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svess  loday In your local cinema...
Design Patterns

* What are design patterns?

* What types of design patterns are there?
* What are their benefits?

* Can they help verification engineers?

* What is UML?
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VLI M emen t O

* Capture the state of an object and restore the object into Iits previous
state

* Promotes data hiding, not violating encapsulation
* “Undo” application

* Example from the Verification world: Multiple power domains modelling
— save configuration register content upon LPM entry and restore it
upon LPM exit
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Exdzisly Memento — UML diagram

Originator
-M_reg Memento
+save_state_to_memento(): memente | . Mg Caretaker
+get_state from_memento/m_memento | memento ) " l+set_reg(m_reg : dvoon_reg)
+set_state(m_reg : dvoon_neg) +get_reg() : dvoon_megq
+get_state() : dvoon_meg
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VLI I t er at or

* Traverse a collection of objects, regardless of its internal structure

* The internal structure storing the data is not exposed and can therefore
be modified without affecting the rest of the environment

* Improves flexibility

* Example from the Verification world: Add data items to the container in
the reference model and upon ECC enable and disable, iterate the
container and perform updates to achieve correct prediction
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conlainer iterator
+get_iteratorf) ; terator +has_next() : bit
+next() : base item

i}

£y

data container weue iterator
Score board : = g =
tem @ @00 [ TT T T~ =1+has next(): bit

+get_iterator() : iterator +naxt() : base_item
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===== Chain of Responsibility

* Handle an action or command by multiple receivers

* The request Is successively propagated from one receiver to another,
giving more receivers the chance to handle the request

* Promotes decoupling between the handlers

* Example from the Verification world: Multiple reset levels modelling —
update register model taking into the consideration which register fields
are controlled by which reset level
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===  Chain of Responsibility — UML diagram

nedt_nandler

resel_handler

lewel

Client

+handle(level : reset_level m_reg : dvcon_reg)
+reselfm_reg . dvcon_reg)

+set level(level : reset level)
+set_next_handler(next_handler : reset_handler)

N

gsoft reset handler medium_reset handler hard reset handler
+reset(m_reg : dvcon_reg) +reset(m_reg : dvcon_reg) +reset(m_reg : dvcon_req)
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=X Dacorator

* Modify a class object, by adding behaviour to it — without affecting other
objects of the same class

* Base class code future-proof for unforeseen changes
* Dynamic addition of behaviour to objects is achievable
* Multiple decorators can be added simultaneously

* Example from the Verification world: Modelling complex data items by
applying additional set of constraints to them
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Decorator — UML diagram

base item
-addr

-data
-delay

in ner

base decorator

+5&t_inner(inner : base item)

addr decorator

-addr_ct

data decorator
-data_ct

delay decorator

-delay ct
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The change is inside
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¥ SQtrate gy

* Apply a certain algorithm at run-time out of family of provided
algorithms

* Targets the change in the core functionality

* Wrapping each algorithm into a separate class improves code
readablility and extensibility

* Straightforward to add a new algorithm

* Example from the Verification world: Modelling dynamically configurable
arbitration logic upon the memory access, in which the priority Is
determined using several algorithms (round robin, fixed priority, ...)
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strategy context strategy
-m_strategy {} +arh winner() . requester e
+gxecute strategy()
+set_strategy(m_strategy : strategy)

strategy low prio strategy high_prio

+arb_winner(}: requester e +art_winner()} : requester e
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2Xsrs  Singleton

* Restrict the number of class objects that can be instantiated and
provide global access to them

* Faclilitates debugging

* Example from the Verification world: Timeout logic handling class —
assure that all components in the environment that monitor for a
timeout event access the same object to detect the timeout expiration
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e¥oeews  Singleton — UML diagram

timeout
UVM component i e
#Enew| )
+«Instance() : timeout

#wait_timeout(timeout_value : int unsigned)
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DY, Suggestion 7: Template method

The template works every time
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PYLLis Template method

* Define a set of operations to be performed in order

* Leave the implementation of some steps to the derived classes while
maintaining the overall algorithm structure

* Provide pre-processing and post-processing hooks to a main operation

* Example from the Verification world: Extend main monitor operation,
utilizing hooks to perform project-specific checking, without changing
the existing codebase
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Yo Template method — UML diagram

base monitor

+collect transactions()
+pre_collect item)
+collect item()

+post collect itermy)

i

extended monitor
+pre_collect item)
+post collect [temy()
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DVL NN Ot h er su g g es tl ons

* Factory

* Observer

* State and Mediator
* Visitor
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Questions?

Thanks!



