
UVM/SystemVerilog based infrastructure

and testbench automation using scripts

 Prakash Parikh,

 Aquantia Inc.,

 700 Tasman Drive,

 Milpitas, CA

 pparikh@aquantia.com

Abstract :

Universal Verification Methodology (UVM) and

SystemVerilog based testbenches are widely used

in many of the new ASIC starts. Quite a few

legacy Verilog based testbenches, Vera,

Testbuilder, Specman “e” and SystemC based

testbenches are being migrated to UVM based

testbenches. Developing UVM based testbenches

and infrastructure from scratch is time consuming

and requires a good understanding of Object

Oriented Programming from the entire team

responsible for UVM based verification.

Automation for block and top level verification

testbenches based on Perl or C shell scripts can

provide powerful methods to get the block and top

level infrastructure ready in a short period of time

while various verification team members get

familiar with new concepts of UVM based

verification methodology. This allows extra time

for verification engineers to focus more on actual

block verification aspects instead of spending

more cycles on infrastructure development.

This paper discusses how the DSP (Digital Signal

Processing) verification environment for the

10GBase-T chip was generated using the perl

scripts. Further, it discusses how the driver,

monitor, sequences, sequencer, agent, env and test

classes generated from scripts. Finally it discusses

how the verification is performed and how

coverage data are generated.

I. INTRODUCTION:

As UVM and SystemVerilog become more widely

adopted in the industry, companies need to schedule

significant amounts of time for their engineers to

master the learning curve inherent in UVM,

SystemVerilog, and even object-oriented

programming. Worse, it is easy for engineers to make

mistakes when coding up the first project in a new

language. These mistakes cost debug time and can

affect testbench coverage and quality. Also,

whenever a testbench is composed of checkers coded

up by more than one engineer, top level hookups can

be inconsistent and error prone.

One way to mitigate some of the schedule and quality

issues is to use a scripting based approach to create

the top level and even some of the lower level

structural code used in the system. This ensures a

uniform coding style, consistent hookups, and

enables the verification engineers to spend more time

focusing on the actual block/system verification

instead of infrastructure development.

There are two options available at the beginning of

the project to create a verification environment. The

first approach is to create individual block level

environments hand coded from scratch and then

stitch individual block level environment to create the

top level environment. None of the code can be

reused in this approach. The time it takes to create

such an environment is proportional to the number of

blocks in the environment. The second approach is to

take advantage of similarity in the different blocks

functionality that need to be verified and use

scripting methods to generate various UVM

components template codes and create uniform block

level environment that is easily scalable to top level

environment. The approach of generating

infrastructure using scripts was followed for creating

a DSP based verification environment.

II. TOP LEVEL DSP SYSTEM:

The following diagram (Figure 1) shows a typical

block diagram of the DSP based system for which the

UVM infrastructure was developed.

 Figure 1: Block Diagram of the DSP system

Data Flow for the system shown in Figure 1 above is

described below.

► The LDPC (Low density parity check) encoded

data gets mapped to DSQ (Double Square

Constellation) symbols.

► THP (Tomlinson Harashima Precoder) operation

is performed on the mapped symbols.

► The transmit data is sent out after the DAC

(digital-to-analog converter) operation.

► On the received side, the received data after ADC

(analog-to-digital conversion) passes through EQ

(Equalization) and FEC (Far end cross talk

cancellation).

►DEC (digital echo cancellation) and FEC (Far end

cross talk cancellation) filtering is performed and

output of DEC and NEC is added to the received data

that undergo the EQ (Equalization) and FEC (Far end

cross talk) filtering.

► The received data after DEC/NEC/EQ/FEC

cancellation get decoded by LDPC decoder.

III. UVM TESTBENCH FOR DSP

SYSTEM:

The following diagram (Figure 2) shows UVM agent

for individual FFE/FEC/DEC/NEC filter blocks. This

follows standard UVM methodology for block level

testbench and infrastructure development.

