
UVM-SystemC: Migrating complex
verification environments

Stephan Gerth, Fraunhofer IIS/EAS
Akhila Madhukumar, Intel India Pvt. Ltd

© Accellera Systems Initiative 1

Agenda
• Preface: UVM-SystemC standardization update
• Main: Migrating complex verification environments

– Previous environment
– Randomziation using SCV & CRAVE
– Results

• Q&A

© Accellera Systems Initiative 2

PART 0: UVM-SYSTEMC STANDARDIZATION
UPDATE

© Accellera Systems Initiative 3

Updates since DVCon Europe 2016
• Register API: Basic backdoor implemented (no DPI)
• SystemC 2.3.2 compatibility

– Header includes
– Pkg-config
– Immediate notification mechanism

• UVM 1.2 Reporting API
• Stability review

© Accellera Systems Initiative 4

Current status
• Effort currently shared within small group

– More input from interested parties welcome and needed
– Man power needs to be increased for faster development

• Preview release
– Final packaging & testing
– shortly after DVCon Europe 2017

© Accellera Systems Initiative 5

Plans for 2018
• Improve API compatibility to IEEE 1800.2-2017
• Complete Register API (frontdoor/backdoor)
• Simplify CRAVE integration
• Smart Pointer implementation

– Main branch: make API more clear about ownerships
– Separate branch: implement shared pointers in API

• Add more examples
– Ubus
– Codec

• User Guide

© Accellera Systems Initiative 6

PART 1: PREVIOUSLY USED VERIFICATION
ENVIRONMENT

© Accellera Systems Initiative 7

Overview
• Previous verification environment
• Limitations and issues
• Migration details

– Layers
– Driver & Monitors
– Transactions

© Accellera Systems Initiative 8

Conventional SystemC Testbench
• Custom test functions & test engine

– test functions (test ports) created to mimic
bus transaction drivers; one per transaction
type

– Individual functions for each test scenarios
• Distinct methods for writes and reads

– Number of methods depends on types of
valid write/read as per the protocol being
implemented viz. single, burst, posted or
non-posted

• Self-checking and parametrized tests
• Additional task created for running

multiple tests in parallel from different
interfaces
– Vector classes used to keep track of test

functions being launched from each interface

AHB portAHB port

SIDE BAND
SIGNALS

AHB test
port

DUT
AHB test

port

RESPONSE
HANDLING

AXI port

AXI test port

Test engine

Test
functions

TEST SCENARIOS

IP Core

Test
functions

© Accellera Systems Initiative 9

Limitations and potential reasons for UVM-SystemC
• Limitations of Non-UVM-SC testbench

– Higher learning curve for new user as TB has no standardized architecture
– Minimal reuse of tests/components across projects
– Configurability of testbench is limited
– Inadequate constrained randomization
– Narrow scope of IP to SoC reuse (SoC usually has UVM-SV based framework)

• Reasons for UVM-SC adoption:
– Re-usability
– Configurability
– Constrained randomization
– Standardization across languages
– Easier adoption for UVM-SV users

© Accellera Systems Initiative 10

Migrating to UVM-SystemC framework

• UVM-SystemC adheres to the
UVM-SystemVerilog standard
layered architecture
– Migration of previous components

to their respective layers required

© Accellera Systems Initiative 11

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

UVM-SystemC Phasing

© Accellera Systems Initiative 12

• UVM phases are mapped to the System-C phases
• Completion of a runtime phase happens as soon as there are no objections (anymore) to proceed to

the next phase.
• All UVM components have the phases associated with them

Build flow of UVM-SystemC(1/2)
• GCC used for compiling UVM-SystemC framework with SystemC DUT
• VCS used for compiling UVM-SystemC framework with RTL DUT
• run_test(“<test_name>”);
• Simulator looks for a component registered with the name <test_name>
• Executes the build_phase (from top-down) of all the uvm components
• Elaborates the hierarchy and understands the component connections
• Executes the run_phases of all the components (in parallel)
• Enters post_run phases and finished once all objections are dropped

