UVM Testbench Considerations
for Acceleration

Kathleen A Meade
Cadence Design Systems, Inc

cadence

Hardware-Assisted Verification
2014

Tt Use Modes

Performance

Software Simulation

DESIGN & VERIFICATION
P T

Objectives of UVM Acceleration

UVM provides methodology for verifying complex designs with a
focus on reuse

* Reuse of verification components and environments between
simulators and hardware acceleration is gaining momentum

* This session introduces methodology techniques for creating
acceleration-friendly UVM environments

— Makes migration from simulation to acceleration much easier
— Will not have a negative impact on performance for pure simulation

e Ultimate goal: Enhance simulation performance to run more
cycles and achieve desired coverage faster

3

DESIGN & VERIFICATION
a i - — 1

LB w A
!. ’\ l‘ 'i i

) ‘ ¢

: b) | l__."—’ |

Agenda

The following topics will be covered:

Partitioning the top-level into a hardware and software top
module

Separating your UVM monitor into a collector (for signal-level
information) and a monitor (for checking/coverage)

Limiting access between the DUT and the testbench.

Creating synthesizable interface tasks to:

— Take transactions and drive signals (driver)

— Reassemble transactions from signal-level details (collector)

Removing timing from sequences

DESIGN & VERIFICATION
CaE O

Is Hardware Acceleration a Good Option:

CONFERENCE & EXHIBITION

Hardware Acceleration can improve performance to 300x (or more)

* Profile your environment with a long simulation runtime
* Check that a significant portion of time is being spent in the DUT

* Acceleration is usually not a good option for environments where
the testbench time is significant and the DUT time is small

* Acceleration is also not a good option if your simulation runtimes
are short

— Consider grouping short tests into one longer test with
automatic checking

= Acceleration Performance
2014

NNNNNNN EXHIBITION

 The main factors in determining performance potential:

— Testbench Runtime — Time spent in the simulator, including
configuration and building of the UVM verification environment and
DUT, driving stimulus, checking and sampling coverage

— SW/HW Synchronizations — Signhals and transactions sent between
the UVM Testbench and DUT

— DUT Runtime — Includes any aspect of the design (and testbench)
that is executed on the acceleration hardware

Simulation Testbench DUT
Acceleration| Testbench * DUT

Acc'elc-aratlon 8 |+ DUT

(optimized TB) +TB

* : SW/HW Synchronization Overhead

DESIGN & VERIFICATION
g U
- o A

JV S Analyzing Profile Results — An Example

Profiling a simulation run — for acceleration:
Testbench takes 25% of simulation time
DUT takes 60%

Synchronization estimation is 15%
Maximum performance boost, if the DUT time is reduced to zero is:
HW_TIME = 60% + 60%*15% = 69%
Estimated speed-up (no opt) = 100/(100-HW_TIME) = 3.2X

Increasing DUT time to 90% and reducing sync overhead to 5%:
HW_TIME =90% + 90%*5% = 94.5%
Estimated speed-up = 100/(100-94.5) = 18.2X

Further testbench optimizations can be made for even better
performance

DESIGN & VERIFICATION

. Partitioning Your UVM Environment

CONFERENCE & EXHIBITION

e Partition your top-level module so the DUT and synthesizable components are
in one module and the UVM testbench is in a separate module

tb_top (module)
test extends uvm_test (class)
env extends uvm_env
_________ Runs on
| . | ; — .
| Config | Virtual Sequencer Scoreboard Simulator
e S U e e — o
Clock and Reset Interfacel Interface2
Agent uvC uvC
hw_top (module)
I f 1 I f. 2
Clock and Reset nterface nterface .
Interface Synthesizable
10 DUT — for Hardware
Clock and Reset Acceleration
Module 8

UV= Hardware Top-Module Example

CONFERENCE & EXHIBITION

* Includes the DUT instance, a clock generator, SystemVerilog

interfaces and (optional) memory

module hw_top (); Interface Instances
// Interface Instances

my uvc if my uvc if0(clock, reset);

clk reset if clk reset if0 (start clock, reset);

\ Controls clock and

// Clock/reset generator, memory (opt)

generates reset
clkgen clkgen (start clock, clock);

|
memory mem inst(...); ‘\\\\\\

Generates clocks

// DUT instance
top dut dut (clock, reset,

.uvc_if (my uve if0), .);“\§§§~
endmodule Top-level DUT

UV> Testbench Top-Module Example
* Includes the UVM package, user-defined UVC packages, the top-
level testbench and test files and an initial block to configure and

module tb_top ()

The UVM Package

import uvm pkg::*;

"include “uvm macros.svh”

import my uvc pkg::*;

