
UVM Testbench Considerations
for Acceleration

Kathleen A Meade
Cadence Design Systems, Inc

Hardware-Assisted Verification
Use Modes

Block/IP
Verification

Sub-System/SoC
Verification

SoC-Level Hardware/
Firmware Integration

Field
Prototype

Software Simulation

Signal-Based
Acceleration

In-Circuit
Emulation

Transaction-Based
Acceleration

Synthesizable
Testbench (STB)

Performance

Software Simulation
Hardware Assist Workstation

TB Design

Signal Based Acceleration
Hardware Assist

Workstation

TB Design

Transaction Based Acceleration

Hardware Assist

Workstation

TB Design

Synthesizable Testbench
Hardware Assist Workstation

TB Design

Hybrid

Full System
Validation with
 App Software

In-Circuit Emulation

Hardware Assist

Design

Workstation

Hybrid

Hardware Assist Virtual System

Design
Processor

Model

Objectives of UVM Acceleration

UVM provides methodology for verifying complex designs with a
focus on reuse

• Reuse of verification components and environments between
simulators and hardware acceleration is gaining momentum

• This session introduces methodology techniques for creating
acceleration-friendly UVM environments

– Makes migration from simulation to acceleration much easier

– Will not have a negative impact on performance for pure simulation

• Ultimate goal: Enhance simulation performance to run more
cycles and achieve desired coverage faster

3

4

Agenda

The following topics will be covered:

• Partitioning the top-level into a hardware and software top
module

• Separating your UVM monitor into a collector (for signal-level
information) and a monitor (for checking/coverage)

• Limiting access between the DUT and the testbench.

• Creating synthesizable interface tasks to:

– Take transactions and drive signals (driver)

– Reassemble transactions from signal-level details (collector)

• Removing timing from sequences

5

Is Hardware Acceleration a Good Option?

Hardware Acceleration can improve performance to 300x (or more)

• Profile your environment with a long simulation runtime

• Check that a significant portion of time is being spent in the DUT

• Acceleration is usually not a good option for environments where
the testbench time is significant and the DUT time is small

• Acceleration is also not a good option if your simulation runtimes
are short

– Consider grouping short tests into one longer test with
automatic checking

Acceleration Performance

• The main factors in determining performance potential:

– Testbench Runtime – Time spent in the simulator, including
configuration and building of the UVM verification environment and
DUT, driving stimulus, checking and sampling coverage

– SW/HW Synchronizations – Signals and transactions sent between
the UVM Testbench and DUT

– DUT Runtime – Includes any aspect of the design (and testbench)
that is executed on the acceleration hardware

6

Testbench DUT *

* : SW/HW Synchronization Overhead

DUT Simulation

Acceleration

TB
DUT
+ TB *

Acceleration
(optimized TB)

Testbench

Analyzing Profile Results – An Example

Profiling a simulation run – for acceleration:
 Testbench takes 25% of simulation time
 DUT takes 60%
 Synchronization estimation is 15%

 Maximum performance boost, if the DUT time is reduced to zero is:

 HW_TIME = 60% + 60%*15% = 69%

 Estimated speed-up (no opt) = 100/(100-HW_TIME) = 3.2X

Increasing DUT time to 90% and reducing sync overhead to 5%:

 HW_TIME = 90% + 90%*5% = 94.5%

 Estimated speed-up = 100/(100-94.5) = 18.2X

Further testbench optimizations can be made for even better
performance

7

 top (module)

initial begin
 clk = 0; reset=0;
 #50 reset = 1;
end

always #5 clk = ~clk;

Partitioning Your UVM Environment

• Partition your top-level module so the DUT and synthesizable components are
in one module and the UVM testbench is in a separate module

8

tb_top (module)

test extends uvm_test (class)

env extends uvm_env

Interface1
UVC

Clock and Reset
Agent

Config Virtual Sequencer Scoreboard

Interface2
UVC

Synthesizable
for Hardware
Acceleration

Runs on
Simulator

Memory

hw_top (module)

Interface 1 Interface 2

DUT

Clock and Reset
Interface

Clock and Reset
Module

Hardware Top-Module Example

• Includes the DUT instance, a clock generator, SystemVerilog
interfaces and (optional) memory

9

module hw_top ();

 // Interface Instances

 my_uvc_if my_uvc_if0(clock, reset);

 clk_reset_if clk_reset_if0 (start_clock, reset);

 // Clock/reset generator, memory (opt)

 clkgen clkgen(start_clock, clock);

 memory mem_inst(...);

 // DUT instance

 top_dut dut (clock, reset,

 .uvc_if(my_uvc_if0), ...);

endmodule

Generates clocks

Controls clock and
generates reset

Interface Instances

Top-level DUT

Testbench Top-Module Example

• Includes the UVM package, user-defined UVC packages, the top-
level testbench and test files and an initial block to configure and
start the test

10

module tb_top ();

 import uvm_pkg::*;