© Accellera Systems Initiative 13

Build flow of UVM-SystemC(2/2)
Starting SC tests ...
0 s: build_phase top_test
0 s: constructor top_env
0 s: build_phase top_test.top_env
0 s: constructor agent
0 s: build_phase top_test.top_env.agent
0 s: constructor ahb_sequencer_inst
0 s: constructor ahb_driver_inst
0 s: build_phase top_test.top_env.agent.ahb_monitor_inst
0 s: connect_phase top_test.top_env.agent
0 s: connect_phase top_test.top_env
in ahb_reset_proc begin
0 s: UVM test with ahb_wr_rd_seq started top_test
in ahb_reset_proc end
100 ns: UVM test with ahb_wr_rd_seq started top_test
………..
1732630 ns: UVM test with ahb_wr_rd_seq finished top_test

--- UVM Report Summary ---
** Report counts by severity
UVM_ERROR : 0
UVM_FATAL : 0
UVM_INFO : 0
UVM_WARNING : 0
** Report counts by id
[RNTST] 1
[agent] 1
[ahb_driver_inst] 1705
[ahb_monitor_inst] 19
[ahb_seq] 2609
[pp_dynamic_cfg_seq] 8

© Accellera Systems Initiative 14

Transaction Layer
• Create interface and transaction

classes as needed by the protocol
• Connect DUT to the interface
• Pass this interface to other

components throughout the
testbench hierarchy

int sc_main(int, char*[]) {
ahb_clk_reset_gen* clk_rst_gen

= new ahb_clk_reset_gen("clk_rst_gen");

ahb_if* dut_if_in = new ahb_if("dut_if_in");
dut_if_in->hclk(clk_rst_gen->ahb_clk);
dut_if_in->hresetn(clk_rst_gen->reset_val);

dut ahb_dut("ahb_dut");
ahb_dut.hclk(clk_rst_gen->ahb_clk);
ahb_dut.hresetn(clk_rst_gen->reset_val);
ahb_dut.haddr(dut_if_in->haddr);
...

uvm::uvm_config_db<ahb_if*>::
set(0, "*", "vif", dut_if_in);

uvm::uvm_config_db<sc_event*>::
set(0, "*", "reset_done", clk_rst_gen->reset_done);

run_test("ahb_wr_rd_test");
return 0;

}

© Accellera Systems Initiative 15

Component Layer

Driver Monitor

Signal Layer DUT

Component Layer
• All components in this layer, are

mapped to a transaction type
– The transaction class constitutes on the

packet type which is being transmitted
across components

• Driver-Sequencer to follow a standard
handshaking interface as per UVM
standard

• Driver is the key component where all
protocol intelligence has to be
implemented

• Monitor can implement protocol
checks, data integrity checks etc.
– Taps the DUT signal directly

© Accellera Systems Initiative 16

Sequence

start_item()

finish_item()

Driver

• seq_item_port.get_next_item()
• Assign transaction to interface

according to the protocol
• seq_item_port. item_done()
• seq_tem_port.put_respose()

REQUEST Packet

RESPONSE
Packet

AHB Driver Component(1/6)
• Driver is derived from uvm_component base class

– uvm_components are created statically during the simulation, unlike
uvm_objects

– Module registered to factory by using “UVM_COMPONENT_PARAM_UTILS”
• Enables component overrides using factory

– build_phase() “creates” the component and gets the virtual interface handle
• Virtual interface is the mode of communication between the DUT and the UVM_COMPONENTs
• Interface contains variables which are to be passed across the components.
• These contain all of the transaction object variables and some additional sideband signals, if

any (based on the protocol of the driver)

