
UVM Testbench Considerations for Acceleration

Kathleen A Meade (Author)

Solutions Architect

Cadence Design Systems, Inc

San Jose, CA

meade@cadence.com

Abstract— UVM has quickly become a universal standard for

developing efficient, exhaustive verification environments for

block-level and system-level designs. One of the key principles of

UVM is to develop and leverage reusable verification

components. One area of reuse that is gaining momentum is the

reuse of verification components and environments between

standard simulators and hardware acceleration.

This paper focuses on techniques used to take an existing

UVM testbench and make the required changes to run with

hardware acceleration. If these considerations are made during

testbench development, migration to hardware acceleration as a

performance option is much easier. This paper offers

recommendations for making your UVM environment (and

components) reusable for acceleration.

Keywords—UVM; Hardware Acceleration; SystemVerilog;

Performance

I. INTRODUCTION

The Universal Verification Methodology (UVM) has
become widely adopted for development of complex
verification environments and many teams have begun to reuse
verification components and environments for second and third
generation designs. When verification projects require very
long simulation times, hardware acceleration can be leveraged
to reduce simulation time from hours to minutes or even days
to hours. Ideally, a user would like to be able to run with the
same UVM testbench (TB) in both simulation and hardware
acceleration modes ensuring there is only one development
stream to manage.

Methodology adjustments discussed in the paper for the
development of the UVM verification environment will not
have a negative performance impact for pure simulation and
can have a positive impact when the design is moved to
acceleration hardware. Some of the performance
considerations that are covered:

 Partitioning the top-level module so that the interfaces,
DUT and additional synthesizable components are in one
module and the testbench is in a separate module.

 Separating your monitor into a collector (for signal-level
information) and a monitor (for checking/coverage).

 Limiting access between the DUT and the testbench. Limit
access to the DUT to the driver and collector only.

 Designing the environment to minimize the number of
transactions between the drivers/collectors and the rest of

the environment. Group transactions that can be executed
without interaction with the rest of the testbench.

 Creating synthesizable tasks to take transactions and drive
signals (driver) and to reassemble transactions from
signal-level details (collector). These tasks can be moved
to your interface and called from the driver/collector.
Interfaces should be synthesizable so they can be
partitioned to the hardware side.

 Removing timing from sequences. Use alternate methods
of specifying delays between and within sequences. A
timing agent is introduced to execute “delay” sequences.
These sequences execute in the interface during simulation
and on the hardware side during acceleration.

 Optimizing randomization of transactions. Make sure that
unnecessary calls to randomize are not being executed.
These calls can have a significant impact on performance.

II. IS HARDWARE ACCELERATION A GOOD PERFORMANCE

OPTION FOR YOUR UVM TESTBENCH?

Before considering acceleration, it is important to profile
the environment with a reasonably long simulation runtime to
check that a significant portion of the time is being spent in the
DUT code. Generally speaking, acceleration is not an efficient
performance option for environments where the testbench time
is significant and the DUT time is small. However, when
transitioning to sub-system and system-level verification, the
verification focus may not require the detailed verification
features that are otherwise requisite at the block/IP level. This
means that, even in cases where the simulation profile shows
that the testbench time is large, testbench optimization
techniques can be applied and those environments can be
candidates for acceleration also.

Acceleration is also not a good option if your simulation
run times are short.

The main performance factors to consider are described
here and shown in Figure 1 below:

1. UVM Testbench Runtime: This comprises any time spent
in the simulator, including randomization of the testbench,
configuration and building the verification environment,
configuring the DUT, driving random stimulus, checking
received data against a reference model and sampling
coverage. For a long simulation, the testbench
configuration and build time should be negligible since it
only occurs once, at the beginning of simulation.

mailto:meade@cadence.com

2. SW/HW Synchronizations: Signals and transactions that
are sent between the UVM testbench and the DUT initiate
a synchronization event. Every interaction between the
simulation and hardware incurs a delay. Additionally,
performance is impacted when data needs to be “moved”
between the simulator and the hardware. This overhead
can be critical for performance.

3. DUT Runtime: This includes any aspect of the design (and
testbench) that is executed on the acceleration hardware.
Acceleration hardware is very fast so it is important to
move as much of the design (and testbench) to the
hardware side as possible. The caveat is that anything on
the HW side must be synthesizable.

Fig. 1. Relative Runtimes for Simulation and Acceleration

For example, if you profile a simulation run and the
testbench takes 25% of simulation time, the DUT is 60%, and
the synchronization estimation is 15%, the maximum
performance boost, if the DUT time is reduced to zero, is
calculated as follows:

HW_TIME = 60% + 60%*15% = 69%

Estimated speedup (without TB optimization)
 = (100/(100-HW_TIME)) = 3.2X

In this case, hardware acceleration may not be a good
option.

