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Abstract :  

Universal Verification Methodology (UVM) and 

SystemVerilog based testbenches are widely used 

in many of the new ASIC starts. Quite a few 

legacy Verilog based testbenches, Vera, 

Testbuilder, Specman “e” and SystemC based 

testbenches are being migrated to UVM based 

testbenches.  Developing UVM based testbenches 

and infrastructure from scratch is time consuming 

and requires a good understanding of Object 

Oriented Programming from the entire team 

responsible for UVM based verification. 

Automation for block and top level verification 

testbenches based on Perl or C shell scripts can 

provide powerful methods to get the block and top 

level infrastructure ready in a short period of time 

while various verification team members get 

familiar with new concepts of UVM based 

verification methodology. This allows extra time 

for verification engineers to focus more on actual 

block verification aspects instead of spending 

more cycles on infrastructure development.  

This paper discusses how the DSP (Digital Signal 

Processing) verification environment for the 

10GBase-T chip was generated using the perl 

scripts. Further, it discusses how the driver, 

monitor, sequences, sequencer, agent, env and test 

classes generated from scripts. Finally it discusses 

how the verification is performed and how 

coverage data are generated. 

I. INTRODUCTION: 

As UVM and SystemVerilog become more widely 

adopted in the industry, companies need to schedule 

significant amounts of time for their engineers to 

master the learning curve inherent in UVM, 

SystemVerilog, and even object-oriented 

programming. Worse, it is easy for engineers to make 

mistakes when coding up the first project in a new 

language. These mistakes cost debug time and can 

affect testbench coverage and quality. Also, 

whenever a testbench is composed of checkers coded 

up by more than one engineer, top level hookups can 

be inconsistent and error prone. 

One way to mitigate some of the schedule and quality 

issues is to use a scripting based approach to create 

the top level and even some of the lower level 

structural code used in the system. This ensures a 

uniform coding style, consistent hookups, and 

enables the verification engineers to spend more time 

focusing on the actual block/system verification 

instead of infrastructure development. 

There are two options available at the beginning of 

the project to create a verification environment. The 

first approach is to create individual block level 

environments hand coded from scratch and then 

stitch individual block level environment to create the 

top level environment. None of the code can be 

reused in this approach. The time it takes to create 

such an environment is proportional to the number of 



blocks in the environment. The second approach is to 

take advantage of similarity in the different blocks 

functionality that need to be verified and use 

scripting methods to generate various UVM 

components template codes and create uniform block 

level environment that is easily scalable to top level 

environment. The approach of generating 

infrastructure using scripts was followed for creating 

a DSP based verification environment. 

II. TOP LEVEL DSP SYSTEM: 

The following diagram (Figure 1) shows a typical 

block diagram of the DSP based system for which the 

UVM infrastructure was developed. 

 

      Figure 1: Block Diagram of the DSP system                                                        

Data Flow for the system shown in Figure 1 above is 

described below. 

► The LDPC (Low density parity check) encoded 

data gets mapped to DSQ (Double Square 

Constellation) symbols.  

► THP (Tomlinson Harashima Precoder) operation 

is performed on the mapped symbols.  

► The transmit data is sent out after the DAC 

(digital-to-analog converter) operation. 

► On the received side, the received data after ADC 

(analog-to-digital conversion) passes through EQ 

(Equalization) and FEC (Far end cross talk 

cancellation).  

►DEC (digital echo cancellation) and FEC (Far end 

cross talk cancellation) filtering is performed and 

output of DEC and NEC is added to the received data 

that undergo the EQ (Equalization) and FEC (Far end 

cross talk) filtering.   

► The received data after DEC/NEC/EQ/FEC 

cancellation get decoded by LDPC decoder. 

 

III. UVM TESTBENCH FOR DSP 

SYSTEM: 

The following diagram (Figure 2) shows UVM agent 

for individual FFE/FEC/DEC/NEC filter blocks. This 

follows standard UVM methodology for block level 

testbench and infrastructure development. 
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Figure 2: Block level Environment 

Each block level environment instantiates both a 

transmit agent and a receive agent. The Transmit 

Agent instantiates driver and transmit monitor. The 

Receive Agent instantiates receive monitor. Data 

collected by the transmit monitor gets passed to the 

reference model and the reference model output data 

is provided to the scoreboard. The data collected by 

the Receive Agent monitor is also provided to the 

scoreboard. The scoreboard does the comparison 



between the reference model data and the Receive 

Agent monitor data.                                  

