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Abstract— UVM has quickly become a universal standard for 

developing efficient, exhaustive verification environments for 

block-level and system-level designs.  One of the key principles of 

UVM is to develop and leverage reusable verification 

components.   One area of reuse that is gaining momentum is the 

reuse of verification components and environments between 

standard simulators and hardware acceleration. 

This paper focuses on techniques used to take an existing 

UVM testbench and make the required changes to run with 

hardware acceleration.  If these considerations are made during 

testbench development, migration to hardware acceleration as a 

performance option is much easier.  This paper offers 

recommendations for making your UVM environment (and 

components) reusable for acceleration. 
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I. INTRODUCTION  

The Universal Verification Methodology (UVM) has 
become widely adopted for development of complex 
verification environments and many teams have begun to reuse 
verification components and environments for second and third 
generation designs.  When verification projects require very 
long simulation times, hardware acceleration can be leveraged 
to reduce simulation time from hours to minutes or even days 
to hours.  Ideally, a user would like to be able to run with the 
same UVM testbench (TB) in both simulation and hardware 
acceleration modes ensuring there is only one development 
stream to manage.  

Methodology adjustments discussed in the paper for the 
development of the UVM verification environment will not 
have a negative performance impact for pure simulation and 
can have a positive impact when the design is moved to 
acceleration hardware.  Some of the performance 
considerations that are covered: 

 Partitioning the top-level module so that the interfaces, 
DUT and additional synthesizable components are in one 
module and the testbench is in a separate module. 

 Separating your monitor into a collector (for signal-level 
information) and a monitor (for checking/coverage).   

 Limiting access between the DUT and the testbench.  Limit 
access to the DUT to the driver and collector only.  

 Designing the environment to minimize the number of 
transactions between the drivers/collectors and the rest of 

the environment.  Group transactions that can be executed 
without interaction with the rest of the testbench. 

 Creating synthesizable tasks to take transactions and drive 
signals (driver) and to reassemble transactions from 
signal-level details (collector).  These tasks can be moved 
to your interface and called from the driver/collector.  
Interfaces should be synthesizable so they can be 
partitioned to the hardware side. 

 Removing timing from sequences.  Use alternate methods 
of specifying delays between and within sequences.  A 
timing agent is introduced to execute “delay” sequences.  
These sequences execute in the interface during simulation 
and on the hardware side during acceleration. 

 Optimizing randomization of transactions.  Make sure that 
unnecessary calls to randomize are not being executed.  
These calls can have a significant impact on performance. 

II. IS HARDWARE ACCELERATION A GOOD PERFORMANCE 

OPTION FOR YOUR UVM TESTBENCH? 

Before considering acceleration, it is important to profile 
the environment with a reasonably long simulation runtime to 
check that a significant portion of the time is being spent in the 
DUT code. Generally speaking, acceleration is not an efficient 
performance option for environments where the testbench time 
is significant and the DUT time is small. However, when 
transitioning to sub-system and system-level verification, the 
verification focus may not require the detailed verification 
features that are otherwise requisite at the block/IP level.  This 
means that, even in cases where the simulation profile shows 
that the testbench time is large, testbench optimization 
techniques can be applied and those environments can be 
candidates for acceleration also. 

Acceleration is also not a good option if your simulation 
run times are short.    

The main performance factors to consider are described 
here and shown in Figure 1 below: 

1. UVM Testbench Runtime:  This comprises any time spent 
in the simulator, including randomization of the testbench, 
configuration and building the verification environment, 
configuring the DUT, driving random stimulus, checking 
received data against a reference model and sampling 
coverage. For a long simulation, the testbench 
configuration and build time should be negligible since it 
only occurs once, at the beginning of simulation. 
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2. SW/HW Synchronizations:  Signals and transactions that 
are sent between the UVM testbench and the DUT initiate 
a synchronization event. Every interaction between the 
simulation and hardware incurs a delay.  Additionally, 
performance is impacted when data needs to be “moved” 
between the simulator and the hardware.  This overhead 
can be critical for performance. 

3. DUT Runtime:  This includes any aspect of the design (and 
testbench) that is executed on the acceleration hardware.  
Acceleration hardware is very fast so it is important to 
move as much of the design (and testbench) to the 
hardware side as possible.  The caveat is that anything on 
the HW side must be synthesizable. 

 

Fig. 1. Relative Runtimes for Simulation and Acceleration 

For example, if you profile a simulation run and the 
testbench takes 25% of simulation time, the DUT is 60%, and 
the synchronization estimation is 15%, the maximum 
performance boost, if the DUT time is reduced to zero, is 
calculated as follows: 

HW_TIME = 60% + 60%*15% = 69% 

Estimated speedup (without TB optimization)  
            = (100/(100-HW_TIME)) = 3.2X 

In this case, hardware acceleration may not be a good 
option. 