If the DUT time is increased to 85% and the overhead is
reduced to 10%, the maximum performance boost improves:

HW_TIME = 85%+85%*10% = 93.5%

Estimated speedup (without additional TB optimization)
 = 100/6.5 = 15.4X

Once you establish that the design is a good candidate for
acceleration, there are adjustments that can be made to improve
performance beyond these numbers. Additional acceleration
performance is achieved by reducing the time spent generating
random stimulus and transferring data between the hardware-
side and the software-side.

III. PARTITION YOUR ENVIRONMENT

It is recommended to partition your top-level module so
that the DUT and additional synthesizable aspects of the
environment are in one module and the UVM testbench is in a
separate module. This should not impact simulation
performance.

Figure 2 shows a simplified verification environment,
partitioned to support hardware acceleration.

Fig. 2. Simplified verification environment with DUT and TB separated.

The top-level hardware module (hw_top) includes the DUT
instance, a clock generator, interfaces that connect between the
testbench and DUT and, optionally, synthesizable memory
components. The testbench module (tb_top) is simplified to
include the UVM package, UVC component packages, and an
initial block to configure and start the test. The only purpose of
the tb_top module is to use the UVM configuration database to
configure the virtual interfaces and call the run_test()
command.

Fig. 3. Code example for simplified tb_top module.

module tb_top();

 import uvm_pkg::*;

 `include “uvm_macros.svh”

 import my_uvc_1_pkg::*;

 import my_uvc_2_pkg::*;

 import clk_reset_pkg::*;

 import my_tb_pkg::*;

 initial begin

 uvm_config_db#(virtual my_uvc_1_if)::set(

 null, “*.my_uvc_1*”, “vif”,

 hw_top.my_uvc_1_if0);

 uvm_config_db#(virtual my_uvc_2_if)::set(

 null, “*.my_uvc_2*”, “vif”,

 hw_top.my_uvc2_if0);

 uvm_config_db#(virtual clk_reset_if)::set(

 null, “*”, “clk_reset_if”,

 hw_top.clk_reset_if0);

 run_test();

 end

endmodule

Fig. 4. Code example for hw_top module

IV. IMPLEMENT A COLLECTOR AND A MONITOR

UVM recommends inclusion of a monitor in each agent
that passively samples signals on the DUT interface, assembles
this information into transactions, collects coverage and
performs checking.

For hardware acceleration (and simulation), it is
recommended to split the monitor activity into signal- and
transaction-level activities. This is similar to the UVM
recommendation for creation of stimuli. For generating
stimuli, UVM enforces a separation between the transaction
level (sequence/sequencer) and the signal-level activity
(driver).

On the monitoring side, this separation is done by splitting
the monitor into a low-level collector class and a high-level
monitor that does transaction-level coverage and checking.
The collector is also a passive entity. It follows the interface-
specific protocol to capture transactions from signal data. The
transactions are passed to the monitor by way of UVM TLM
ports and the monitor can do checking, sample coverage, and
pass the transaction off to the scoreboard and any other
testbench component which may want access.

Fig. 5. Recommended UVC structure with collector and monitor

Fig. 6. Monitor/collector interaction

V. MINIMIZE INTERACTIONS BETWEEN THE TESTBENCH

AND DUT

When hardware acceleration is deployed, every interaction
between the DUT and the testbench requires a synchronization
event, and this adversely affects performance. It is important
to limit access between the testbench and DUT to the driver
and the collector ONLY. This sounds intuitive, but it is
difficult to enforce this policy. Every interaction outside the
driver/collector must be addressed when the design and
testbench are migrated to run on acceleration.

Two common places where this is found is waiting for
signals to change inside a sequence, and waiting for reset. A
simple UVM clock and reset agent and/or an interrupt agent
can be added to the UVM testbench to limit access to these
signals and generate events related to them.

VI. DRIVER AND MONITOR ADJUSTMENTS

When users migrate from simulation to hardware
acceleration, the first step is usually to partition the UVM
testbench to the simulator, move the DUT to the hardware side
and verify that the same tests run in both simulation and
acceleration. This simple, signal-based solution takes less time
to implement and can produce results in the 5X to 20X range,
depending on the implementation details of the testbench and
DUT.

With transaction-based acceleration, part of the testbench is
also moved into the hardware accelerator and the interface
between the testbench and the DUT is through task calls rather
than individual signal transitions. This further reduces the
number of synchronizations between the simulator and
accelerator and can produce results in the 30-300X range.
This performance boost is desirable, but requires that any
portion of the testbench that goes to the hardware side is
synthesizable.