Following (Figure 3) shows a picture of top level env 

that instantiates various block level envs shown in 

Figure 2 above. 
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Figure 3: Top Level Environment 

As shown in Figure 3 above, the top level DSP 

system instantiates FFE (Equalizer) env, FEC env, 

DEC env, NEC env and other miscellaneous env. For 

developing UVM infrastructure environment for the 

above complex system with strict deadlines, writing 

all the UVM driver, monitor, sequence, agent, etc. 

code for each of the block was not practical. So the 

following perl based methodology was used to 

generate each block UVM infrastructure code. 

The script takes various arguments for the block 

specification and generates templates for the UVM 

drivers, monitors, sequences, sequencers, 

scoreboards, coverage analysis, TX and RX agents, 

environments with default implementations of build, 

connect, run phases for each of these UVM 

components.  As seen in the top level environment 

Figure 3 above, the system consists of various filters, 

FFE/FEC/DEC/NEC. These filters are all FIR filters 

but may vary in tap lengths and data and coefficients 

widths. The stimulus needed to verify these blocks 

with directed and random patterns could be similar. 

All the filters can use Impulse, DC, Incrementing, 

random, etc. patterns. Using perl scripts it is easy to 

generate templates for specific filters with parameters 

indicating name of the filter, transaction type and 

data and coefficients widths. The template code 

generated for driver, sequences and other UVM 

components is described in next sections. 

IV. DRIVER/MONITOR TEMPLATE 

CODE GENERATION : 

Following shows the template of the UVM driver 

code generated using the script for the DSP chip 

block. Figure 4 below shows portion of perl script 

that is used for generating the driver code. The script 

can take block name, transaction type, bit widths for 

different inputs and outputs as arguments for the 

driver template generation. 

#!/usr/bin/perl 

$block_name = $ARGV[0]; 

$tx_type = $ARGV[1]; 

… 

gen_template($block_name); 

sub gen_template { 

  create_header($block_name); 

  create_uvm_class($block_name, $tx_type); 

}; 

sub create_header { 

   printf"\n/*************************************"; 

   printf "\n* Description :UVM driver for block 

$block_name"; 

   printf"\n**********************************/\n"; 

}; 

sub create_uvm_class { 

  printf "\n\nclass ${block_name}_driver extends 

uvm_driver # ($tx_type); \n\n" ; 

  printf "\n 

`uvm_component_utils(${block_name}_driver)"; 

  printf "\n $tx_type tx_data;"; 

  printf "\n virtual interface ${block_name}_if_data_input 

dif_data;"; 



  printf "\n virtual interface ${block_name}_if_ctrl_input 

dif_ctrl;"; 

  printf "\n uvm_analysis_port #(${tx_type}) 

driver_port;\n"; 

  create_new($block_name); 

  create_build_phase($block_name); 

  create_run_phase($block_name); 

  create_drive_dut($block_name); 

  create_bind_vis($block_name); 

  printf "\n\nendclass : ${block_name}_driver \n\n" ; 

}; 

sub create_new { 

  printf "\n function new (string name = 

\"${block_name}_driver\", uvm_component parent);"; 

  printf "\n\n super.new(name, parent);"; 

  printf "\n\n endfunction \: new \n\n"; 

}; 

sub create_build_phase { 

  printf "\n function void build_phase(uvm_phase phase);"; 

  printf "\n\n string name;"; 

  printf "\n super.build_phase(phase);"; 

  printf "\n driver_port = new(\"driver_port\", this);"; 

  printf "\n\n endfunction \: build_phase\n\n"; 