S

E

Q

U

E

N

C

E

R

S

E

Q

U

E

N

C

E

R

DRIVERDRIVER

DUTDUT

MONITORMONITOR

MONITORMONITOR

SCOREBOARDSCOREBOARDREFERENCE

MODEL

REFERENCE

MODEL

TX AGENT RX AGENT

ENV

Figure 2: Block level Environment

Each block level environment instantiates both a

transmit agent and a receive agent. The Transmit

Agent instantiates driver and transmit monitor. The

Receive Agent instantiates receive monitor. Data

collected by the transmit monitor gets passed to the

reference model and the reference model output data

is provided to the scoreboard. The data collected by

the Receive Agent monitor is also provided to the

scoreboard. The scoreboard does the comparison

between the reference model data and the Receive

Agent monitor data.

Following (Figure 3) shows a picture of top level env

that instantiates various block level envs shown in

Figure 2 above.

FFE TX AGENT

MONITOR

DRIVER

FFE RX AGENT

MONITOR

DRIVER

DUT FEC TX AGENT

MONITOR

DRIVER

FEC RX AGENT

MONITOR

DRIVER

DUT

DEC TX AGENT

MONITOR

DRIVER

DEC RX AGENT

MONITOR

DRIVER

DUT NEC TX AGENT

MONITOR

DRIVER

NEC RX AGENT

MONITOR

DRIVER

DUT

MISC TX AGENT

MONITOR

DRIVER

MISC RX AGENT

MONITOR

DRIVER

DUT

DEC ENV

FFE ENV FEC ENV

NEC ENV

MISC ENV

DSP TOP ENV

Figure 3: Top Level Environment

As shown in Figure 3 above, the top level DSP

system instantiates FFE (Equalizer) env, FEC env,

DEC env, NEC env and other miscellaneous env. For

developing UVM infrastructure environment for the

above complex system with strict deadlines, writing

all the UVM driver, monitor, sequence, agent, etc.

code for each of the block was not practical. So the

following perl based methodology was used to

generate each block UVM infrastructure code.

The script takes various arguments for the block

specification and generates templates for the UVM

drivers, monitors, sequences, sequencers,

scoreboards, coverage analysis, TX and RX agents,

environments with default implementations of build,

connect, run phases for each of these UVM

components. As seen in the top level environment

Figure 3 above, the system consists of various filters,

FFE/FEC/DEC/NEC. These filters are all FIR filters

but may vary in tap lengths and data and coefficients

widths. The stimulus needed to verify these blocks

with directed and random patterns could be similar.

All the filters can use Impulse, DC, Incrementing,

random, etc. patterns. Using perl scripts it is easy to

generate templates for specific filters with parameters

indicating name of the filter, transaction type and

data and coefficients widths. The template code

generated for driver, sequences and other UVM

components is described in next sections.

IV. DRIVER/MONITOR TEMPLATE

CODE GENERATION :

Following shows the template of the UVM driver

code generated using the script for the DSP chip

block. Figure 4 below shows portion of perl script

that is used for generating the driver code. The script

can take block name, transaction type, bit widths for

different inputs and outputs as arguments for the

driver template generation.

#!/usr/bin/perl

$block_name = $ARGV[0];

$tx_type = $ARGV[1];

…

gen_template($block_name);

sub gen_template {

 create_header($block_name);

 create_uvm_class($block_name, $tx_type);

};

sub create_header {

 printf"\n/*************************************";

 printf "\n* Description :UVM driver for block

$block_name";

 printf"\n**********************************/\n";

};

sub create_uvm_class {

 printf "\n\nclass ${block_name}_driver extends

uvm_driver # ($tx_type); \n\n" ;

 printf "\n

`uvm_component_utils(${block_name}_driver)";

 printf "\n $tx_type tx_data;";

 printf "\n virtual interface ${block_name}_if_data_input

dif_data;";

 printf "\n virtual interface ${block_name}_if_ctrl_input

dif_ctrl;";

 printf "\n uvm_analysis_port #(${tx_type})

driver_port;\n";

 create_new($block_name);

 create_build_phase($block_name);

 create_run_phase($block_name);

 create_drive_dut($block_name);

 create_bind_vis($block_name);

 printf "\n\nendclass : ${block_name}_driver \n\n" ;