Development of your interface UVC driver usually
includes implementation of a “drive_transfer” task which
converts a transaction to a series of signal interactions over a
period of time. These signals are connected to the DUT
through a virtual interface. Similarly, the UVC
monitor/collector typically includes a “collect_transfer” task
which captures signal-level details from the virtual interface
and re-assembles transactions for checking, coverage and
analysis.

module hw_top();

 // Interface Instances

 my_uvc_1_if my_uvc_1_if0 (...);

 my_ucv_2_if my_uvc_2_if0 (...);

 clk_reset_if clk_reset_if0 (...);

 //Clock/reset generator, memory (opt)

 clkgen clkgen(clk_reset_if0);

 memory mem_inst (...);

 // DUT instance

 top_dut dut(.clk_rst_if(clk_reset_if0),

 .uvc_1_if(my_uvc_1_if0),

 .uvc_2_if(my_uvc_2_if0),

 ...);

endmodule

Figure 7 illustrates the structure of a traditional UVC.
Signals are driven and clocks are referenced from the driver
and collector class through a virtual interface handle.

Fig. 7. Traditional UVC Structure

For hardware acceleration, it is recommended to develop
the “drive_transfer” and “collect_transfer” tasks to be
synthesizable so they can be moved to the DUT interface and
included in the hw_top module of the environment. Optionally,
these methods can be placed in the interface for both
simulation and acceleration. The only drawback to having
these tasks inside the interface instead of the driver class is that
you cannot use the UVM factory to override the default
behavior of those tasks. This requirement (an override of the
drive_transfer and/or collect_transfer tasks) is rarely seen in
UVM environments.

Figure 8 illustrates the structure of an acceleratable UVC.
The driver and collector call time consuming interface tasks
through a virtual interface handle. Signals are driven and
clocks (and signals) are referenced directly inside the interface.

Fig. 8. Accelerated UVC Structure

VII. CLOCKS AND RESET

Clocks and resets are an important part of designing for
acceleration because the clock signals toggle frequently and
can cause undesired synchronization events. It is
recommended to implement a simple reusable UVM agent
which uses sequences to configure and start clocks, initiate
resets and execute delay sequences from the UVM testbench.
The implementation details of generating clocks, delays and
resets will be handled in the SystemVerilog interface and a
clock generation module on the hardware side. The UVM
clock and reset agent architecture is illustrated in Figure 9.

Fig. 9. UVM Reusable Clock and Reset Agent

The UVM code below demonstrates a simple reusable data
item that can be used to control the clock and reset generation
in the DUT. It has control knobs indicating clock period, reset
information and a cycle count for issuing a delay or timeout.

Fig. 10. UVM code for clock and reset data item.

In the driver’s connect_phase(), it gets the clock and reset
interface from the configuration database. Then in the
run_phase() it gets clk_reset_items and uses the control
information to execute clocking and reset tasks implemented in
the interface.

The SystemVerilog code in Figure 11 below demonstrates
the techniques used in the driver to use the clk_reset_item
information to call the appropriate interface tasks.

Fig. 11. Code for the clock and reset driver connect_phase and run_phase

To ensure that the clocks are correctly recognized, the
clock generating structure is placed inside a module. The
control of the clocks generated by that structure is handled
from an interface that passes the appropriate control signals to
the module.

Handling timeouts is a particular concern in accelerated
environments. It is often necessary to check that a particular
event, transaction or interrupt occurs within a certain time. If
clocks are referenced on the class based side this will require
frequent (expensive) synchronizations between the accelerator
and the simulator. To avoid this, a timer and sequence to drive
it is built into the clock and reset UVC. The sequence returns
once the set timeout has been reached and an event has been
emitted. There is a field that can be set to cause an error if the
timeout is not reached before the end of the test. The timer can
handle concurrent timeout requests, even if they finish
simultaneously.

The SystemVerilog code shown in these examples was
simplified to demonstrate the techniques. If it is a design with
reuse in mind, this clock and reset UVM agent can be used
within and across many projects and many teams.