}; 

sub create_run_phase { 

  printf"\n task run_phase(uvm_phase phase);"; 

  printf"\n\n super.run_phase(phase);"; 

  printf"\n @(posedge dif_data.reset_n_i);"; 

  printf"\n @(aq_dsp_config::fw_init_done);"; 

  printf"\n //Drive data now"; 

  printf"\n forever"; 

  printf"\n begin"; 

  printf"\n @(posedge dif_data.clk_dsp);"; 

  printf"\n seq_item_port.try_next_item(tx_data);"; 

  printf"\n drive_dut();"; 

  printf"\n driver_port.write(tx_data);"; 

  printf"\n seq_item_port.item_done();"; 

  printf"\n end"; 

  printf"\n\n endtask : run_phase"; 

}; 

sub create_drive_dut { 

  printf "\n\n function void drive_dut();\n"; 

  printf "\n dif_data.a = tx_data.a;"; 

  printf "\n\n endfunction \: drive_dut\n\n"; 

}; 

sub create_bind_vis { 

  printf "\n\n function void bind_vi_data(virtual interface 

${block}_data_input vif );\n"; 

  printf "\n dif_data = vif;"; 

  printf "\n\n endfunction \: bind_vi_data\n\n"; 

  printf "\n\n function void bind_vi_ctrl(virtual interface 

${block}_ctrl_input vif );\n"; 

  printf "\n dif_ctrl = vif;"; 

  printf "\n\n endfunction \: bind_vi_ctrl\n\n"; 

}; 

 

Figure 4: Perl code for generating UVM template 

 

Perl script takes argument as block name, for ex. FFE 

and then generates the template code for driver, 

monitor, sequence, sequencer, TX agent, RX agent, 

etc. Similarly infrastructure code is generated for 

other UVM modules. 

class aq_dsp_ffe_driver extends uvm_driver # 

(aq_dsp_ffe_transaction_in); 

 

`uvm_component_utils(aq_dsp_ffe_driver) 

 

aq_dsp_ffe_transaction_in tx_data; 

virtual interface aq_dsp_ffe_if_data_input dif_data; 

virtual interface aq_dsp_ffe_if_ctrl_input dif_ctrl; 

uvm_analysis_port #(aq_dsp_ffe_transaction_in) 

driver_port; 

  

function new (string name = "aq_dsp_ffe_driver", 

uvm_component parent); 

  super.new(name, parent); 

endfunction 

 

function void build_phase(uvm_phase phase); 

  string name; 

  super.build_phase(phase); 

  driver_port = new("driver_port", this); 

endfunction 

 

 

function void bind_vi_data(virtual interface 

aq_dsp_ffe_if_data_input vif); 

  dif_data = vif; 

endfunction 

 

function void bind_vi_ctrl(virtual interface 

aq_dsp_ffe_if_ctrl_input vif); 

  dif_ctrl = vif; 

endfunction 

 

task run_phase(uvm_phase phase); 

  super.run_phase(phase); 

  @(posedge dif_data.reset_n_i); 

  @(aq_dsp_config::fw_init_done); 

  

  //Drive data now 

  forever 

    begin 

      @(posedge dif_data.clk_dsp); 

      seq_item_port.try_next_item(tx_data); 

      drive_dut(); 

      driver_port.write(tx_data); 

      seq_item_port.item_done(); 

   end 



endtask : run_phase 

 

function void drive_dut(); 

   dif_data.rdl_ffe_rx_data_i[0] = 

tx_data.rdl_ffe_rx_data_i[0]; 

endfunction 

 

endclass: aq_dsp_ffe_driver 

 

Figure 5: UVM Driver code 

As seen in the template code in the Figure 5 above, 

the “driver” class definition along with build phase, 

run phase, DUT driver code, etc. are generated 

through script. Verification engineers can now focus 

on writing or expanding “drive_dut” function above 

for the DUT requirements instead of spending time 

on defining build/run phases, new function, call to 

`uvm_component_utils.  

Similarly, template code can be generated for UVM 

monitors, UVM sequences, UVM scoreboards, UVM 

agents, UVM envs, UVM test classes, etc. 