};

sub create_new {

 printf "\n function new (string name =

\"${block_name}_driver\", uvm_component parent);";

 printf "\n\n super.new(name, parent);";

 printf "\n\n endfunction \: new \n\n";

};

sub create_build_phase {

 printf "\n function void build_phase(uvm_phase phase);";

 printf "\n\n string name;";

 printf "\n super.build_phase(phase);";

 printf "\n driver_port = new(\"driver_port\", this);";

 printf "\n\n endfunction \: build_phase\n\n";

};

sub create_run_phase {

 printf"\n task run_phase(uvm_phase phase);";

 printf"\n\n super.run_phase(phase);";

 printf"\n @(posedge dif_data.reset_n_i);";

 printf"\n @(aq_dsp_config::fw_init_done);";

 printf"\n //Drive data now";

 printf"\n forever";

 printf"\n begin";

 printf"\n @(posedge dif_data.clk_dsp);";

 printf"\n seq_item_port.try_next_item(tx_data);";

 printf"\n drive_dut();";

 printf"\n driver_port.write(tx_data);";

 printf"\n seq_item_port.item_done();";

 printf"\n end";

 printf"\n\n endtask : run_phase";

};

sub create_drive_dut {

 printf "\n\n function void drive_dut();\n";

 printf "\n dif_data.a = tx_data.a;";

 printf "\n\n endfunction \: drive_dut\n\n";

};

sub create_bind_vis {

 printf "\n\n function void bind_vi_data(virtual interface

${block}_data_input vif);\n";

 printf "\n dif_data = vif;";

 printf "\n\n endfunction \: bind_vi_data\n\n";

 printf "\n\n function void bind_vi_ctrl(virtual interface

${block}_ctrl_input vif);\n";

 printf "\n dif_ctrl = vif;";

 printf "\n\n endfunction \: bind_vi_ctrl\n\n";

};

Figure 4: Perl code for generating UVM template

Perl script takes argument as block name, for ex. FFE

and then generates the template code for driver,

monitor, sequence, sequencer, TX agent, RX agent,

etc. Similarly infrastructure code is generated for

other UVM modules.

class aq_dsp_ffe_driver extends uvm_driver #

(aq_dsp_ffe_transaction_in);

`uvm_component_utils(aq_dsp_ffe_driver)

aq_dsp_ffe_transaction_in tx_data;

virtual interface aq_dsp_ffe_if_data_input dif_data;

virtual interface aq_dsp_ffe_if_ctrl_input dif_ctrl;

uvm_analysis_port #(aq_dsp_ffe_transaction_in)

driver_port;

function new (string name = "aq_dsp_ffe_driver",

uvm_component parent);

 super.new(name, parent);

endfunction

function void build_phase(uvm_phase phase);

 string name;

 super.build_phase(phase);

 driver_port = new("driver_port", this);

endfunction

function void bind_vi_data(virtual interface

aq_dsp_ffe_if_data_input vif);

 dif_data = vif;

endfunction

function void bind_vi_ctrl(virtual interface

aq_dsp_ffe_if_ctrl_input vif);

 dif_ctrl = vif;

endfunction

task run_phase(uvm_phase phase);

 super.run_phase(phase);

 @(posedge dif_data.reset_n_i);

 @(aq_dsp_config::fw_init_done);

 //Drive data now

 forever

 begin

 @(posedge dif_data.clk_dsp);

 seq_item_port.try_next_item(tx_data);

 drive_dut();

 driver_port.write(tx_data);

 seq_item_port.item_done();

 end

endtask : run_phase

function void drive_dut();

 dif_data.rdl_ffe_rx_data_i[0] =

tx_data.rdl_ffe_rx_data_i[0];

endfunction

endclass: aq_dsp_ffe_driver

Figure 5: UVM Driver code

As seen in the template code in the Figure 5 above,

the “driver” class definition along with build phase,

run phase, DUT driver code, etc. are generated

through script. Verification engineers can now focus

on writing or expanding “drive_dut” function above

for the DUT requirements instead of spending time

on defining build/run phases, new function, call to

`uvm_component_utils.

