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Objectives of UVM Acceleration 

UVM provides methodology for verifying complex designs with a 
focus on reuse 

• Reuse of verification components and environments between 
simulators and hardware acceleration is gaining momentum 

• This session introduces methodology techniques for creating 
acceleration-friendly UVM environments 

– Makes migration from simulation to acceleration much easier 

– Will not have a negative impact on performance for pure simulation 

 

• Ultimate goal: Enhance simulation performance to run more 
cycles and achieve desired coverage faster 
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Agenda 

The following topics will be covered: 

• Partitioning the top-level into a hardware and software top 
module 

• Separating your UVM monitor into a collector (for signal-level 
information) and a monitor (for checking/coverage) 

• Limiting access between the DUT and the testbench. 

• Creating synthesizable interface tasks to: 

–  Take transactions and drive signals (driver) 

–  Reassemble transactions from signal-level details (collector) 

• Removing timing from sequences 
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Is Hardware Acceleration a Good Option? 

Hardware Acceleration can improve performance to 300x (or more) 

 

• Profile your environment with a long simulation runtime 

• Check that a significant portion of time is being spent in the DUT 

• Acceleration is usually not a good option for environments where 
the testbench time is significant and the DUT time is small 

• Acceleration is also not a good option if your simulation runtimes 
are short 

– Consider grouping short tests into one longer test with 
automatic checking 



Acceleration Performance  

• The main factors in determining performance potential: 

– Testbench Runtime – Time spent in the simulator, including 
configuration and building of the UVM verification environment and 
DUT, driving  stimulus, checking and sampling coverage 

– SW/HW Synchronizations – Signals and transactions sent between 
the UVM Testbench and DUT 

– DUT Runtime – Includes any aspect of the design (and testbench) 
that is executed on the acceleration hardware 
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Analyzing Profile Results – An Example 

Profiling a simulation run – for acceleration: 
 Testbench takes 25% of simulation time 
 DUT takes 60% 
 Synchronization estimation is 15% 

 Maximum performance boost, if the DUT time is reduced to zero is: 

 HW_TIME = 60% + 60%*15% = 69% 

 Estimated speed-up (no opt) = 100/(100-HW_TIME) = 3.2X 
 

Increasing DUT time to 90% and reducing sync overhead to 5%: 

 HW_TIME = 90% + 90%*5% = 94.5% 

 Estimated speed-up = 100/(100-94.5) = 18.2X 
 

Further testbench optimizations can be made for even better 
performance 
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   top (module) 

initial begin 
   clk = 0; reset=0; 
   #50 reset = 1; 
end 
 
always  #5 clk = ~clk; 

Partitioning Your UVM Environment 

• Partition your top-level module so the DUT and synthesizable components are 
in one module and the UVM testbench is in a separate module 
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Hardware Top-Module Example 

• Includes the DUT instance, a clock generator, SystemVerilog 
interfaces and (optional) memory 
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module hw_top (); 

  // Interface Instances 

  my_uvc_if      my_uvc_if0(clock, reset); 

  clk_reset_if   clk_reset_if0 (start_clock, reset); 

 

  // Clock/reset generator, memory (opt) 

  clkgen     clkgen(start_clock, clock); 

  memory     mem_inst(...); 

 

  // DUT instance 

  top_dut    dut (clock, reset,  

               .uvc_if(my_uvc_if0), ...); 

endmodule 

Generates clocks 

Controls clock and 
generates reset 

Interface Instances 

Top-level DUT 



Testbench Top-Module Example 

• Includes the UVM package, user-defined UVC packages, the top-
level testbench and test files and an initial block to configure and 
start the test 
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module tb_top (); 

  import uvm_pkg::*; 

  `include “uvm_macros.svh” 
 

  import my_uvc_pkg::*; 

  import clk_reset_pkg::*; 

  import my_tb_pkg::*;   

 

  initial begin 

    uvm_config_db#(virtual my_uvc_if)::set(null, 

      “*.my_uvc0*”, “vif”, hw_top.my_uvc_if0); 

    uvm_config_db#(virtual clk_reset_if)::set(null, 

      “*.clk_reset0*”, “vif”, hw_top.clk_reset_if0); 

    run_test(); 

  end 

endmodule 

Configure the virtual interfaces 

Run the test 

The UVM Package 

UVC and Testbench Packages 



Implement a Collector/Monitor Pair 

• A UVM monitor to captures transactions from the DUT interface, 
performs checking, coverage & sends them to other components  

• Split the monitor into a collector class for capturing signals and 
forming transactions and a monitor for transaction-level checking 
and coverage 