V. SEQUENCE TEMPLATE CODE 

GENERATION : 

 

Figure 6: Filter UVM Sequences 

For the top level DSP system used, DSP filter blocks 

have typical sequences such as zeros, impulse, 

incrementing, DC, decrementing, single tone, 

random, max positive and max negative. There are 

sequences needed for developing the testbench with 

easy debug and with the final goal of reaching 

towards random stimulus sequence. Since code for all 

the typical sequences mentioned above gets 

generated through scripts, it allows enough time to 

generate sequences for directed tests specific to 

particular functionality of the block. Following shows 

an example of code generated using the script. The 

perl script takes arguments for different sequences to 

be generated for a given filter and generates the 

following code. The following example shows DC 

sequence generated for a DEC filter. 

 

class aq_dsp_ffe_sequence_base extends uvm_sequence 

#(aq_dsp_ffe_transaction_in); 

 

`uvm_object_utils(aq_dsp_ffe_sequence_base) 

function new (string name = "aq_dsp_ffe_sequence_base" 

); 

  super.new(name); 

endfunction : new 

 

virtual task body(); 

endtask : body 

 

endclass : aq_dsp_ffe_sequence_base 

 

// DC scenario 

class aq_dsp_ffe_sequence_dc extends 

aq_dsp_ffe_sequence_base; 

 

`uvm_object_utils(aq_dsp_ffe_sequence_dc) 

 

function new (string name = "aq_dsp_ffe_sequence_dc" ); 

  super.new(name); 

endfunction : new 

 

task pre_body(); 

  if(starting_phase != null) begin 

    starting_phase.raise_objection(this); 

  end 

endtask 

 

virtual task body(); 

  repeat(no_of_iterations) 

  begin 

     `uvm_do_with(req,  

  {  

     req.rdl_ffe_rx_data_i[0] == ( DC_VAL ); 

  }); 

  end 

endtask : body 

 

task post_body(); 

  if(starting_phase != null) begin 

     starting_phase.drop_objection(this); 

  end  

endtask 



 

endclass : aq_dsp_ffe_sequence_dc 

 

Figure 7: UVM sequence code for filter 

The script can also be used to generate the base class 

for all FIRs sequences. This base class can contain all 

important sequences such as zeros, DC, impulse, 

incrementing and random. The sequence class 

template generated from the script can have the class 

derived from above base class. 

Once the code is generated for driver, monitor, agents 

and sequences, the perl script takes arguments for 

different block level environments to be instantiated 

and generates the DSP top environment code. This 

DSP top environment can either instantiate block 

level agents or instantiate block level env directly 

based on the methodology followed. Finally the top 

env is instantiated in the UVM test code. Following 

screen shot shows example of DSP top env code 

generated through script. 

class aq_dsp_env extends uvm_env; 

 

`uvm_component_utils(aq_dsp_env) 

 

//Instantiate all the agents here. 

aq_dsp_ffe_agent_tx m_ffe_agent_tx; 

aq_dsp_ffe_agent_rx m_ffe_agent_rx; 

aq_dsp_ffe_sb m_sb; 

aq_dsp_ffe_coverage m_cov; 

 

aq_dsp_fec_sb m_sb_fec; 

aq_dsp_fec_coverage m_cov_fec; 

aq_dsp_fec_agent_tx m_fec_agent_tx; 

aq_dsp_fec_agent_rx m_fec_agent_rx; 

 

  //Declare all interfaces 

virtual aq_dsp_ffe_if_data_input vif_data_input; 

virtual aq_dsp_ffe_if_ctrl_input vif_ctrl_input; 

virtual aq_dsp_ffe_if_output vif_output; 

 

virtual aq_dsp_fec_if_data_input vif_fec_data_input; 

virtual aq_dsp_fec_if_ctrl_input vif_fec_ctrl_input; 

virtual aq_dsp_fec_if_output vif_fec_output; 

 

function new (string name = "aq_dsp_env", 

uvm_component parent); 

  super.new(name, parent); 

