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Background

• Aquantia – Privately held company
• Delivers High Speed Ethernet connectivity 

solutions for large-scale Data Centers and Cloud 
computing

• UVM infrastructure was generated for the PHY 
chips using the scripting approach.

• Chips successfully taped out with the verification 
done using this UVM infrastructure



Why script based approach for 
UVM?

• UVM / SystemVerilog based testbenches gaining 
popularity

• Legacy SystemC, Vera, testbuilder, Specman “e” 
based testbenches getting migrated to UVM. 
Manual approach is errorprone

• Infrastructure development for UVM based 
testbench is time consuming and requires a lot 
of OOP knowledge

• Block level env needs to be uniform to be 
scalable at the top level

• Ensures uniform coding style and consistent 
hookups



UVM infrastructure development

• Option 1 : 
▪ Develop each block level env from scratch 
▪ Stitch each block level environment for top 
▪ Time consuming 
▪ Not easily scalable since each env is not uniform.

• Option 2 : 
▪ Take advantage of similarity of the

functionality
▪ Generate block and top level environment
using scripting approach. 
▪ Advantage : Faster and Scalable approach.



Script based approach for DSP 
system

Functionally 
similar blocks 



Standard Block Environment



Top level Environment



Template code for all blocks

• Generate shells for 
driver/monitor/agent/env/test classes

• Generate build, run, connect phases standard 
code 

• Generate `uvm_component_utils(), data and 
control interfaces code.



Sample code for scripting method

• Class template with generation of functions and tasks definitions.
sub create_uvm_class {

printf "\nclass ${block_name}_driver extends uvm_driver # ($tx_type); “
printf "\n `uvm_component_utils(${block_name}_driver)";
printf "\n $tx_type tx_data;";
printf "\n virtual interface ${block_name}_if_data_input dif_data;";
printf "\n virtual interface ${block_name}_if_ctrl_input dif_ctrl;";
printf "\n uvm_analysis_port #(${tx_type}) driver_port;\n";
create_new($block_name);
create_build_phase($block_name);
create_run_phase($block_name);
create_drive_dut($block_name);
create_bind_vis($block_name);
printf "\n\nendclass : ${block_name}_driver \n\n" ;

};

Same template for all blocks uvm components

$block_name = $ARGV[0];
$tx_type = $ARGV[1];



Sample code for scripting method -
Continue

• sub create_build_phase {
printf "\n function void 

build_phase(uvm_phase phase);";
printf "\n\n string name;";
printf "\n super.build_phase(phase);";
printf "\n driver_port = new(\"driver_port\", 

this);";
printf "\n\n endfunction \: build_phase\n\n";

};
sub create_run_phase {

printf"\n task run_phase(uvm_phase
phase);";

printf"\n\n super.run_phase(phase);";
printf"\n forever";
printf"\n begin";
printf"\n @(posedge dif_data.clk_dsp);";
printf"\n 

seq_item_port.try_next_item(tx_data);";
printf"\n drive_dut();";
printf"\n driver_port.write(tx_data);";
printf"\n seq_item_port.item_done();";
printf"\n end";
printf"\n\n endtask : run_phase";

};

• sub create_drive_dut {
printf "\n\n function void drive_dut();\n";
printf "\n dif_data.a = tx_data.a;";
printf "\n\n endfunction \: drive_dut\n\n";

};
sub create_bind_vis {
printf "\n\n function void 

bind_vi_data(virtual interface 
${block}_data_input vif );\n";
printf "\n dif_data = vif;";
printf "\n\n endfunction \: 

bind_vi_data\n\n";
printf "\n\n function void 

bind_vi_ctrl(virtual interface 
${block}_ctrl_input vif );\n";
printf "\n dif_ctrl = vif;";
printf "\n\n endfunction \: 

bind_vi_ctrl\n\n";
};

Same Data
and control
interfaces

Similar
Driver
phases
for all
blocks
of the
chip



Similarity of the block level 
environments

• FFE, FEC, DEC and NEC filters.
• Each filter vary in datapath and coefficients 

widths
• Verification of each block, with DC, 

Incrementing, Impulse and random sequences.
• Corner cases same – Max positive, Max negative 

combinations for data and coefficients
• Saturation cases same



Sample output code from scripts

• class aq_dsp_ffe_driver extends uvm_driver # 
(aq_dsp_ffe_transaction_in);

