UVM TRANSACTION RECORDING ENHANCEMENTS

Rex Chen (rex chen@springsoft.com), Bindesh Patel (bindesh patel@springsoft.com), Jun Zhao
(jun_zhao@springsoft.com)

Research & Development, SpringSoft, Inc., Hsinchu, Taiwan

INTRODUCTION

SystemVerilog provides a compelling advantage in addressing the verification complexity challenge
— not simply as a new language for describing complex structures, but as a platform for driving a
more efficient, realistic test of the design. It is no surprise then that the adoption of the language for
verification purposes has been rapid. Along with this growth, methodologies like VMM /OVM have
been developed to help verification engineers to create testbenches efficiently and with maximum
reuse and a consistent well-documented methodology. However, the need for interoperability
among verification libraries has become a critical issue for users to integrate testbench code
(usually in the form of Verification IP) developed using different methodologies. This has motivated
a new methodology, Universal Verification Methodology (UVM), to be developed under the auspices
of Accellera for the expressed purpose of fostering universal verification IP interoperability. Led by
electronics companies and supported by a suite of companies representing the breadth of the
verification ecosystem, the UVM will increase productivity by eliminating expensive interfacing that
slows verification IP reuse.

At the outset, UVM provides the infrastructure for a transaction recording scheme using so-called
“hooks” functions that can be implemented by the user or a third-party to record the transactions
occurring in the testbench into some database. This could be as sophisticated as a specialized
debug database or as simple as a text file. While this provides utility for debug, there are some
limitations in the current transaction recording scheme provided in UVM. Firstly, the current
recorded data is not enough for a more complete and efficient debugging view. Secondly, the
automatic recording for non-sequencers is clearly lacking when compared to what is possible for
sequencers. Users or third-parties who want to overcome these limitations have to modify the
overall UVM library which causes unnecessary intrusion on the user’s flow. So we propose a
convenient non-intrusive enhancement to UVM, so that users or third-parties can utilize the
enhanced recording without having to touch the UVM library. For better visibility and efficiency, we
propose more debugging information to be recordable for each transaction. We also propose a
better scheme to record transactions for non-sequencers.

This paper proposes these enhancements for UVM transaction recording. It further explores
potential visualization and debug front-ends to leverage a more complete captured trace.

KEYWORDS
SystemVerilog, UVM, OVM, Transactions, UML, Sequence Diagram

THE CURRENT UVM TRANSACTION RECORDING SCHEME
A verification environment built on top of UVM does not provide any capability to record
transactions in any format by default. However, it does provide a “hooks functions” capability for
third parties or users to record the data to some specific format. These related hooks functions are
listed below:
e uvm_create_fiber
Given a name, create a stream with transactions.
e uvm_set_index_attribute_by_name
Not used.
e uvm_set_attribute_by_name
Add a named attribute to this transaction. This is invoked by uvm_component::end_tr(). For
monitor and driver, user has to call this API manually.
e uvm_check_handle_kind
Return the type of handle. Legal types are 'Stream’, 'Fiber” and 'Transaction'.
e uvm_begin_transaction
Return a handle to a new transaction. The new transaction has a variety of properties:
It belongs to a 'stream’
- Ithasaname
[t starts either now or at begin_time, if begin_time is non-zero

e uvm_end_transaction
Given an open transaction handle, end it. If end_time is non-zero, then end the transaction at
end_time.

e uvm_link_transaction
Given two transaction handles, create a "relationship” between them

e uvm_free_transaction_handle
Given a transaction handle, release storage for it. Calling free_transaction_handle() means
that the handle is no longer to be used anywhere.