© Accellera Systems Initiative 17

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Driver Component(2/6)
class ahb_driver: public

uvm::uvm_driver<ahb_transaction> {

public:
UVM_COMPONENT_PARAM_UTILS(ahb_driver);
ahb_if* ahb_vif;
sc_event* reset_event_driver;
sc_semaphore ahb_pipeline_lock;

ahb_driver(
uvm::uvm_component_name name

= "ahb_driver“
):uvm::uvm_driver<ahb_transaction>(name),

ahb_pipeline_lock(1)
{

...
}

© Accellera Systems Initiative 18

AHB Driver Component(3/6)
void build_phase(uvm::uvm_phase& phase) {

UVM_INFO(this->get_name(),"build_phase entered",UVM_LOW);

uvm_driver<ahb_transaction>::build_phase(phase);
reset_event_driver = new sc_event("reset_event_driver");

if (!uvm_config_db<ahb_if*>::
get(this, "*", "vif", ahb_vif))

{
UVM_FATAL(this>get_name(),
"AHB Virtual Interface missing");

}

if (!uvm_config_db<sc_event*>::
get(this, "*", "reset_done", reset_event_driver))

{
UVM_FATAL(this->get_name(), “Reset event missing");

}

}

© Accellera Systems Initiative 19

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Driver Component(4/6)
• Run_phase()

– This is the phase where simulation time advances
– This phase is supposed to handle the pre-reset and post-reset behavior of the

driver
– The variables in the virtual interface are assigned values based on various modes

of operation of the driver (as per the protocol)
– All the DUT interface signals which are to be driven by the testbench, should be

assigned in this phase
– Driver receives the transaction object from the sequencer

• The communication (between driver and sequencer/sequence) is as per a UVM standard
protocol

© Accellera Systems Initiative 20

Driver-Sequence Interactions

• Driver waits for a transaction item in the run_phase() by calling get_next_item() method of the driver
analysis port.

• Once the sequence is started (from the uvm test), the start_item() method will be called and a transaction
item reference will be passed

• Driver receives this and assigns relevant values to the sequence item
• Item_done() method call in driver indicates the transaction is updated and ready to be sent back to the

sequence
• Driver can choose to call put_response() method and send a response packet with updated response fields

(like status, data etc.)
• Sequence finished the item processing once the response is received and calls finish_item()

© Accellera Systems Initiative 21

Sequence

start_item()

finish_item()

Driver

• seq_item_port.get_next_item()
• Assign transaction to interface

according to the protocol
• seq_item_port. item_done()
• seq_tem_port.put_respose()

REQUEST Packet

RESPONSE
Packet

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Driver Component(5/6)
void run_phase(uvm::uvm_phase& phase) {

UVM_INFO(this->get_name(),
"run_phase entered",UVM_LOW);

if (ahb_vif->hresetn == 0) wait(*reset_event_driver);

while(true) {
SC_FORK
sc_spawn(sc_bind(

&ahb_driver::send_transaction,this),"drive1"),
sc_spawn(sc_bind(

&ahb_driver::send_transaction,this),"drive2")
SC_JOIN

}
UVM_INFO(this->get_name(),

"run_phase finished", UVM_LOW);
}

© Accellera Systems Initiative 22

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Driver Component(6/6)
void send_transaction() {
ahb_transaction req, rsp;
ahb_pipeline_lock.wait();
UVM_INFO(this->get_name(),

"send_transaction: next item",UVM_LOW);
this->seq_item_port->get_next_item(req);
ahb_vif->htrans = req.htrans;
ahb_vif->haddr = req.haddr;
ahb_vif->hsize = req.hsize;

...

wait(AHB_CLK);
while (ahb_vif->hready != 1) wait(AHB_CLK);
rsp.set_id_info(req);
this->seq_item_port->item_done();
this->seq_item_port->put_response(rsp);
ahb_pipeline_lock.post();

}

© Accellera Systems Initiative 23

AHB Monitor Component(1/3)
• Monitor is derived from uvm_monitor/uvm_component base class
• Consist of an analysis port
• build_phase() “creates” the component and gets the virtual interface handle

• run_phase()
– Monitor receives the transaction items through the virtual interface and creates an

internal packet from it
– If a broadcast packet is needed, monitor can write this packet to an analysis port and

any other components can receive this by connecting to this port
– Protocol checks and assertions are implemented to validate the transaction item values
– Fatal/Error/Warning messages can be flagged based on the protocol failure severity