`uvm_component_utils(aq_dsp_ffe_driver)

aq_dsp_ffe_transaction_in tx_data;
virtual interface aq_dsp_ffe_if_data_input dif_data;
virtual interface aq_dsp_ffe_if_ctrl_input dif_ctrl;
uvm_analysis_port #(aq_dsp_ffe_transaction_in) 
driver_port;

function new (string name = "aq_dsp_ffe_driver", 
uvm_component parent);
super.new(name, parent);

endfunction

function void build_phase(uvm_phase phase);
string name;
super.build_phase(phase);
driver_port = new("driver_port", this);

endfunction

• function void bind_vi_data(virtual interface 
aq_dsp_ffe_if_data_input vif);
dif_data = vif;

endfunction

task run_phase(uvm_phase phase);
super.run_phase(phase);

forever
begin
@(posedge dif_data.clk_dsp);
seq_item_port.try_next_item(tx_data);
drive_dut();
driver_port.write(tx_data);
seq_item_port.item_done();

end
• endtask : run_phase

function void drive_dut();
dif_data.rdl_ffe_rx_data_i[0] = 

tx_data.rdl_ffe_rx_data_i[0];
endfunction

endclass: aq_dsp_ffe_driver



FIR-IIR Filter sequences



Sequence code from script – DC/   
IMP/INCR sequences code reused

• class aq_dsp_ffe_sequence_base extends 
uvm_sequence #(aq_dsp_ffe_transaction_in);

`uvm_object_utils(aq_dsp_ffe_sequence_base)
• function new (string name = 

"aq_dsp_ffe_sequence_base" );
super.new(name);

endfunction : new
virtual task body();
endtask : body
endclass : aq_dsp_ffe_sequence_base

// DC scenario
class aq_dsp_ffe_sequence_dc extends 
aq_dsp_ffe_sequence_base;

• `uvm_object_utils(aq_dsp_ffe_sequence_dc)

function new (string name = 
"aq_dsp_ffe_sequence_dc" );
super.new(name);

endfunction : new

• task pre_body();
if(starting_phase != null) begin

starting_phase.raise_objection(this);
end

endtask

virtual task body();
repeat(no_of_iterations)
begin

`uvm_do_with(req, 
{ 

req.rdl_ffe_rx_data_i[0] == ( DC_VAL );
});
end

endtask : body

task post_body();
if(starting_phase != null) begin

starting_phase.drop_objection(this);
end 

endtask

endclass : aq_dsp_ffe_sequence_dc

DC Sequence
can be reused
for all filters

All filters have similar DC/IMP/INCR/SINGLE_TONE/RAND sequences



Limitations of the scripting 
approach

• The scripting method for generating the sequencer code 
for similar blocks such as FFE/FEC/DEC/NEC worked very 
well.

• Blocks such as RDL (Receive Delay Line) and AIF 
(Analog Interface) blocks in the DSP system could not 
reuse the functionality code except template code for 
various UVM phases.

• Infrastructure knowledge limited to a single person or 
small team.

• Infrastructure changes late in the design cycle difficult 
since blocks env have already been developed.



Future work and improvements

• Enhance UVM environment for PHY top by adding MAC 
where PHY stimulus is generated by MAC.

• Generate MAC Env and DSP Env for PHY from scripts

MAC PHY

Current 
scope



Future work and improvements

• Put more common functionality in the base class for 
driver, monitor, sequence when using the scripting 
method.

• Careful study of functionality in base class compared to 
functionality in different blocks scripts generated code



Future work and improvements

• Generate coverage class using scripting method for all 
FFE/FEC/NEC/DEC blocks that have similar coverage 
criterion.

FIR/IIR blocks

Max +ve
Data

Saturation

Max +ve
Coef

Coverage Cases



Future work and improvements

• Extend scripts flow to generate Makefile, reference 
models, DPI interface calls on top of UVM infrastructure 
files generation.

• Generate templates for UVM infrastructure
• Generate reference code wrappers and DPI calls
• Generate Makefiles for compiling UVM infrastructure, 

reference code, running regressions
• Automate entire DV regressions infrastructure with 

scripts



Summary

• Block and top level verification infrastructure 
development can be automated using scripts

• Significant amount of time saved can be used 
for actual verification

• Block level environment is easily scalable to top 
level environment because of the uniformity of 
all the block level environments.

• Overall, few weeks of time saved in verification 
effort for the DSP chip.

• Tapeout on time with bug free silicon!
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