Similarly, template code can be generated for UVM

monitors, UVM sequences, UVM scoreboards, UVM

agents, UVM envs, UVM test classes, etc.

V. SEQUENCE TEMPLATE CODE

GENERATION :

Figure 6: Filter UVM Sequences

For the top level DSP system used, DSP filter blocks

have typical sequences such as zeros, impulse,

incrementing, DC, decrementing, single tone,

random, max positive and max negative. There are

sequences needed for developing the testbench with

easy debug and with the final goal of reaching

towards random stimulus sequence. Since code for all

the typical sequences mentioned above gets

generated through scripts, it allows enough time to

generate sequences for directed tests specific to

particular functionality of the block. Following shows

an example of code generated using the script. The

perl script takes arguments for different sequences to

be generated for a given filter and generates the

following code. The following example shows DC

sequence generated for a DEC filter.

class aq_dsp_ffe_sequence_base extends uvm_sequence

#(aq_dsp_ffe_transaction_in);

`uvm_object_utils(aq_dsp_ffe_sequence_base)

function new (string name = "aq_dsp_ffe_sequence_base"

);

 super.new(name);

endfunction : new

virtual task body();

endtask : body

endclass : aq_dsp_ffe_sequence_base

// DC scenario

class aq_dsp_ffe_sequence_dc extends

aq_dsp_ffe_sequence_base;

`uvm_object_utils(aq_dsp_ffe_sequence_dc)

function new (string name = "aq_dsp_ffe_sequence_dc");

 super.new(name);

endfunction : new

task pre_body();

 if(starting_phase != null) begin

 starting_phase.raise_objection(this);

 end

endtask

virtual task body();

 repeat(no_of_iterations)

 begin

 `uvm_do_with(req,

 {

 req.rdl_ffe_rx_data_i[0] == (DC_VAL);

 });

 end

endtask : body

task post_body();

 if(starting_phase != null) begin

 starting_phase.drop_objection(this);

 end

endtask

endclass : aq_dsp_ffe_sequence_dc

Figure 7: UVM sequence code for filter

The script can also be used to generate the base class

for all FIRs sequences. This base class can contain all

important sequences such as zeros, DC, impulse,

incrementing and random. The sequence class

template generated from the script can have the class

derived from above base class.

Once the code is generated for driver, monitor, agents

and sequences, the perl script takes arguments for

different block level environments to be instantiated

and generates the DSP top environment code. This

DSP top environment can either instantiate block

level agents or instantiate block level env directly

based on the methodology followed. Finally the top

env is instantiated in the UVM test code. Following

screen shot shows example of DSP top env code

generated through script.

class aq_dsp_env extends uvm_env;

`uvm_component_utils(aq_dsp_env)

//Instantiate all the agents here.

aq_dsp_ffe_agent_tx m_ffe_agent_tx;

aq_dsp_ffe_agent_rx m_ffe_agent_rx;

aq_dsp_ffe_sb m_sb;

aq_dsp_ffe_coverage m_cov;

aq_dsp_fec_sb m_sb_fec;

aq_dsp_fec_coverage m_cov_fec;

aq_dsp_fec_agent_tx m_fec_agent_tx;

aq_dsp_fec_agent_rx m_fec_agent_rx;

 //Declare all interfaces

virtual aq_dsp_ffe_if_data_input vif_data_input;

virtual aq_dsp_ffe_if_ctrl_input vif_ctrl_input;

virtual aq_dsp_ffe_if_output vif_output;

virtual aq_dsp_fec_if_data_input vif_fec_data_input;

virtual aq_dsp_fec_if_ctrl_input vif_fec_ctrl_input;

virtual aq_dsp_fec_if_output vif_fec_output;

function new (string name = "aq_dsp_env",

uvm_component parent);

 super.new(name, parent);

