data container weue iterator
Score board : = g =
tem @ @00 [TT T T~ =1+has next(): bit

+get_iterator() : iterator +naxt() : base_item

2018

DESIGN AND VERIFICATION™

=x—==== _ Suggestion 3: Chain of Responsibility

\
(NE

g
|
(Y "

IIIIIIIIIIIIIIIIIIIIII

===== Chain of Responsibility

* Handle an action or command by multiple receivers

* The request Is successively propagated from one receiver to another,
giving more receivers the chance to handle the request

* Promotes decoupling between the handlers

* Example from the Verification world: Multiple reset levels modelling —
update register model taking into the consideration which register fields
are controlled by which reset level

2018

DESIGN AND VERIFICATION™

g *B 1. .
& » B R W
bemerd Yoo U

=== Chain of Responsibility — UML diagram

nedt_nandler

resel_handler

lewel

Client

+handle(level : reset_level m_reg : dvcon_reg)
+reselfm_reg . dvcon_reg)

+set level(level : reset level)
+set_next_handler(next_handler : reset_handler)

N

gsoft reset handler medium_reset handler hard reset handler
+reset(m_reg : dvcon_reg) +reset(m_reg : dvcon_reg) +reset(m_reg : dvcon_req)

| -
O
o
©
| —
@
O
D
A

Suggestion 4

N/

CONFERENCE AND EXHIBITION

DESIGN AND VERIFICATION™

D

IIIIIIIIIIIIIIIIIIIIII

=X Dacorator

* Modify a class object, by adding behaviour to it — without affecting other
objects of the same class

* Base class code future-proof for unforeseen changes
* Dynamic addition of behaviour to objects is achievable
* Multiple decorators can be added simultaneously

* Example from the Verification world: Modelling complex data items by
applying additional set of constraints to them

2018

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Decorator — UML diagram

base item
-addr

-data
-delay

in ner

base decorator

+5&t_inner(inner : base item)

addr decorator

-addr_ct

data decorator
-data_ct

delay decorator

-delay ct

2018

=il Suggestion 5: Strategy
e éq@mm l’l(fURi;(b "” /i

N ‘KW@&"@ EVENE

‘-‘4‘—‘- A«
R S Reed N

STRATECY

The change is inside

IIIIIIIIIIIIIIIIIIIIII

¥ SQtrate gy

* Apply a certain algorithm at run-time out of family of provided
algorithms

* Targets the change in the core functionality

* Wrapping each algorithm into a separate class improves code
readablility and extensibility

* Straightforward to add a new algorithm

* Example from the Verification world: Modelling dynamically configurable
arbitration logic upon the memory access, in which the priority Is
determined using several algorithms (round robin, fixed priority, ...)

2018

DESIGN AND VERIFICATION™

AT St rat eg y — U M L d | ag Fam

strategy context strategy
-m_strategy {} +arh winner() . requester e
+gxecute strategy()
+set_strategy(m_strategy : strategy)

strategy low prio strategy high_prio

+arb_winner(}: requester e +art_winner()} : requester e

2018

DESIGN AND VERIFICATION™

EYoiens Suggestion 6: Singleton

rJ',

- B i P g y A - "
ey W | D% " v
: A 2
’ R g 3 S f e f, €% v % "
: - > 5 Vg S K 7 o\
e " 4 4 ¥ T g . Y Y

< Ui BB i ¢ H 4 3 o

- : Sy /8 . B '.1

THERE/ @8N BE ONLY ON€
|]q‘

TH[MHIIIN T AJNJS/ A USSELL MULCARYsw HGHLANDER
7w HASTOPHER LAVBERT POTAMMEWATF: &

Jp | GLANCY BAOWN SEAN COMERY
.-un-.[lﬂl -mil]Wi HAMEN e . MONEL DEN s GRECRY W|IIYEN-PHEH BELLOOD & LARRY FERGUSON

e E
,. mm-umm mnmpmvmu '

IIIIIIIIIIIIIIIIIIIIII

2Xsrs Singleton

* Restrict the number of class objects that can be instantiated and
provide global access to them

* Faclilitates debugging

* Example from the Verification world: Timeout logic handling class —
assure that all components in the environment that monitor for a
timeout event access the same object to detect the timeout expiration

IIIIIIIIIIIIIIIIIIIIII

e¥oeews Singleton — UML diagram

timeout
UVM component i e
#Enew|)
+«Instance() : timeout

#wait_timeout(timeout_value : int unsigned)

IIIIIIIIIIIIIIIIIIIIII

DY, Suggestion 7: Template method

The template works every time

LEMIPL 1B
[WETE (O [

/

. .
\
o= @f !

=

J A
N

& g \
o - 4 S
J & - . =
A v ARNEE
\ A\~ N
- ; \ ¥
\ \
ﬂ) \
| ! B
\ : ¥
' G N AND IMAX

\!

N R - &N
\\\ : \ 8
R \@a

| >

¢ Y
W
7 =S N\ \
S /_. X v
N ™

e U :)
'\ -

\

o>

IIIIIIIIIIIIIIIIIIIIII

PYLLis Template method

* Define a set of operations to be performed in order

* Leave the implementation of some steps to the derived classes while
maintaining the overall algorithm structure

* Provide pre-processing and post-processing hooks to a main operation

* Example from the Verification world: Extend main monitor operation,
utilizing hooks to perform project-specific checking, without changing
the existing codebase

IIIIIIIIIIIIIIIIIIIIII

Yo Template method — UML diagram

base monitor

+collect transactions()
+pre_collect item)
+collect item()

+post collect itermy)

i

extended monitor
+pre_collect item)
+post collect [temy()

IIIIIIIIIIIIIIIIIIIIII

DVL NN Ot h er su g g es tl ons

* Factory

* Observer

* State and Mediator
* Visitor

IIIIIIIIIIIIIIIIIIIIII

CONFERENCE AND EXHIBITION

Questions?

Thanks!