These functions are empty in the original uvm_misc.sv file. That is, there is no implementation and
are meant for users or third parties to implement as per their requirements. Vendors or users can
determine how to store the recorded transactions. For example, if a user wants to record the
transactions into a text file, he can implement the following functions as listed:
e uvm_create_fiber:
Generate and return the stream handle. Log the stream name into the text file.
e uvm_set_index_attribute_by_name:
Call uvm_set_attribute_by_name().
e uvm_set_attribute_by_name
Log the attribute name, value, radix, and number of bits into the text file.
e uvm_check_handle_kind:
Return the type of handle. The type of handle could be stream or transaction.
e uvm_begin_transaction
Log the transaction name and begin time of transaction into the text file.
e uvm _end_transction:
Log the transaction name and end time of transaction into the text file
e uvm_link_transaction:

Log the names of two transactions and their relationship into the text file.
e uvm_free_transaction_handle
Log the freed transaction handle.

Usually these function implementations are written into a SystemVerilog file. Let’s say the file name
is “hooks.sv”.
Now, to enable automatic recording of transactions, the user would have to:
1. Include the transaction hook file “hook.sv” in uvm_misc.sv.
2. Enable transaction recording in the “build” function of test by adding:
set_config_int("*", "recording_detail", UVM_FULL);
3. Compile the design and run simulation

This so-called “hooks” mechanism only records transactions from sequencers automatically when
users turn on the recording scheme. To record the transactions from other components like drivers
or monitors, users have to add uvm_component::begin_tr() and uvm_component::end_tr() in their
testbench code.

Figure 2 shows the waveform-view realization of recording UVM transactions into a debug
database using the current recording scheme provided.

DISADVANTAGES OF THE CURRENT UVM TRANSACTION RECORDING CAPABILITIES

Based on the current recording scheme provided in UVM, the following information is recorded:
e Stream (the collection of related transactions) name, scope

e Transaction name, begin and end time

e Attribute name and value

e Relation between sub-sequence and sequence

While this information is useful, the current recorded information is not sufficient for efficient
debugging. Let’s illustrate this using the recording result of the XBus example in the UVM library.
Figure 1 shows the architecture of the Xbus example.

test_read_modify_write

e
¥xbus_demo_th [:ms_dem_smmd |:|-1.—-\

xbus_env

xbus_bus_monitor
COVETae Al

xbus_master_agent xbus_slave_agent

xhus_master_sequencer| [whus_slave_sequencer

1
1
. 1 .
main | | main
random | - TN
simple I * simiple
read_modify_wrife - . Iy slave_memary
incr_read ~. b . response
ineT_read_write |
seq 8 Wi rd wd |
incr_write 1
A I LS
, I - -
xbus_master_driver | xbus_slave_driver
=k 1 .l
S -
Lo
- A - -
xbus_master_monitor .:.” xbus_slave_monitor
checks : | cheas
COVEgIoUpS = : -7 COVENroups
(

Figure 1: XBus Demo Architecture

The xbus_env component contains any number of XBus master and slave agents. In the example
shown in Figure 1, the xbus_env is configured to contain just one master and one slave agent. The
xbus_master_ and xbus_slave_agent are structured identically with the only difference being the
protocol-specific function of its subcomponents.The XBus master agent contains up to three
subcomponents: the sequencer, driver, and monitor. By default, all three are created.

E’ﬂ <Novas:nWave:1> /verdifhome/rex chen/S¥ TE/U¥M/uvm pre spsfexamples/xbusiexamplesinovas.fsdb

File Signal Wiew Waveform Analog Tools Window Help

|Got0: »

Ao p BB e

4
o
jo

2
.
F
¥
=

—— — =
read_byte_seqﬂ*lwrite_byte_seqﬂ 1:*1 read_hyte_segl re*

read_modify_write_seq read modify_write_seq O

buslimasters[0]#sequencer|

req xhus_transfer_inst 0: (60, 60 o
addr=12
read_write=READ
size=1
data. data[l]=1a
walt_state. wait state[0]=5
error_pos=Jed
transmit_delag=0