If the DUT time is increased to 85% and the overhead is 
reduced to 10%, the maximum performance boost improves: 

HW_TIME = 85%+85%*10% = 93.5% 

Estimated speedup (without additional TB optimization)  
            = 100/6.5 = 15.4X 

Once you establish that the design is a good candidate for 
acceleration, there are adjustments that can be made to improve 
performance beyond these numbers.  Additional acceleration 
performance is achieved by reducing the time spent generating 
random stimulus and transferring data between the hardware-
side and the software-side.   

III. PARTITION YOUR ENVIRONMENT 

It is recommended to partition your top-level module so 
that the DUT and additional synthesizable aspects of the 
environment are in one module and the UVM testbench is in a 
separate module.  This should not impact simulation 
performance. 

Figure 2 shows a simplified verification environment, 
partitioned to support hardware acceleration. 

 

Fig. 2. Simplified verification environment with DUT and TB separated. 

The top-level hardware module (hw_top) includes the DUT 
instance, a clock generator, interfaces that connect between the 
testbench and DUT and, optionally, synthesizable memory 
components. The testbench module (tb_top) is simplified to 
include the UVM package, UVC component packages, and an 
initial block to configure and start the test. The only purpose of 
the tb_top module is to use the UVM configuration database to 
configure the virtual interfaces and call the run_test() 
command. 

 

Fig. 3. Code example for simplified tb_top module. 

module tb_top(); 

 import uvm_pkg::*; 

 `include “uvm_macros.svh” 

 

 import my_uvc_1_pkg::*; 

 import my_uvc_2_pkg::*; 

 import clk_reset_pkg::*; 

 import my_tb_pkg::*; 

 

 initial begin 

  uvm_config_db#(virtual my_uvc_1_if)::set( 

                null, “*.my_uvc_1*”, “vif”, 

                 hw_top.my_uvc_1_if0); 

  uvm_config_db#(virtual my_uvc_2_if)::set( 

                null, “*.my_uvc_2*”, “vif”, 

                hw_top.my_uvc2_if0); 

  uvm_config_db#(virtual clk_reset_if)::set( 

                null, “*”, “clk_reset_if”, 

                hw_top.clk_reset_if0); 

  run_test(); 

 end 

endmodule 

 

 



 

Fig. 4. Code example for hw_top module 

IV. IMPLEMENT A COLLECTOR AND A MONITOR 

UVM recommends inclusion of a monitor in each agent 
that passively samples signals on the DUT interface, assembles 
this information into transactions, collects coverage and 
performs checking.   

For hardware acceleration (and simulation), it is 
recommended to split the monitor activity into signal- and 
transaction-level activities. This is similar to the UVM 
recommendation for creation of stimuli.  For generating 
stimuli, UVM enforces a separation between the transaction 
level (sequence/sequencer) and the signal-level activity 
(driver).   

On the monitoring side, this separation is done by splitting 
the monitor into a low-level collector class and a high-level 
monitor that does transaction-level coverage and checking.    
The collector is also a passive entity.  It follows the interface-
specific protocol to capture transactions from signal data.  The 
transactions are passed to the monitor by way of UVM TLM 
ports and the monitor can do checking, sample coverage, and 
pass the transaction off to the scoreboard and any other 
testbench component which may want access. 

 

Fig. 5. Recommended UVC structure with collector and monitor 

 

Fig. 6. Monitor/collector interaction 

V. MINIMIZE INTERACTIONS BETWEEN THE TESTBENCH 

AND DUT 

When hardware acceleration is deployed, every interaction 
between the DUT and the testbench requires a synchronization 
event, and this adversely affects performance.  It is important 
to limit access between the testbench and DUT to the driver 
and the collector ONLY.  This sounds intuitive, but it is 
difficult to enforce this policy.  Every interaction outside the 
driver/collector must be addressed when the design and 
testbench are migrated to run on acceleration. 

Two common places where this is found is waiting for 
signals to change inside a sequence, and waiting for reset.  A 
simple UVM clock and reset agent and/or an interrupt agent 
can be added to the UVM testbench to limit access to these 
signals and generate events related to them. 

VI. DRIVER AND MONITOR ADJUSTMENTS 

When users migrate from simulation to hardware 
acceleration, the first step is usually to partition the UVM 
testbench to the simulator, move the DUT to the hardware side 
and verify that the same tests run in both simulation and 
acceleration.  This simple, signal-based solution takes less time 
to implement and can produce results in the 5X to 20X range, 
depending on the implementation details of the testbench and 
DUT.  