VIII. REMOVING TIMING FROM SEQUENCES

For optimum performance it is important to make sure that
there is no timing in the testbech. This includes references to
clocks, #delays and waiting on transition of a DUT signal. Use
alternate methods of specifying delays between and within
sequences. The timing agent can execute “delay” sequences.

class clk_reset_driver extends

 uvm_driver#(clk_reset_item);

...

virtual clk_reset_if vif;

...

function void connect_phase(uvm_phase phase);

 super.connect_phase(phase);

 if (!uvm_config_db#(virtual clk_reset_if)::

 get(this, “*”, “clk_reset_if”, vif))

 `uvm_error(“NO_VIF”,

 “Virtual interface not set!”)

 endfunction : connect_phase

task run_phase(uvm_phase phase);

...

 forever begin

 seq_item_port.get_next_item(req);

 if ((req.run_clock ==1)||(reset_delay !=0))

 vif.start_clock(req.clk_period,

 req.reset_delay, req.run_clock);

 else vif.count_clocks(req.cycle_count,

 req.wait_count);

 ...

 seq_item_port.item_done();

end

...

endtask : run_phase

endclass : clk_reset_driver

class clk_reset_item extends

 uvm_sequence_item;

int clk_period;

int reset_delay;

int cycle_count;

bit wait_count;

bit run_clk;

// UVM utility macros

`uvm_object_utils_begin(clk_reset_item)

 `uvm_field_int(clk_period, UVM_DEFAULT)

 `uvm_field_int(reset_delay, UVM_DEFAULT)

 `uvm_field_int(cycle_count, UVM_DEFAULT)

 `uvm_field_int(wait_count, UVM_DEFAULT)

 `uvm_field_int(run_clk, UVM_DEFAULT)

`uvm_object_utils_end

 // constructor

function new (string name="");

 super.new(name);

endfunction: new

endclass: clk_reset_item

These sequences execute in the interface during simulation and
on the hardware side during acceleration.

The clock and reset agent timer that counts clocks for
timeouts can also wait for the number of clocks to execute
before it returns while blocking the testbench from continuing
execution.

The clock and reset agent also includes a sequence that can
be configured to wait (or not wait) for a user defined delay of a
variable number of clocks. This sequence can be used within a
virtual sequence, as shown in the SystemVerilog code below.

The code in Figure 12 replaces the following code that
might found in a virtual sequence:

Fig. 12. Virtual sequence body example with timing.

IX. RANDOMIZATION ADJUSTMENTS

Make sure that the random constraints are as simple as
possible. If randomization is not required when you are
running tests with acceleration, make sure your interface UVC
includes a sequence that does not call randomize().

SUMMARY

Spending time up-front to construct UVM environments
that are easily portable to hardware acceleration can reap big
performance benefits in the end. The recommendations we
make are enhancements to the UVM that meet the goal of
using a single environment for simulation and hardware
acceleration.

ACKNOWLEDGEMENT

I would like to thank my colleagues at Cadence Design
Systems, Inc for input and suggestions for this paper.

REFERENCES

[1] D. Cohen and P. Edstrom, “Developing a single UVM environment for
software simulation and hardware acceleration,”
http://support.cadence.com (Rapid Adoption Kits).

[2] K. Meade and S. Rosenberg, “A Practical Guide to Adopting the
Universal Verification Methodology (UVM) Second Edition ”, United
States of America, 2013.

[3] W Queen, J Sprague and J Pierce, Unconstrained UVM SystemVerilog
Performance, DVCon Proceedings, 2012

Fig. 13. Virtual sequence executing timing sequence

task body();

 @(negedge p_sequencer.vif.reset)

 // Load Memory, configure, run traffic

 // Wait 30 clocks to end simulation

 repeat(30)

 @(posedge p_sequencer.vif.clock);

endtask

class traffic_vseq extends uvm_sequence;

 //`uvm_object_utils and constructor

 // UVC sequences

 clock_and_reset_start_seq clock_seq;

 clock_and_reset_delay_seq delay_seq;

 my_uvc1_config_seq uvc1_config_seq;

 my_uvc2_traffic_seq uvc2_traffic_seq;

 my_memory_load_seq load_mem_seq;

 task body();

 `uvm_create(clock_seq)

 // Start Clocks and Reset

 clock_seq.clk_period = 10;

 clock_seq.reset_delay = 10;

 clock_seq.run_clock = 1;

 `uvm_send_on(clock_seq,

 p_sequencer.clk_reset_seqr)

 // Load Memory

 `uvm_do_on(load_mem_seq,

 p_sequencer.mem_seqr)

 // Configure

 `uvm_do_on(uvc1_config_seq,

 p_sequencer.uvc1_master_seqr)

 // Run Traffic

 `uvm_do_on(uvc2_traffic_seq,

 p_sequencer.uvc2_master_seqr)

 // Wait 30 clocks to end simulation

 `uvm_create(delay_seq)

 delay_seq.clock_cycles = 30;

 delay_seq.wait_count = 1;

 `uvm_send_on(delay_seq,

 p_sequencer.clk_reset_seqr)

 endtask

endclass : traffic_vseq

http://support.cadence.com/