© Accellera Systems Initiative 24

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Monitor Component(2/3)
class ahb_monitor : public uvm::uvm_monitor {
public:
uvm::uvm_analysis_port<ahb_transaction>
item_collected_port;

ahb_if* vif;
ahb_monitor(
uvm::uvm_component_name name = "ahb_monitor"):
uvm_monitor(name),
item_collected_port("item_collected_port"),
vif(0)

{ ... }

UVM_COMPONENT_UTILS(ahb_monitor);

void build_phase(uvm::uvm_phase& phase) {
uvm::uvm_monitor::build_phase(phase);
if (!uvm::uvm_config_db<ahb_if*>::
get(this, "*", "vif", vif)) {
UVM_FATAL(name(),
"Virtual interface not defined!");

}
}

© Accellera Systems Initiative 25

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Monitor Component(3/3)
void run_phase(uvm::uvm_phase& phase) {

ahb_transaction pkt;

while (true) { // monitor forever
std::ostringstream str;
wait(vif->hresetn.posedge_event());

if (vif->hclk == 0)
sc_core::wait(vif->hclk.posedge_event());

pkt.htrans = vif->htrans;
pkt.haddr = vif->haddr;
...
item_collected_port.write(pkt);

// Checks on the packet items
AddressByteAlligned(pkt.haddr);
SlaveErrorResponse(pkt);

}

© Accellera Systems Initiative 26

AHB Agent (1/3)
class ahb_agent : public uvm::uvm_agent {

public:
ahb_driver* ahb_driver_inst;
ahb_monitor* ahb_monitor_inst;
ahb_sequencer<ahb_transaction>* ahb_sequencer_inst;
uvm::uvm_analysis_port<ahb_transaction>

agent_item_collected_port;

ahb_agent(uvm::uvm_component_name name = "ahb_agent"):
uvm_agent(name), ahb_sequencer_inst(0),
ahb_driver_inst(0) , ahb_monitor_inst(0),
agent_item_collected_port("agent_item_collected_port")

{
std::cout << sc_core::sc_time_stamp()

<< ": constructor " << name << std::endl;
}

…

© Accellera Systems Initiative 27

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Agent (2/3)
void build_phase(uvm::uvm_phase& phase) {

std::cout << sc_core::sc_time_stamp() << ": build_phase " <<
name() << std::endl;

if (get_is_active() == uvm::UVM_ACTIVE) {
UVM_INFO(this->get_name(), " is ACTIVE", UVM_LOW);

ahb_sequencer_inst = ahb_sequencer<ahb_transaction>::
type_id::create("ahb_sequencer_inst",this);

ahb_driver_inst = ahb_driver::
type_id::create("ahb_driver_inst",this);

ahb_monitor_inst =
ahb_monitor::type_id::create("ahb_monitor_inst",this);

} else {
ahb_monitor_inst = ahb_monitor::type_id::

create("ahb_monitor_inst",this);

UVM_INFO(this->get_name(), " is PASSIVE", UVM_LOW);
}

© Accellera Systems Initiative 28

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Agent (3/3)
void connect_phase(uvm::uvm_phase& phase) {
std::cout << sc_core::sc_time_stamp()
<< ": connect_phase " << name() << std::endl;

if (get_is_active()==uvm::UVM_ACTIVE) {
ahb_driver_inst->seq_item_port.connect
(ahb_sequencer_inst->seq_item_export);

}

ahb_monitor_inst->item_collected_port.connect
(agent_item_collected_port);

}

© Accellera Systems Initiative 29

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Basic Env
class ahb_basic_env : public uvm::uvm_env {
public:
UVM_COMPONENT_UTILS(ahb_basic_env);
ahb_agent* agent;
ahb_basic_env(
uvm::uvm_component_name name=
"ahb_basic_env“): uvm::uvm_env(name), agent(0) {
std::cout << sc_core::sc_time_stamp()
<< ": constructor " << name << std::endl;