• Similar to the sequencer/driver pair for creation of stimuli  
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Monitor/Collector Interaction 
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class my_uvc_collector extends uvm_component; 

  uvm_analysis_port#(my_uvc_trans) item_out_port; 

... 

endclass 

class my_uvc_monitor extends uvm_monitor; 

  uvm_analysis_imp#(my_uvc_trans, my_uvc_monitor) 

                                item_in_port; 

  uvm_analysis_port#(my_uvc_trans) item_out_port;   

... 

endclass 

class my_uvc_agent extends uvm_agent; 

  my_uvc_monitor   monitor; 

  my_uvc_collector collector; 

  //create in the build phase 

  // connect in the connect_phase 

  collector.item_out_port.connect( 

                monitor.coll_in_port ); 

endclass 

Monitor 

Collector 

uvm_analysis_imp 

uvm_analysis_port 

Monitor-Collector  
Interaction 

uvm_analysis_port 



Minimize Testbench and DUT Interaction 

• Every interaction between the DUT and testbench initiates a 
synchronization event 

• Limit interaction to the collector and driver only 

• All other interactions must be addressed when the testbench 
is migrated to run on acceleration 

• Identify: Two common places where this is found: 
– Waiting for signals to change inside a sequence 

– Waiting for reset – not as critical as reset does not happen very often 

• Address: Add a clock and reset agent and/or an interrupt 
agent to limit access to these signals and generate events 
related to them 
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Signal-Based vs Transaction-Based 
Acceleration 
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Usually the first step in 
migration 

• Signal-based acceleration:   
– Partition the UVM testbench to the simulator move the DUT to the 

hardware side 

– Takes less time to implement and  can produce results in the 3x-20x range 

 

• Transaction-based acceleration: 
– Part of the testbench is also moved to the hardware accelerator 

– Interface between the testbench and the DUT is through task calls 

– Reduces the number of synchronizations and can produce results in the 
20x-300x range! 

 

• Goal is to develop your testbench environment to be conducive 
for transaction-based acceleration (TBA) 



Traditional UVC Structure 

• Signals driven and clocks referenced from driver and collector 
class through a virtual interface handle 

15 

Interface UVC 
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UVM Driver Class – drive_transfer() Task 
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• Signals driven and clocks referenced from driver and collector 
class through a virtual interface handle 

class my_uvc_driver extends uvm_driver; 

 ... 

 task drive_transfer(my_trans_type trans); 

   @(posedge vif.clock iff vif.reset) 

    vif.addr <= trans.addr; 

    vif.data <= trans.data; 

    vif.rd_wr <= (trans.dir == READ) ? 1’b0 : 1’b1; 

    vif.enable <= 1’b1; 

    @(posedge vif.clock) 

    if (trans.dir == READ) 

       trans.data = vif.rdata; 

    vif.enable <= 1’b0; 

  endtask 

endclass 

Virtual interface interactions 
cause a synchronization event 



Accelerated UVC Structure 

• Driver and collector call time-consuming interface tasks. 

• Signals driven and clocks referenced directly in the interface 
(synthesizable) 
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UVM Driver Class – drive_transfer() Task 

• The driver’s drive_transfer task calls a time-consuming 
interface task 

• Data fields can be passed directly or converted to a packed 
struct 

18 

class my_uvc_driver extends uvm_driver; 

 ... 

 task drive_transfer(my_trans_type trans); 

   logic [31:0] rdata; 

   vif.drive_transfer(trans.addr, 

                      trans.data, 

                      trans.dir, rdata); 

   trans.data = rdata;  

 endtask 

endclass 

Pass fields or a packed 
struct 



UVC Interface – drive_transfer() Task  
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interface my_uvc_if (clock, reset); 

  logic [31:0] addr; 

  logic [31:0] data, rdata; 

  logic        rd_wr, enable; 

  ... 

 task drive_transfer(logic [31:0] t_addr, t_data, 

      trans_type_e t_dir, output logic [31:0] t_rdata); 

   wait (reset == 1); 

   @(posedge clock) 

   addr <= t_addr; 

   data <= t_data; 

   rd_wr <= (t_dir == READ) ?  1’b0 : 1’b1; 

   enable <= 1’b1; 

   @(posedge clock) 

   if (t_dir == READ)  t_rdata = rdata; 

   enable <= 1’b0; 

  endtask 

endinterface 

Task should be “synthesizable” 
for hardware acceleration 

Signals are driven/sampled 
directly in the interface task 



Clocks and Reset 

• Clocks are critical in designing 
for acceleration 
– They toggle frequently and cause 

synchronization events 

• Implement a reusable agent to 
configure clocks, initiate resets 
and execute delay sequences 
from the testbench 

