
UVM/SystemVerilog based infrastructure
and testbench automation using scripts

Prakash Parikh
Aquantia Inc.

Background

• Aquantia – Privately held company
• Delivers High Speed Ethernet connectivity

solutions for large-scale Data Centers and Cloud
computing

• UVM infrastructure was generated for the PHY
chips using the scripting approach.

• Chips successfully taped out with the verification
done using this UVM infrastructure

Why script based approach for
UVM?

• UVM / SystemVerilog based testbenches gaining
popularity

• Legacy SystemC, Vera, testbuilder, Specman “e”
based testbenches getting migrated to UVM.
Manual approach is errorprone

• Infrastructure development for UVM based
testbench is time consuming and requires a lot
of OOP knowledge

• Block level env needs to be uniform to be
scalable at the top level

• Ensures uniform coding style and consistent
hookups

UVM infrastructure development

• Option 1 :
▪ Develop each block level env from scratch
▪ Stitch each block level environment for top
▪ Time consuming
▪ Not easily scalable since each env is not uniform.

• Option 2 :
▪ Take advantage of similarity of the

functionality
▪ Generate block and top level environment
using scripting approach.
▪ Advantage : Faster and Scalable approach.

Script based approach for DSP
system

Functionally
similar blocks

Standard Block Environment

Top level Environment

Template code for all blocks

• Generate shells for
driver/monitor/agent/env/test classes

• Generate build, run, connect phases standard
code

• Generate `uvm_component_utils(), data and
control interfaces code.

Sample code for scripting method

• Class template with generation of functions and tasks definitions.
sub create_uvm_class {

printf "\nclass ${block_name}_driver extends uvm_driver # ($tx_type); “
printf "\n `uvm_component_utils(${block_name}_driver)";
printf "\n $tx_type tx_data;";
printf "\n virtual interface ${block_name}_if_data_input dif_data;";
printf "\n virtual interface ${block_name}_if_ctrl_input dif_ctrl;";
printf "\n uvm_analysis_port #(${tx_type}) driver_port;\n";
create_new($block_name);
create_build_phase($block_name);
create_run_phase($block_name);
create_drive_dut($block_name);
create_bind_vis($block_name);
printf "\n\nendclass : ${block_name}_driver \n\n" ;

};

Same template for all blocks uvm components

$block_name = $ARGV[0];
$tx_type = $ARGV[1];

Sample code for scripting method -
Continue

• sub create_build_phase {
printf "\n function void

build_phase(uvm_phase phase);";
printf "\n\n string name;";
printf "\n super.build_phase(phase);";
printf "\n driver_port = new(\"driver_port\",

this);";
printf "\n\n endfunction \: build_phase\n\n";

};
sub create_run_phase {

printf"\n task run_phase(uvm_phase
phase);";

printf"\n\n super.run_phase(phase);";
printf"\n forever";
printf"\n begin";
printf"\n @(posedge dif_data.clk_dsp);";
printf"\n

seq_item_port.try_next_item(tx_data);";
printf"\n drive_dut();";
printf"\n driver_port.write(tx_data);";
printf"\n seq_item_port.item_done();";
printf"\n end";
printf"\n\n endtask : run_phase";

};

• sub create_drive_dut {
printf "\n\n function void drive_dut();\n";
printf "\n dif_data.a = tx_data.a;";
printf "\n\n endfunction \: drive_dut\n\n";

};
sub create_bind_vis {
printf "\n\n function void

bind_vi_data(virtual interface
${block}_data_input vif);\n";
printf "\n dif_data = vif;";
printf "\n\n endfunction \:

bind_vi_data\n\n";
printf "\n\n function void

bind_vi_ctrl(virtual interface
${block}_ctrl_input vif);\n";
printf "\n dif_ctrl = vif;";
printf "\n\n endfunction \:

bind_vi_ctrl\n\n";
};

Same Data
and control
interfaces

Similar
Driver
phases
for all
blocks
of the
chip

Similarity of the block level
environments

• FFE, FEC, DEC and NEC filters.
• Each filter vary in datapath and coefficients

widths
• Verification of each block, with DC,

Incrementing, Impulse and random sequences.
• Corner cases same – Max positive, Max negative

combinations for data and coefficients
• Saturation cases same

Sample output code from scripts

• class aq_dsp_ffe_driver extends uvm_driver #
(aq_dsp_ffe_transaction_in);