/ UVC and Testbench Packages

import clk reset pkg::*; I
import my tb pkg::*; Configure the virtual interfaces

initial begin
uvm_config db# (virtual my uvec if) ::set(null,
“*.my uvc0*”, “vif”, hw_top.my uvc if0);
uvm_config db# (virtual clk reset if) ::set (null,
“*.clk reset0*”, “vif”, hw_top.clk reset if0);

run_test();4__________
end Run the test

endmodule

10

DESIGN & VERIFICATION

l.'Vz Implement a Collector/Monitor Pair

NNNNNNNNNNN

* A UVM monitor to captures transactions from the DUT interface,
performs checking, coverage & sends them to other components

e Split the monitor into a collector class for capturing signals and
forming transactions and a monitor for transaction-level checking
and coverage

» Similar to the sequencer/driver pair for creation of stimuli

BUS UVC BUS UVC

I I
master agent master agent

sequencer [l: sequencer monitor

driver monitor driver collector

DESIGN & VERIFICATION
Y i -

Y (o)
i
4 ol

Monitor/Collector Interaction

2014

CONFERENCE & EXHIBITION

class my uvc_monitor extends uvm monitor;
uvm_analysis imp# (my uvc trans, my uvc monitor)
item in port;
uvm_analysis porti# (my uvc trans) item out port;

endclass

class my uvc_collector extends uvm_component;
<§QmmeWQgpoﬂ uvm_analysis porti# (my uvc trans) item out port;

Monitor endclass

uvm_analysis_imp class my uvc_agent extends uvm_agent;

my uvc_monitor monitor;
uvm_analysis_port my uvc_collector collector;
collector //create in the build phase

// connect in the connect phase
Monitor-Collector

collector.item out port.connect(
Interaction

monitor.coll in port); ,
- 1
endclass

DESIGN & VERIFICATION
S -

JV= Minimize Testbench and DUT Interaction

CONFERENCE & EXHIBITION

Every interaction between the DUT and testbench initiates a
synchronization event

Limit interaction to the collector and driver only

All other interactions must be addressed when the testbench
is migrated to run on acceleration

ldentify: Two common places where this is found:
— Wiaiting for signals to change inside a sequence
— Waiting for reset — not as critical as reset does not happen very often

Address: Add a clock and reset agent and/or an interrupt
agent to limit access to these signals and generate events
related to them

13

DESIGN & VERIFICATION
o= e .
|

b sl S

I&' = Signal-Based vs Transaction-Based

& Acceleration

/ Usually the first step in
. . migration
* Signal-based acceleration: &

— Partition the UVM testbench to the simulator move the DUT to the
hardware side

— Takes less time to implement and can produce results in the 3x-20x range

 Transaction-based acceleration:
— Part of the testbench is also moved to the hardware accelerator
— Interface between the testbench and the DUT is through task calls

— Reduces the number of synchronizations and can produce results in the
20x-300x range!

* Goalis to develop your testbench environment to be conducive
for transaction-based acceleration (TBA) 1

DIGN & VERIHCAT!ON
e

Ve Traditional UVC Structure

CONFERENCE & EXHIBITION

* Signals driven and clocks referenced from driver and collector
class through a virtual interface handle

f ™~
Interface UVC _—— | sequence
slave /
¥
master .
sequencer monitor
driver collector
i 0 task collect_transfer
task drive_transfer Q“D% — Co
(my_trans trans) \.o— (my_trans trans) (T-o
clock cock No—
A A A A A

hw_top

SV interface

addr _j /
data

rd_wr

enable

rdata

clock

i(a

15

UVZ= UVM Driver Class — drive_transfer() Task

e Signals driven and clocks referenced from driver and collector
class through a virtual interface handle

class my uvc _driver extends uvm driver;

task drive transfer (my trans type trans);
@ (posedge vif.clock iff vif.reset)
vif.addr <= trans.addr;
vif.data <= trans.data;
vif.rd wr <= (trans.dir == READ) ? 1'b0 : 1’'bl;
vif.enable <= 1'Dbl;

@ (posedge vif.clock)

if (trans.dir == READ) Virtual interface interactions
trans.data = vif.rdata; cause a synchronization event
vif.enable <= 1'b0;
endtask
endclass 16

DESIGN & VERIFICATION
- -

) v [(®)

uv= Accelerated UVC Structure

CONFERENCE & EXHIBITION

* Driver and collector call time-consuming interface tasks.

* Signals driven and clocks referenced directly in the interface
(synthesizable)

Interface UVC W
Sequence
slave /
Passes transaction data
master K : L~ :
[Lsequencer monitor s through an interface task
driver collector
vif. drive_transfer () vif. collect_transfer ()
[

hw_to
~op SV interface
task collect_transfer lock

(addr, data)

task drive_transfer
(addr, data) S

17

CONFERENCE & EXHIBITION

UVM Driver Class — drive_transfer() Task

* The driver’s drive_transfer task calls a time-consuming

interface task

struct

Data fields can be passed directly or converted to a packed

logic [31:0]

vif.drive transfer (trans.addr,

rdata;

trans.data,

trans.dir,

trans.data
endtask

endclass

rdata;

class my uvc driver extends uvm driver;

task drive transfer (my trans type trans);

Pass fields or a packed
struct

rdata) ;