Figure 2: The recording result of XBus example before enhancements

Figure 2 shows the transaction recording result of the XBus example before the enhancements that
will be proposed later in this document. The “xbus[0]#master[0]#sequencer” stream contains the
sequence “read_modify_write_seq” because the component “xbus[0]#master[0]#sequencer” sends
the sequence “read_modify_write_seq”. The sequence “read_modify_write_seq” consists of three
sub-sequences: “read_byte_seq0”, “write_byte_seq0”, and “read_byte_seq0”. As such, they have a
parent-child relationship. Each sub-sequence contains one sequence item “req”. The attributes and
values of sequence item “req” are all recorded and displayed as atrributes. For the “req (60,60)”
sequence item, it's begin and end time is 60 and 60 respectively. The attributes of “req(60,60)” have
the following values:

e addr=12
e read_write = READ
e size=1

e data.data[0] = 1a

e state.wait_state[0] =5

e error_pos = 3e8

e transmit_delay =0

e master =

e slave=

The stream “xbus[0]#slave[0]#sequencer” contains sequence “slave_memory_seq” because the
component “xbus[0]#slave[0]#sequencer” sends the sequence “slave_memory_seq”. There is a
sequence item “req” in it.

While this recorded data is useful, it is not complete. Referring to Figure 2:
1. We do not know the destination component of the sequence item or sequence. To make it
complete, we propose to record the name and type of initiator/target component.

2. We do not know which sub-sequence the sequence item “req” belongs to. Therefore, we suggest
binding the full sequence path name to it. For example,
“read_modify_write_seq.read_byte_seq0.req” is the full sequence path name of “req (60,60)".

3. There is no relation information recorded between sequence items and sub-sequences. For
example, we cannot tell whether the sub-sequence “read_byte_seq0” consists of one or more
sequence items. Therefore, we propose that each sequence item or sequence should have a
unique id. Then sequence item or sub-sequence can use an id array to describe the hierarchy
relation. For example, we can see seven sequence items and sequences on stream
“xbus[0]#master[0]#sequencer”. Let’s say the unique ids of “read_modify_write_seq”,
“read_byte_seq0”, “write_byte_seq0”,”read_byte_seq0”, “req”, “req” and “req” are
“1"2”,”3””4",”"5”,”6", and “7” respectively. The id array of the three “req” sequence items are
“1.2.5”,”1.3.6” and “1.4.7”. So we know that the three sequence items “req” belong to different
sub-sequences, but they belong to the same sequence “read_modify_write_seq”.

4. An attribute is needed to indicate if the sequence item is a response item from driver.

Besides the completeness of the data discussed above, another consideration is that in the current
scheme, only the sequence items or sequences from sequencers are recorded automatically.
Therefore, we cannot see the sequences from non-sequencer components. In this example, we
cannot see sequences from the monitor unless we add begin_tr() and end_tr() in the monitor class
manually. Figure 3 shows the recording result of the sequencer and monitor after we insert
begin_tr() and end_tr() manually in the monitor class.

h <Novas:nWave:1> fverdifhome/rex_chen/SY ITB/I¥Mfuvm_prefexamplesfxbusfexamplesinovas fsdb

File Signal Yiew ‘Waveform Analog Tools Window

Aaxosmal o o 0 | Q@& P|e:f <+ xis |Gt [ar -

I#zcbusO#masters [0] #monitor|

read_byte_seql

read_byte_seql

write hyte_seql

I | read modify_write_seq
husl#masters [0]#sequencer ! o

p0#xhusl#slaves [0] #monitor)

thusl#slaves [0] #sequencer

Figure 3: the recording result of sequencer and monitor

ENHANCEMENTS FOR UVM TRANSACTION RECORDING

As discussed, the current recording scheme does not provide sufficient information for efficient
debugging. Additionally, to record non-sequencer components, users have to call
uvm_component::begin_tr() and uvm_component::end_tr() manually. If users forget to call one of
them, the recorded transactions will be incomplete. Therefore, we need a better scheme to enforce
the pairing of begin_tr()/end_tr(). We will next propose enhancements to address these two
drawbacks with the current scheme.