With transaction-based acceleration, part of the testbench is 
also moved into the hardware accelerator and the interface 
between the testbench and the DUT is through task calls rather 
than individual signal transitions.  This further reduces the 
number of synchronizations between the simulator and 
accelerator and can produce results in the 30-300X range.   
This performance boost is desirable, but requires that any 
portion of the testbench that goes to the hardware side is 
synthesizable. 

Development of your interface UVC driver usually 
includes implementation of a “drive_transfer” task which 
converts a transaction to a series of signal interactions over a 
period of time.  These signals are connected to the DUT 
through a virtual interface.  Similarly, the UVC 
monitor/collector typically includes a “collect_transfer” task 
which captures signal-level details from the virtual interface 
and re-assembles transactions for checking, coverage and 
analysis. 

 

 

module hw_top();  

 // Interface Instances 

 my_uvc_1_if  my_uvc_1_if0  (...); 

 my_ucv_2_if  my_uvc_2_if0  (...); 

 clk_reset_if clk_reset_if0 (...); 

  

 //Clock/reset generator, memory (opt) 

 clkgen clkgen(clk_reset_if0); 

 memory mem_inst (...); 

 

 // DUT instance 

 top_dut dut( .clk_rst_if(clk_reset_if0), 

              .uvc_1_if(my_uvc_1_if0), 

              .uvc_2_if(my_uvc_2_if0),  

              ...); 

endmodule 



Figure 7 illustrates the structure of a traditional UVC.  
Signals are driven and clocks are referenced from the driver 
and collector class through a virtual interface handle. 

 

Fig. 7. Traditional UVC Structure 

For hardware acceleration, it is recommended to develop 
the “drive_transfer” and “collect_transfer” tasks to be 
synthesizable so they can be moved to the DUT interface and 
included in the hw_top module of the environment. Optionally, 
these methods can be placed in the interface for both 
simulation and acceleration.  The only drawback to having 
these tasks inside the interface instead of the driver class is that 
you cannot use the UVM factory to override the default 
behavior of those tasks.   This requirement (an override of the 
drive_transfer and/or collect_transfer tasks) is rarely seen in 
UVM environments. 

Figure 8 illustrates the structure of an acceleratable UVC.  
The driver and collector call time consuming interface tasks 
through a virtual interface handle.  Signals are driven and 
clocks (and signals) are referenced directly inside the interface. 

 

Fig. 8. Accelerated UVC Structure 

VII. CLOCKS AND RESET 

Clocks and resets are an important part of designing for 
acceleration because the clock signals toggle frequently and 
can cause undesired synchronization events.  It is 
recommended to implement a simple reusable UVM agent 
which uses sequences to configure and start clocks, initiate 
resets and execute delay sequences from the UVM testbench. 
The implementation details of generating clocks, delays and 
resets will be handled in the SystemVerilog interface and a 
clock generation module on the hardware side.  The UVM 
clock and reset agent architecture is illustrated in Figure 9. 

 

Fig. 9. UVM Reusable Clock and Reset Agent  

 

 

 

 



The UVM code below demonstrates a simple reusable data 
item that can be used to control the clock and reset generation 
in the DUT.  It has control knobs indicating clock period, reset 
information and a cycle count for issuing a delay or timeout. 

 

Fig. 10. UVM code for clock and reset data item.  

In the driver’s connect_phase(), it gets the clock and reset 
interface from the configuration database.  Then in the 
run_phase() it gets clk_reset_items and uses the control 
information to execute clocking and reset tasks implemented in 
the interface. 

The SystemVerilog code in Figure 11 below demonstrates 
the techniques used in the driver to use the clk_reset_item 
information to call the appropriate interface tasks.   

 

Fig. 11. Code  for the clock and reset driver connect_phase and run_phase 

To ensure that the clocks are correctly recognized, the 
clock generating structure is placed inside a module.  The 
control of the clocks generated by that structure is handled 
from an interface that passes the appropriate control signals to 
the module. 

Handling timeouts is a particular concern in accelerated 
environments. It is often necessary to check that a particular 
event, transaction or interrupt occurs within a certain time.  If 
clocks are referenced on the class based side this will require 
frequent (expensive) synchronizations between the accelerator 
and the simulator.  To avoid this, a timer and sequence to drive 
it is built into the clock and reset UVC. The sequence returns 
once the set timeout has been reached and an event has been 
emitted.  There is a field that can be set to cause an error if the 
timeout is not reached before the end of the test.  The timer can 
handle concurrent timeout requests, even if they finish 
simultaneously.   

The SystemVerilog code shown in these examples was 
simplified to demonstrate the techniques.  If it is a design with 
reuse in mind, this clock and reset UVM agent can be used 
within and across many projects and many teams. 