18

CONFERENCE & EXHIBITION

UVC Interface — drive_transfer() Task

logic

@ (posedge

enable <=
@ (posedge
if (t dir
enable <=
endtask

endinterface

addr <= t
data <= t_
rd wr <= (t dir == READ) ? 1'b0 : 1'bl;

rd wr, enable;

task drive transfer (logic [31:0]
trans type e t dir, output logic [31:0] t rdata);
walt (reset == 1);

clock)
addr;
data;

17b1;
clock)
== READ) t rdata =
1"b0;

interface my uvc if (clock, reset); |
logic [31:0] addr;
logic [31:0] data, rdata;

Task should be “synthesizable”
for hardware acceleration

t addr, t data,

Signals are driven/sampled
directly in the interface task

rdata;

19

Clocks and Reset

CONFERENCE & EXHIBITION

e Clocks are critical in designing clk_reset_agent Sequences:
for acceleration | startclodks seq
Sequencer reset_seq
— They toggle frequently and cause count_clocks_seq
synchronization events Driver
vif. start_clock ();
* Implement a reusable agent to vif.count_clocks();
configure clocks, initiate resets /

and execute delay sequences hw_top<
from the testbench

_ _ _ clk_reset_if (clock, reset);
i The |mpIementat|on detalls task start_clock (clk_period, reset_delay, run_clk);
. . task count_clocks(cycle_count, wait_count);
are in a SV interface and are

executed on the hardware clk_gen (clock, run_clk, OUT
clk_period);

20

JV= Clock and Reset Item and Driver

CONFERENCE & EXHIBITION

class clk_reset_item extends...;

class clk_reset_driver extends
uvm_driver# (clk reset item);

virtual clk_reset if vif;

// “uvm component utils and constructor

// Get the vif in the connect phase

vif.start clock (reqg.clk period,

seq item port.item done();

endtask

endclass

else vif.count_clocks(req.cycle_count, req.wait_count);

rand int clk_period;
rand int reset delay;
rand int cycle count;
rand bit wait count;

rand bit run_plk;

endclass
task run phase (uvm phase phase);
seq item port.get next item(req);
if ((reqg.run _clk == 1) || (reqg.reset delay != 0))

reqg.reset delay, ...);

21

DESIGN & VERIFICATION
g T =

|t I W ANS
!

JV= Removing Timing From Sequences

2

CONFERENCE & EXHIBITION

* For optimum performance remove timing from the testbench

— Includes references to clocks and #delay’s
— Waiting on transition of a DUT signal

e Use alternate methods of specifying delays within and

between sequences
— Include a delay_clocks task inside your interface UVC to delay clocks
within a UVC sequence
— Use a clock and reset agent to execute sequences which starts the
clocks and initiates resets (start_clocks _seq)

— Also use the clock and reset agent to execute a sequence
(count_clocks_seq) for clock delays (blocking) or timeouts

22

Virtual Sequence with # Delays

2014

CONFERENCE & EXHIBITION

class traffic_vseq extends uvm_ sequence;
// “uvm object utils and constructor
// Interface UVC Sequences
my uvcl config seq uvcl config seq;

my uvcz traffic seq uvc2_ traffic seq;

task body () ;
#100 // Wait 100ns for reset to finish
// Configure wvia UVC 1
‘uvm_do on (uvel config seq, p sequencer.uvcl master seqgr)
// Run some traffic on UVC 2
‘uvmm_do on (uve2 traffic seq, p sequencer.uvc2 master seqr)
// Wait 30 clocks (300ns) to end simulation
#300;
endtask

endclass 23

DIGN & VERIFICATION

Virtual Sequence with Clock Sequences

CONFERENCE & EXHIB

class traffic _vseq extends uvm_ sequence;
// “uvm_object utils and constructor
// Other sequences: uvcl config seq, uvc2 traffic seq
start _clocks_seq clock_ seq;
count clocks _seq delay_ seq;
// Other Sequences
task body () ;
// Start clocks and initiate reset

"uvm_do_on with (clock seq, p sequencer.clk reset seqr,
{ clock_seq.clock period == 10;
clock seq.reset delay == 10;
clock _seq.run clock == 1; o)
// Configure, run traffic
// Wait 30 clocks (#300)to end

‘uvm_do _on with (delay seq, p sequencer.clk reset seqr,

{ delay seq.clock cycles == 30;
delay seq.wait count == 1; }o)
endtask
endclass

24

DESIGN & VERIFICATION
s nfiinthylihutiriind

'w{?ﬁﬁgqx
[1 e

Summary

CONFERENCE & EXHIBITION

* Hardware acceleration of verification environments for
performance is gaining momentum

* Spending time up front to construct UVM environments that
are easily portable to hardware acceleration can reap big
performance benefits

* The UVM recommendations introduced in this module
— Makes migration from simulation to acceleration much easier

— Will not have a negative impact on performance for pure simulation

* Enhance simulation performance to run more cycles and
achieve desired coverage faster

25