  `uvm_info(get_name()," Env New ", 

UVM_MEDIUM ); 

endfunction 

 

function void build_phase(uvm_phase phase); 

  string name; 

  super.build_phase(phase); 

   m_ffe_agent_tx = 

aq_dsp_ffe_agent_tx::type_id::create("m_ffe_agent_t

x", this); 

  m_ffe_agent_rx = 

aq_dsp_ffe_agent_rx::type_id::create("m_ffe_agent_r

x", this); 

  m_sb = aq_dsp_ffe_sb::type_id::create("m_sb", 

this); 

  m_cov = 

aq_dsp_ffe_coverage::type_id::create("m_cov", this); 

 

  m_fec_agent_tx = 

aq_dsp_fec_agent_tx::type_id::create("m_fec_agent_

tx", this); 

  m_fec_agent_rx = 

aq_dsp_fec_agent_rx::type_id::create("m_fec_agent_

rx", this); 

  m_sb_fec = 

aq_dsp_fec_sb::type_id::create("m_sb_fec", this); 

  m_cov_fec = 

aq_dsp_fec_coverage::type_id::create("m_cov_fec", 

this); 

…. 

function void end_of_elaboration_phase(uvm_phase 

phase); 

  uvm_top.print(); 

endfunction : end_of_elaboration_phase 

 

function void report_phase(uvm_phase phase); 

    report_summarize(); 

endfunction : report_phase 

 

endclass: aq_dsp_env 

 

Figure 8: UVM Env code 

 



VI. LIMITATIONS  

The scripting method for generating the sequencer 

code for similar blocks such as FFE/FEC/DEC/NEC 

worked very well. There were other blocks such as 

RDL (Receive Delay Line) and AIF (Analog 

Interface) blocks in the DSP system. RDL block in 

the DSP system is responsible for sum of DEC, NEC, 

FFE and FEC filtered data. This RDL block 

functionality is much different from FIR filter 

functionality. In AIF block, there is glue logic for 

passing data from the digital domain to the analog 

domain. This functionality is also much different than 

FIR filter functionality. There are no data and 

coefficients interfaces for RDL/AIF blocks unlike 

FIR filters. The sequences that need to be generated 

for RDL and AIF blocks are much different from FIR 

filter sequences. In this scenario the same scripting 

code cannot be reused to the same extent as in the 

FIR filters sequences code. 

In the project, there can be requirements to change 

the infrastructure code once block level verification 

gets started and new requirements are identified. 

Knowledge about the infrastructure and 

corresponding changes could be restricted to a single 

person owning the infrastructure development scripts 

and this can become a bottleneck in some cases as 

compared to distributed knowledge across the entire 

verification team.  

VII. RESULTS : 

When there is similarity in functionality and hence 

testing methodology between different blocks of the 

top level system such as DEC/FEC/FFE/NEC filters 

in the DSP system, the script approach to create 

various templates codes for various UVM 

components such as driver, monitor, sequences, 

agents and envs is very useful. Approximately 60% 

of the code can be generated with this template and it 

requires filling the remaining 40% of the code with 

the block specific logic. Overall it saves a significant 

amount of time in coding. 

Generation of block level testbenches takes a day 

using UVM automation scripts. Most of the 

randomized and directed tests are generated by these 

scripts based on the parameters provided to the 

scripts. The entire infrastructure for the UVM based 

environments can be developed in a matter of a few 

weeks instead of few months. Since all the block 

level testbenches are generated using scripts in an 

automated way, it imposes consistency in verification 

methodology for all the blocks of the chip and also 

between block level and top level verification. 

Scaling of the block level testbench to top level 

testbench becomes much easier since each block of 

the top level system uses the same modeling and 

verification infrastructure. Time saved in 

infrastructure development can be effectively used in 

thorough verification for block/top level verification. 

These scripts can be modified further to generate a  

full chip environment where DSP top environment of 

the PHY (physical) layer and MAC (Media Access 

Control)  layer top environment can be instantiated 

for the full chip verification. This allows easily 

reusable and uniform block level verification 

environment that can be scaled to DSP top level 

environment and is further scalable to a full chip 

PHY-MAC verification environment. 

VIII. CONCLUSION: 

Block and top level verification infrastructure 

development can be automated using scripts. This 

saves a significant amount of time that can be used 

for actual verification of the design. 
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