 `include “uvm_macros.svh”

 import my_uvc_pkg::*;

 import clk_reset_pkg::*;

 import my_tb_pkg::*;

 initial begin

 uvm_config_db#(virtual my_uvc_if)::set(null,

 “*.my_uvc0*”, “vif”, hw_top.my_uvc_if0);

 uvm_config_db#(virtual clk_reset_if)::set(null,

 “*.clk_reset0*”, “vif”, hw_top.clk_reset_if0);

 run_test();

 end

endmodule

Configure the virtual interfaces

Run the test

The UVM Package

UVC and Testbench Packages

Implement a Collector/Monitor Pair

• A UVM monitor to captures transactions from the DUT interface,
performs checking, coverage & sends them to other components

• Split the monitor into a collector class for capturing signals and
forming transactions and a monitor for transaction-level checking
and coverage

• Similar to the sequencer/driver pair for creation of stimuli

11

BUS UVC

 master agent

driver

sequencer

collector

monitor

BUS UVC

 master agent

driver

sequencer

monitor collector

monitor

Monitor/Collector Interaction

12

class my_uvc_collector extends uvm_component;

 uvm_analysis_port#(my_uvc_trans) item_out_port;

...

endclass

class my_uvc_monitor extends uvm_monitor;

 uvm_analysis_imp#(my_uvc_trans, my_uvc_monitor)

 item_in_port;

 uvm_analysis_port#(my_uvc_trans) item_out_port;

...

endclass

class my_uvc_agent extends uvm_agent;

 my_uvc_monitor monitor;

 my_uvc_collector collector;

 //create in the build phase

 // connect in the connect_phase

 collector.item_out_port.connect(

 monitor.coll_in_port);

endclass

Monitor

Collector

uvm_analysis_imp

uvm_analysis_port

Monitor-Collector
Interaction

uvm_analysis_port

Minimize Testbench and DUT Interaction

• Every interaction between the DUT and testbench initiates a
synchronization event

• Limit interaction to the collector and driver only

• All other interactions must be addressed when the testbench
is migrated to run on acceleration

• Identify: Two common places where this is found:
– Waiting for signals to change inside a sequence

– Waiting for reset – not as critical as reset does not happen very often

• Address: Add a clock and reset agent and/or an interrupt
agent to limit access to these signals and generate events
related to them

13

Signal-Based vs Transaction-Based
Acceleration

14

Usually the first step in
migration

• Signal-based acceleration:
– Partition the UVM testbench to the simulator move the DUT to the

hardware side

– Takes less time to implement and can produce results in the 3x-20x range

• Transaction-based acceleration:
– Part of the testbench is also moved to the hardware accelerator

– Interface between the testbench and the DUT is through task calls

– Reduces the number of synchronizations and can produce results in the
20x-300x range!

• Goal is to develop your testbench environment to be conducive
for transaction-based acceleration (TBA)

Traditional UVC Structure

• Signals driven and clocks referenced from driver and collector
class through a virtual interface handle

15

Interface UVC

slave

master

hw_top SV interface

driver collector

sequencer

Sequence

clock
clock

task drive_transfer
 (my_trans trans)

task collect_transfer
 (my_trans trans)

monitor

addr
data
rd_wr
enable
rdata

clock

UVM Driver Class – drive_transfer() Task

16

• Signals driven and clocks referenced from driver and collector
class through a virtual interface handle

class my_uvc_driver extends uvm_driver;

 ...

 task drive_transfer(my_trans_type trans);

 @(posedge vif.clock iff vif.reset)

 vif.addr <= trans.addr;

 vif.data <= trans.data;

 vif.rd_wr <= (trans.dir == READ) ? 1’b0 : 1’b1;

 vif.enable <= 1’b1;

 @(posedge vif.clock)

 if (trans.dir == READ)

 trans.data = vif.rdata;

 vif.enable <= 1’b0;

 endtask

endclass

Virtual interface interactions
cause a synchronization event

Accelerated UVC Structure

• Driver and collector call time-consuming interface tasks.

• Signals driven and clocks referenced directly in the interface
(synthesizable)

17

Interface UVC

slave

master

hw_top
SV interface

send_trans
 (addr, data)

task collect_transfer
 (addr, data)

task drive_transfer
 (addr, data)

clock

clock

Sequence

sequencer

driver collector

monitor

vif. drive_transfer () vif. collect_transfer ()

Passes transaction data
through an interface task

UVM Driver Class – drive_transfer() Task

• The driver’s drive_transfer task calls a time-consuming
interface task

• Data fields can be passed directly or converted to a packed
struct

18

class my_uvc_driver extends uvm_driver;

 ...

 task drive_transfer(my_trans_type trans);

 logic [31:0] rdata;

 vif.drive_transfer(trans.addr,

 trans.data,

 trans.dir, rdata);

 trans.data = rdata;

 endtask

endclass

Pass fields or a packed
struct

UVC Interface – drive_transfer() Task

19

interface my_uvc_if (clock, reset);

 logic [31:0] addr;

 logic [31:0] data, rdata;

 logic rd_wr, enable;