• The implementation details 
are in a SV interface and are 
executed on the hardware 
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clk_reset_agent 

hw_top 

clk_reset_if (clock, reset); 
task start_clock (clk_period, reset_delay, run_clk); 
task count_clocks(cycle_count, wait_count);  

Sequencer 

clk_gen ( clock,  run_clk,  
                 clk_period );   DUT 

Driver 
vif. start_clock ( ); 
vif.count_clocks( ); 

Sequences Sequences:  
    start_clocks_seq 
    reset_seq 
    count_clocks_seq 



Clock and Reset Item and Driver 
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clk_reset_agent 

hw_top 

clk_reset_if (clock, reset); 
task start_clock (clk_period, reset_delay, run_clk); 
task count_clocks(cycle_count, wait_count);  

Sequencer 

clk_gen ( clock,  run_clk,  
                 clk_period );   DUT 

Driver 
vif. start_clock ( ); 
vif.count_clocks( ); 

Sequences Sequences:  
    start_clocks_seq 
    reset_seq 
    count_clocks_seq 

class clk_reset_driver extends 

            uvm_driver#(clk_reset_item); 

  virtual clk_reset_if vif; 

 

  // `uvm_component_utils and constructor 

  // Get the vif in the connect_phase 

 

  task run_phase(uvm_phase phase); 

    ... 

    seq_item_port.get_next_item(req); 

    if ((req.run_clk == 1) || (req.reset_delay != 0)) 

         vif.start_clock(req.clk_period, req.reset_delay, ...); 

    else vif.count_clocks(req.cycle_count, req.wait_count); 

    seq_item_port.item_done(); 

    ... 

   endtask 

endclass 

class clk_reset_item extends...; 

  rand int clk_period; 

  rand int reset_delay; 

  rand int cycle_count; 

  rand bit wait_count; 

  rand bit run_clk; 

... 

endclass 



Removing Timing From Sequences 

• For optimum performance remove timing from the testbench 
– Includes references to clocks and #delay’s 

– Waiting on transition of a DUT signal 

• Use alternate methods of specifying delays within and 
between sequences 
– Include a delay_clocks task inside your interface UVC to delay clocks 

within a UVC sequence 

– Use a clock and reset agent to execute sequences which starts the 
clocks and initiates resets (start_clocks_seq) 

– Also use the clock and reset agent to execute a sequence 
(count_clocks_seq) for clock delays (blocking) or timeouts 
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Virtual Sequence with # Delays 
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class traffic_vseq extends uvm_sequence; 

  // `uvm_object_utils and constructor 

  // Interface UVC Sequences 

  my_uvc1_config_seq        uvc1_config_seq; 

  my_uvc2_traffic_seq       uvc2_traffic_seq; 

   

  task body(); 

    #100  // Wait 100ns for reset to finish 

    // Configure via UVC 1 

    `uvm_do_on(uvc1_config_seq, p_sequencer.uvc1_master_seqr) 

    // Run some traffic on UVC 2 

    `uvm_do_on(uvc2_traffic_seq, p_sequencer.uvc2_master_seqr) 

    // Wait 30 clocks (300ns) to end simulation 

    #300; 

  endtask 

 

endclass 



Virtual Sequence with Clock Sequences 
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class traffic_vseq extends uvm_sequence; 

  // `uvm_object_utils and constructor 

  // Other sequences: uvc1_config_seq, uvc2_traffic_seq 

  start_clocks_seq   clock_seq; 

  count_clocks_seq   delay_seq; 

  // Other Sequences 

  task body(); 

    // Start clocks and initiate reset 

    `uvm_do_on_with(clock_seq, p_sequencer.clk_reset_seqr, 

    { clock_seq.clock_period == 10; 

      clock_seq.reset_delay == 10; 

      clock_seq.run_clock == 1;    } ) 

    // Configure, run traffic 

    // Wait 30 clocks (#300)to end 

    `uvm_do_on_with(delay_seq, p_sequencer.clk_reset_seqr, 

    { delay_seq.clock_cycles == 30; 

      delay_seq.wait_count == 1;   } ) 

  endtask 

endclass   



Summary 

• Hardware acceleration of verification environments for 
performance is gaining momentum 

• Spending time up front to construct UVM environments that 
are easily portable to hardware acceleration can reap big 
performance benefits 

• The UVM recommendations introduced in this module  

– Makes migration from simulation to acceleration much easier 

– Will not have a negative impact on performance for pure simulation 

• Enhance simulation performance to run more cycles and 
achieve desired coverage faster 
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