VIII. REMOVING TIMING FROM SEQUENCES 

For optimum performance it is important to make sure that 
there is no timing in the testbech.  This includes references to 
clocks, #delays and waiting on transition of a DUT signal.  Use 
alternate methods of specifying delays between and within 
sequences.  The timing agent can execute “delay” sequences.  

class clk_reset_driver extends 

                 uvm_driver#(clk_reset_item); 

... 

virtual clk_reset_if vif; 

... 

function void connect_phase(uvm_phase phase); 

 super.connect_phase(phase); 

 if (!uvm_config_db#(virtual clk_reset_if):: 

       get(this, “*”, “clk_reset_if”, vif)) 

 `uvm_error(“NO_VIF”, 

              “Virtual interface not set!”) 

 endfunction : connect_phase 

 

task run_phase(uvm_phase phase); 

... 

 forever begin 

  seq_item_port.get_next_item(req); 

  if ((req.run_clock ==1)||(reset_delay !=0)) 

    vif.start_clock(req.clk_period, 

            req.reset_delay, req.run_clock); 

  else vif.count_clocks(req.cycle_count, 

                        req.wait_count); 

  ... 

  seq_item_port.item_done(); 

end 

... 

endtask : run_phase 

 

endclass : clk_reset_driver 

 

class clk_reset_item extends 

                      uvm_sequence_item; 

int clk_period; 

int reset_delay; 

int cycle_count; 

bit wait_count;   

bit run_clk;  

 

// UVM utility macros 

`uvm_object_utils_begin(clk_reset_item) 

  `uvm_field_int(clk_period, UVM_DEFAULT) 

  `uvm_field_int(reset_delay, UVM_DEFAULT) 

  `uvm_field_int(cycle_count, UVM_DEFAULT) 

  `uvm_field_int(wait_count, UVM_DEFAULT) 

  `uvm_field_int(run_clk, UVM_DEFAULT) 

`uvm_object_utils_end 

   

  // constructor 

function new (string name=""); 

  super.new(name); 

endfunction: new   

 

endclass: clk_reset_item 

 



These sequences execute in the interface during simulation and 
on the hardware side during acceleration.  

The clock and reset agent timer that counts clocks for 
timeouts can also wait for the number of clocks to execute 
before it returns while blocking the testbench from continuing 
execution. 

The clock and reset agent also includes a sequence that can 
be configured to wait (or not wait) for a user defined delay of a 
variable number of clocks.  This sequence can be used within a 
virtual sequence, as shown in the SystemVerilog code below.  

 

The code in Figure 12 replaces the following code that 
might found in a virtual sequence: 

 

Fig. 12. Virtual sequence body example with timing. 

IX. RANDOMIZATION ADJUSTMENTS 

Make sure that the random constraints are as simple as 
possible. If randomization is not required when you are 
running tests with acceleration, make sure your interface UVC 
includes a sequence that does not call randomize(). 

SUMMARY 

Spending time up-front to construct UVM environments 
that are easily portable to hardware acceleration can reap big 
performance benefits in the end.  The recommendations we 
make are enhancements to the UVM that meet the goal of 
using a single environment for simulation and hardware 
acceleration. 
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Fig. 13. Virtual sequence executing timing sequence 

task body(); 

  @(negedge p_sequencer.vif.reset) 

  // Load Memory, configure, run traffic 

  // Wait 30 clocks to end simulation 

  repeat(30) 

    @(posedge p_sequencer.vif.clock); 

endtask 

class traffic_vseq extends uvm_sequence; 

   

 //`uvm_object_utils and constructor 

  

 // UVC sequences 

 clock_and_reset_start_seq clock_seq; 

 clock_and_reset_delay_seq delay_seq; 

   

 my_uvc1_config_seq  uvc1_config_seq; 

 my_uvc2_traffic_seq  uvc2_traffic_seq; 

  

 my_memory_load_seq  load_mem_seq; 

 

 task body(); 

  `uvm_create(clock_seq) 

   // Start Clocks and Reset 

   clock_seq.clk_period = 10; 

   clock_seq.reset_delay = 10; 

   clock_seq.run_clock = 1; 

   `uvm_send_on(clock_seq, 

                p_sequencer.clk_reset_seqr) 

   // Load Memory 

   `uvm_do_on(load_mem_seq, 

              p_sequencer.mem_seqr) 

   // Configure 

   `uvm_do_on(uvc1_config_seq, 

              p_sequencer.uvc1_master_seqr) 

   // Run Traffic 

   `uvm_do_on(uvc2_traffic_seq, 

              p_sequencer.uvc2_master_seqr) 

   // Wait 30 clocks to end simulation 

   `uvm_create(delay_seq) 

   delay_seq.clock_cycles = 30; 

   delay_seq.wait_count = 1; 

   `uvm_send_on(delay_seq,  

                p_sequencer.clk_reset_seqr) 

  endtask 

endclass : traffic_vseq 
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