 ...

 task drive_transfer(logic [31:0] t_addr, t_data,

 trans_type_e t_dir, output logic [31:0] t_rdata);

 wait (reset == 1);

 @(posedge clock)

 addr <= t_addr;

 data <= t_data;

 rd_wr <= (t_dir == READ) ? 1’b0 : 1’b1;

 enable <= 1’b1;

 @(posedge clock)

 if (t_dir == READ) t_rdata = rdata;

 enable <= 1’b0;

 endtask

endinterface

Task should be “synthesizable”
for hardware acceleration

Signals are driven/sampled
directly in the interface task

Clocks and Reset

• Clocks are critical in designing
for acceleration
– They toggle frequently and cause

synchronization events

• Implement a reusable agent to
configure clocks, initiate resets
and execute delay sequences
from the testbench

• The implementation details
are in a SV interface and are
executed on the hardware

20

clk_reset_agent

hw_top

clk_reset_if (clock, reset);
task start_clock (clk_period, reset_delay, run_clk);
task count_clocks(cycle_count, wait_count);

Sequencer

clk_gen (clock, run_clk,
 clk_period); DUT

Driver
vif. start_clock ();
vif.count_clocks();

Sequences Sequences:
 start_clocks_seq
 reset_seq
 count_clocks_seq

Clock and Reset Item and Driver

21

clk_reset_agent

hw_top

clk_reset_if (clock, reset);
task start_clock (clk_period, reset_delay, run_clk);
task count_clocks(cycle_count, wait_count);

Sequencer

clk_gen (clock, run_clk,
 clk_period); DUT

Driver
vif. start_clock ();
vif.count_clocks();

Sequences Sequences:
 start_clocks_seq
 reset_seq
 count_clocks_seq

class clk_reset_driver extends

 uvm_driver#(clk_reset_item);

 virtual clk_reset_if vif;

 // `uvm_component_utils and constructor

 // Get the vif in the connect_phase

 task run_phase(uvm_phase phase);

 ...

 seq_item_port.get_next_item(req);

 if ((req.run_clk == 1) || (req.reset_delay != 0))

 vif.start_clock(req.clk_period, req.reset_delay, ...);

 else vif.count_clocks(req.cycle_count, req.wait_count);

 seq_item_port.item_done();

 ...

 endtask

endclass

class clk_reset_item extends...;

 rand int clk_period;

 rand int reset_delay;

 rand int cycle_count;

 rand bit wait_count;

 rand bit run_clk;

...

endclass

Removing Timing From Sequences

• For optimum performance remove timing from the testbench
– Includes references to clocks and #delay’s

– Waiting on transition of a DUT signal

• Use alternate methods of specifying delays within and
between sequences
– Include a delay_clocks task inside your interface UVC to delay clocks

within a UVC sequence

– Use a clock and reset agent to execute sequences which starts the
clocks and initiates resets (start_clocks_seq)

– Also use the clock and reset agent to execute a sequence
(count_clocks_seq) for clock delays (blocking) or timeouts

22

Virtual Sequence with # Delays

23

class traffic_vseq extends uvm_sequence;

 // `uvm_object_utils and constructor

 // Interface UVC Sequences

 my_uvc1_config_seq uvc1_config_seq;

 my_uvc2_traffic_seq uvc2_traffic_seq;

 task body();

 #100 // Wait 100ns for reset to finish

 // Configure via UVC 1

 `uvm_do_on(uvc1_config_seq, p_sequencer.uvc1_master_seqr)

 // Run some traffic on UVC 2

 `uvm_do_on(uvc2_traffic_seq, p_sequencer.uvc2_master_seqr)

 // Wait 30 clocks (300ns) to end simulation

 #300;

 endtask

endclass

Virtual Sequence with Clock Sequences

24

class traffic_vseq extends uvm_sequence;

 // `uvm_object_utils and constructor

 // Other sequences: uvc1_config_seq, uvc2_traffic_seq

 start_clocks_seq clock_seq;

 count_clocks_seq delay_seq;

 // Other Sequences

 task body();

 // Start clocks and initiate reset

 `uvm_do_on_with(clock_seq, p_sequencer.clk_reset_seqr,

 { clock_seq.clock_period == 10;

 clock_seq.reset_delay == 10;

 clock_seq.run_clock == 1; })

 // Configure, run traffic

 // Wait 30 clocks (#300)to end

 `uvm_do_on_with(delay_seq, p_sequencer.clk_reset_seqr,

 { delay_seq.clock_cycles == 30;

 delay_seq.wait_count == 1; })

 endtask

endclass

Summary

• Hardware acceleration of verification environments for
performance is gaining momentum

• Spending time up front to construct UVM environments that
are easily portable to hardware acceleration can reap big
performance benefits

• The UVM recommendations introduced in this module

– Makes migration from simulation to acceleration much easier

– Will not have a negative impact on performance for pure simulation

• Enhance simulation performance to run more cycles and
achieve desired coverage faster

25

25