 `uvm_info(get_name()," Env New ",

UVM_MEDIUM);

endfunction

function void build_phase(uvm_phase phase);

 string name;

 super.build_phase(phase);

 m_ffe_agent_tx =

aq_dsp_ffe_agent_tx::type_id::create("m_ffe_agent_t

x", this);

 m_ffe_agent_rx =

aq_dsp_ffe_agent_rx::type_id::create("m_ffe_agent_r

x", this);

 m_sb = aq_dsp_ffe_sb::type_id::create("m_sb",

this);

 m_cov =

aq_dsp_ffe_coverage::type_id::create("m_cov", this);

 m_fec_agent_tx =

aq_dsp_fec_agent_tx::type_id::create("m_fec_agent_

tx", this);

 m_fec_agent_rx =

aq_dsp_fec_agent_rx::type_id::create("m_fec_agent_

rx", this);

 m_sb_fec =

aq_dsp_fec_sb::type_id::create("m_sb_fec", this);

 m_cov_fec =

aq_dsp_fec_coverage::type_id::create("m_cov_fec",

this);

….

function void end_of_elaboration_phase(uvm_phase

phase);

 uvm_top.print();

endfunction : end_of_elaboration_phase

function void report_phase(uvm_phase phase);

 report_summarize();

endfunction : report_phase

endclass: aq_dsp_env

Figure 8: UVM Env code

VI. LIMITATIONS

The scripting method for generating the sequencer

code for similar blocks such as FFE/FEC/DEC/NEC

worked very well. There were other blocks such as

RDL (Receive Delay Line) and AIF (Analog

Interface) blocks in the DSP system. RDL block in

the DSP system is responsible for sum of DEC, NEC,

FFE and FEC filtered data. This RDL block

functionality is much different from FIR filter

functionality. In AIF block, there is glue logic for

passing data from the digital domain to the analog

domain. This functionality is also much different than

FIR filter functionality. There are no data and

coefficients interfaces for RDL/AIF blocks unlike

FIR filters. The sequences that need to be generated

for RDL and AIF blocks are much different from FIR

filter sequences. In this scenario the same scripting

code cannot be reused to the same extent as in the

FIR filters sequences code.

In the project, there can be requirements to change

the infrastructure code once block level verification

gets started and new requirements are identified.

Knowledge about the infrastructure and

corresponding changes could be restricted to a single

person owning the infrastructure development scripts

and this can become a bottleneck in some cases as

compared to distributed knowledge across the entire

verification team.

VII. RESULTS :

When there is similarity in functionality and hence

testing methodology between different blocks of the

top level system such as DEC/FEC/FFE/NEC filters

in the DSP system, the script approach to create

various templates codes for various UVM

components such as driver, monitor, sequences,

agents and envs is very useful. Approximately 60%

of the code can be generated with this template and it

requires filling the remaining 40% of the code with

the block specific logic. Overall it saves a significant

amount of time in coding.

Generation of block level testbenches takes a day

using UVM automation scripts. Most of the

randomized and directed tests are generated by these

scripts based on the parameters provided to the

scripts. The entire infrastructure for the UVM based

environments can be developed in a matter of a few

weeks instead of few months. Since all the block

level testbenches are generated using scripts in an

automated way, it imposes consistency in verification

methodology for all the blocks of the chip and also

between block level and top level verification.

Scaling of the block level testbench to top level

testbench becomes much easier since each block of

the top level system uses the same modeling and

verification infrastructure. Time saved in

infrastructure development can be effectively used in

thorough verification for block/top level verification.

These scripts can be modified further to generate a

full chip environment where DSP top environment of

the PHY (physical) layer and MAC (Media Access

Control) layer top environment can be instantiated

for the full chip verification. This allows easily

reusable and uniform block level verification

environment that can be scaled to DSP top level

environment and is further scalable to a full chip

PHY-MAC verification environment.

VIII. CONCLUSION:

Block and top level verification infrastructure

development can be automated using scripts. This

saves a significant amount of time that can be used

for actual verification of the design.

IX. REFERENCES:

1) Verification methodology cookbook, UVM,

Mentor Graphics

2) UVM Golden Reference Guide, Doulos

3) 10GBASE-T, IEEE 802.3an, IEEE standard

document.