`uvm_component_utils(aq_dsp_ffe_driver)

aq_dsp_ffe_transaction_in tx_data;
virtual interface aq_dsp_ffe_if_data_input dif_data;
virtual interface aq_dsp_ffe_if_ctrl_input dif_ctrl;
uvm_analysis_port #(aq_dsp_ffe_transaction_in)
driver_port;

function new (string name = "aq_dsp_ffe_driver",
uvm_component parent);
super.new(name, parent);

endfunction

function void build_phase(uvm_phase phase);
string name;
super.build_phase(phase);
driver_port = new("driver_port", this);

endfunction

• function void bind_vi_data(virtual interface
aq_dsp_ffe_if_data_input vif);
dif_data = vif;

endfunction

task run_phase(uvm_phase phase);
super.run_phase(phase);

forever
begin
@(posedge dif_data.clk_dsp);
seq_item_port.try_next_item(tx_data);
drive_dut();
driver_port.write(tx_data);
seq_item_port.item_done();

end
• endtask : run_phase

function void drive_dut();
dif_data.rdl_ffe_rx_data_i[0] =

tx_data.rdl_ffe_rx_data_i[0];
endfunction

endclass: aq_dsp_ffe_driver

FIR-IIR Filter sequences

Sequence code from script – DC/
IMP/INCR sequences code reused

• class aq_dsp_ffe_sequence_base extends
uvm_sequence #(aq_dsp_ffe_transaction_in);

`uvm_object_utils(aq_dsp_ffe_sequence_base)
• function new (string name =

"aq_dsp_ffe_sequence_base");
super.new(name);

endfunction : new
virtual task body();
endtask : body
endclass : aq_dsp_ffe_sequence_base

// DC scenario
class aq_dsp_ffe_sequence_dc extends
aq_dsp_ffe_sequence_base;

• `uvm_object_utils(aq_dsp_ffe_sequence_dc)

function new (string name =
"aq_dsp_ffe_sequence_dc");
super.new(name);

endfunction : new

• task pre_body();
if(starting_phase != null) begin

starting_phase.raise_objection(this);
end

endtask

virtual task body();
repeat(no_of_iterations)
begin

`uvm_do_with(req,
{

req.rdl_ffe_rx_data_i[0] == (DC_VAL);
});
end

endtask : body

task post_body();
if(starting_phase != null) begin

starting_phase.drop_objection(this);
end

endtask

endclass : aq_dsp_ffe_sequence_dc

DC Sequence
can be reused
for all filters

All filters have similar DC/IMP/INCR/SINGLE_TONE/RAND sequences

Limitations of the scripting
approach

• The scripting method for generating the sequencer code
for similar blocks such as FFE/FEC/DEC/NEC worked very
well.

• Blocks such as RDL (Receive Delay Line) and AIF
(Analog Interface) blocks in the DSP system could not
reuse the functionality code except template code for
various UVM phases.

• Infrastructure knowledge limited to a single person or
small team.

• Infrastructure changes late in the design cycle difficult
since blocks env have already been developed.

Future work and improvements

• Enhance UVM environment for PHY top by adding MAC
where PHY stimulus is generated by MAC.

• Generate MAC Env and DSP Env for PHY from scripts

MAC PHY

Current
scope

Future work and improvements

• Put more common functionality in the base class for
driver, monitor, sequence when using the scripting
method.

• Careful study of functionality in base class compared to
functionality in different blocks scripts generated code

Future work and improvements

• Generate coverage class using scripting method for all
FFE/FEC/NEC/DEC blocks that have similar coverage
criterion.

FIR/IIR blocks

Max +ve
Data

Saturation

Max +ve
Coef

Coverage Cases

Future work and improvements

• Extend scripts flow to generate Makefile, reference
models, DPI interface calls on top of UVM infrastructure
files generation.

• Generate templates for UVM infrastructure
• Generate reference code wrappers and DPI calls
• Generate Makefiles for compiling UVM infrastructure,

reference code, running regressions
• Automate entire DV regressions infrastructure with

scripts

Summary

• Block and top level verification infrastructure
development can be automated using scripts

• Significant amount of time saved can be used
for actual verification

• Block level environment is easily scalable to top
level environment because of the uniformity of
all the block level environments.

• Overall, few weeks of time saved in verification
effort for the DSP chip.

• Tapeout on time with bug free silicon!

	Slide Number 1
	 Background
	 Why script based approach for UVM?
	 UVM infrastructure development
	 Script based approach for DSP system
	Standard Block Environment
	Top level Environment
	Template code for all blocks
	 Sample code for scripting method
	 Sample code for scripting method - Continue
	Similarity of the block level environments
	 Sample output code from scripts
	FIR-IIR Filter sequences
	Sequence code from script – DC/ IMP/INCR sequences code reused
	 Limitations of the scripting approach
	Future work and improvements
	Future work and improvements
	Future work and improvements
	Future work and improvements
	Summary

