
UVM Verification Environment 

Based on

Software Design Patterns

Darko M. Tomušilović Hagai Arbel



Today in your local cinema... 

Design Patterns

• What are design patterns?

• What types of design patterns are there?

• What are their benefits?

• Can they help verification engineers?

• What is UML?



Suggestion 1: Memento



Memento

• Capture the state of an object and restore the object into its previous 

state

• Promotes data hiding, not violating encapsulation

• “Undo” application

• Example from the Verification world: Multiple power domains modelling 

– save configuration register content upon LPM entry and restore it 

upon LPM exit



Memento – UML diagram



Suggestion 2: Iterator



Iterator

• Traverse a collection of objects, regardless of its internal structure 

• The internal structure storing the data is not exposed and can therefore 

be modified without affecting the rest of the environment

• Improves flexibility

• Example from the Verification world: Add data items to the container in 

the reference model and upon ECC enable and disable, iterate the 

container and perform updates to achieve correct prediction



Iterator – UML diagram



Suggestion 3: Chain of Responsibility



Chain of Responsibility

• Handle an action or command by multiple receivers

• The request is successively propagated from one receiver to another, 

giving more receivers the chance to handle the request

• Promotes decoupling between the handlers

• Example from the Verification world: Multiple reset levels modelling –

update register model taking into the consideration which register fields 

are controlled by which reset level



Chain of Responsibility – UML diagram



Suggestion 4: Decorator



Decorator

• Modify a class object, by adding behaviour to it – without affecting other 

objects of the same class

• Base class code future-proof for unforeseen changes

• Dynamic addition of behaviour to objects is achievable 

• Multiple decorators can be added simultaneously

• Example from the Verification world: Modelling complex data items by 

applying additional set of constraints to them



Decorator – UML diagram



Suggestion 5: Strategy



Strategy

• Apply a certain algorithm at run-time out of family of provided 

algorithms

• Targets the change in the core functionality

• Wrapping each algorithm into a separate class improves code 

readability and extensibility

• Straightforward to add a new algorithm

• Example from the Verification world: Modelling dynamically configurable 

arbitration logic upon the memory access, in which the priority is 

determined using several algorithms (round robin, fixed priority, …)



Strategy – UML diagram



Suggestion 6: Singleton



Singleton

• Restrict the number of class objects that can be instantiated and 

provide global access to them

• Facilitates debugging

• Example from the Verification world: Timeout logic handling class –

assure that all components in the environment that monitor for a 

timeout event access the same object to detect the timeout expiration



Singleton – UML diagram



Suggestion 7: Template method



Template method

• Define a set of operations to be performed in order

• Leave the implementation of some steps to the derived classes while 

maintaining the overall algorithm structure 

• Provide pre-processing and post-processing hooks to a main operation

• Example from the Verification world: Extend main monitor operation, 

utilizing hooks to perform project-specific checking, without changing 

the existing codebase



Template method – UML diagram



Other suggestions

• Factory

• Observer

• State and Mediator

• Visitor



Questions?

Thanks!