To enhance the UVM transaction recording, we propose the following additional information to be
recorded for each transaction:

e The component name that the transaction comes from.

o The component type that the transaction comes from.

o The component name that the transaction goes to. There could be multiple destinations.

o The component type that the transaction goes to.

e The full sequence path name of the transaction.

e The id array that corresponds to the full sequence path name.

o Whether the transaction is response item from driver.

e The unique id of transaction.

With this additional information, users will have a more complete database of the traffic between
the testbench components.

For non-sequencer components, we propose that users only be required to add begin_tr() in their
testbench code. The end_tr() will be called automatically in the port function that sends the
transaction. For example, the user usually calls uvm_analysis_port::write() to send transaction in
monitor. The end_tr() should be called in this function and it would check if the begin_tr() is called
or not. If users forgets to call begin_tr(), the port function will call it automatically. In this case, the
time could be incorrect. Even with this drawback, this mechanism is still better than the original
one in that at least the data will be recorded (rather than nothing being recorded). Users can always
add begin_tr() in their testbench codes to make it right.

Figure 4 shows the waveform realization of the recording result after the proposed enhancements
are put into effect.

h <NovaznWave:1> verdi/home/rex chen/S¥ TB/IY M/uvm_pre spsfexamples/xbusfexamplesinovas fsdb

File Signal Yiew ‘Waveform Analog Tools Window Help
@#|fgr}éﬁ 60 0 - —60 |@‘@l1%u|8y:_f “« > s |Goto:>3

nasters [0]#sequencer

req #hus_transfer_inst 0:(

initiator_comp_type=uwm_sequencer

target_comp_type=uwm_driver
initiator_comp_name=uwvm_test_top.xbus_demo_th0. xbus0. masters[0]. sequencer
target_comp_name=uvm_test_top. xbus_demo_thl. xbusl. masters[0]. driver
full seq path-read_modify write seq. read_byte seql. reg

seq id_arr=4.6.8

unique_tr_id=8

is_response=0

addr=12

read_write=READ

size=1

data. data[0]=1a

wait_state wait state[0]=5

[0]#monitor srror_pos=3ed

transmit_delay=0

[0]#mondtor

Figure 4: The recording result for XBus example after enhancements

As can be seen, the following additional attributes are recorded after the enhancements:

1. initiator_comp_type = uvm_sequencer (The initiator component type)

2. target_comp_type = uvm_driver (The target component type)

3. initiator_comp_name = uvm_test_top.xbus_demo_tb0.xbus0O.masters[0].sequencer (The initiator
component name)

4. target_comp_name = uvm_test_top.xbus_demo_tb0.xbus0.masters[0].driver (The target

component name)

full_seq_path = read_modify_write_seq.read_byte_seq0.req (The full sequence path name)

seq_id_arr = 4.6.8 (The id array of the corresponding full sequence path name)

unique_id = 8 (The unique id of this sequence item)

is_response = 0 (This is not a response item)

® N U

From the enhanced recorded data, we can tell that the sequence item “req (60,60)” is sent from the
sequencer “uvm_test_top.xbus_demo_tb0.xbus0.masters[0].sequencer” to driver
“uvm_test_top.xbus_demo_tb0.xbus0.masters[0].driver”. Its full sequence name is
“read_modify_write_seq.read_byte_seq0.req”. Therefore, this sequence item belongs to sub-
sequence “read_byte_seq0”. The sub-sequence “read_byte_seq0” belongs to sequence
“read_modify_write_seq”. The id array “4.6.8” indicates that the ids of
“ead_modify_write_seq”,”read_byte_seq0” and “req” are “4”, “6” and “8” respectively. This sequence
item is not a response item from the driver. Clearly this is a more complete record of the activity
and provides the user better visibility into the testbench.

ENHANCED VISUALIZATION

Comparing the waveform views before and after the proposed enhancements (Figure 2 and Figure
4), we can see that the additional attributes are indeed recorded after the proposed enhancements
are implemented. However, the waveform view of the transactions does not provide a clear picture
of the component traffic. The additional attributes can only be viewed in a text format.

For a better more natural realization of the recorded data, we can derive inspiration from the
Unified Modeling Language (UML) and specifically its sequence diagram specification. While the
UML sequence diagram is primarily used for documentation for software systems, there has been
research in using it to visualize the execution of programs for which a trace has been recorded [2].
With the additional recorded attributes, it becomes possible to realize a sequence diagram type of
view for better visualization of the traffic in a SystemVerilog testbench.

'i'ﬂ <Sequence Diagram:3> flyffrdfrex chen/SYTB/O¥Mfovm-Z_1_1-latestfexamplesfxbusfexamplesinovas fedb

File Edit Wiew Trace Option Help
aa® + V| &TT
Select:
; z M
J#driver [Intect el
fer_inst 0)
fer_inst 0)
¥

Figure 5: The sequence diagram for XBus example

Figure 5 shows the sequence diagram for the XBus example. The vertical line represents simulation
time. The brown rectangles on the top of the sequence diagram are the components in the

» o»n n o

testbench. In this example, we can see the “sequencer”, "driver”, "interface”, "monitor” and
“scoreboard” components.. The blue arrows are the sequence items or sequences between
components. Therefore, we can see that the sequencer sends

» o»n » »n

“read_modify_write_seq”, "read_byte_seq0”, "bus_transfer_inst(req)”, "write_byte_seq0”, "bus_transf

» »

er_inst(req)”, "read_byte_seq0” and "bus_transfer_inst(req)” to the driver. Likewise, the monitor

sends three sequence items “xbus_transfer_ints” to the scoreboard. Mapping the blue arrows to the
time line, we can figure out the begin time of each sequence item or sequence.

Since the sequence items and sequences from sequencers have a hierarchical relationship, we can
collapse the sequence items into sub-sequences. Figure 6 shows the collapsed result.

b4 <Sequence Diagram:5= /vffrd/rex chen/S¥ TB/OY M/ovm-2.1.1-latest/examplesfxbusfexample sinovas. fsd b
File Edit View Trace Option Help

QP r¥| & T

Select: read_modify_write_sec.read_hyte_seq0 (0-60 x15)

[

[0]#driver (Inte I Lo law e_monitor| |...emo_this

ElL

El

Figure 6: Collapse the sequence items into sub-sequence

The grey areas between the driver/interface and interface/monitor are possible functions to
transform sequence items (transactions) to signals or vice versa. Since we have no dynamic data for
the transformation functions, the only way to derive this information is to analyze the source code
to find the possible functions. In this example, the possible transformation functions in the driver
class are get_and_drive(), reset_signals()drive_read_write(). The sequence items are transformed
to signals and sent to the interface using these functions. On the other side, the functions
obseve_reset(), collect_arbitration_phase(), collect_address_phase() and collect_data_phase() in the
monitor class collect the signals from the DUT and transform them into sequence items
(transactions).

CONCLUSION

UVM provides a transaction recording scheme which is important for visualization and debugging
of transaction-level traffic in the testbench, which in turn helps with the debug of the testbench and
DUT. However, the recorded information is not sufficient and it is not convenient to record data for
non-sequencer components. We propose an enhanced scheme which involves recording additional

attributes and providing a better mechanism for transaction recording of non-sequencers.
Moreover, with the additional recorded attributes, we introduce a sequence diagram view to show
the testbench traffic more clearly and naturally.

REFERENCES

1. UVM User Guide and Reference Manual, http://www.accellera.org/activities/vip

2. OVM User Guide and Reference Manual, http://www.ovmworld.org/resources.php

3. Katharina Mehner and Bernd Weymann. Visualization and Debugging of Concurrent Java
Programs with UML. Dissertation, University of Paderborn, February 2005

4. Katharina Mehner. JaVis: A UML-Based Visualization and Debugging Environment for
Concurrent Java Programs. Revised Lectures on Software Visualization International Seminar,
May 2001.

5. Object Management Group. Unified Modeling Language. http://www.uml.org/