}

void build_phase(uvm::uvm_phase& phase) {
std::cout << sc_core::sc_time_stamp()
<< ": build_phase " << name() << std::endl;
agent = ahb_agent::type_id::create("agent", this);

uvm::uvm_config_db<int>::
set(this, "agent", "is_active", uvm::UVM_ACTIVE);

}

};

© Accellera Systems Initiative 30

Transaction Layer (UVM Tests) (1/3)
• UVM_TESTs are responsible for building the top level environment and initiating the

start of the required sequence
• UVM runs tasks on objections and all the components wishing to perform a task are

expected to raise an objection
• build_phase() “creates” the component
• run_phase()

– Objection is raised and dropped in this phase
– Sequence handle is created and sequence is started by calling the start()

method
– The sequencer on which the sequence should be run is also specified
– Multiple sequences can be started at the same time on different sequencers

© Accellera Systems Initiative 31

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

Transaction Layer (UVM Tests) (2/3)
class ahb_wr_rd_test : public uvm::uvm_test {

public:
ahb_wr_rd_sequence* ahb_wr_rd_seq;
ahb_basic_env* top_env;

UVM_COMPONENT_UTILS(ahb_wr_rd_test);
ahb_wr_rd_test(uvm::uvm_component_name
name = "ahb_wr_rd_test"):
uvm::uvm_test(name), top_env(0) {}

virtual void build_phase(uvm::uvm_phase& phase){
std::cout << sc_core::sc_time_stamp()
<< ": build_phase " << name() << std::endl;
uvm_test::build_phase(phase);
top_env = ahb_basic_env::type_id::

create("top_env",this);}

© Accellera Systems Initiative 32

Transaction Layer (UVM Tests) (3/3)
virtual void run_phase(uvm::uvm_phase& phase) {

std::cout << sc_core::sc_time_stamp()
<< ": UVM test with ahb_wr_rd_seq started "
<< name() << std::endl;

phase.raise_objection(this);

ahb_wr_rd_seq =
new ahb_wr_rd_sequence("ahb_wr_rd_seq");
ahb_wr_rd_seq->start(top_env->
agent->ahb_sequencer_inst);

phase.drop_objection(this);
std::cout << sc_core::sc_time_stamp()
<< "UVM test with ahb_wr_rd_seq finished"
<< name() << std::endl;

}

© Accellera Systems Initiative 33

Transaction Layer Tests &
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

PART 2: RANDOMIZATION USING SCV & CRAVE

© Accellera Systems Initiative 34

Overview
• Sequence randomization

– SCV
– CRAVE

• Sequence randomization sample

© Accellera Systems Initiative 35

Random Sequences Using SCV (1/2)
• While using SCV for randomizing the sequence item, scv_extensions are to be

created
• SCV_EXTENSION consist of the transaction fields to be randomized
• SCV_CONSTRAINTS can be added for all of the scv_extension variables as per

the required constrained randomization
• In a sequence, the scv_constraint object is created and next() method is

called to get a set of random values
• These are assigned to the scv_smart_ptr for the transaction class
• Multiple random values can be received by calling next() method each time

© Accellera Systems Initiative 36

Random Sequences Using SCV (2/2)
Create scv_extensions for the sequence item class i.e. for
the transaction type

SCV_EXTENSIONS(ahb_transaction) {
public:
scv_extensions<sc_uint<ahbConfig::AhbAddrWidth>> haddr;
scv_extensions<sc_uint<ahbConfig::AhbDataWidth>[BURSTLENGTH]>

hwdata;
scv_extensions< sc_uint<ahbConfig::AhbBurstSize>> hburst;
scv_extensions< sc_uint<ahbConfig::AhbSize>> hsize;

SCV_EXTENSIONS_CTOR(ahb_transaction) {
SCV_FIELD(haddr);
SCV_FIELD(hburst);
SCV_FIELD(hsize);
SCV_FIELD(hwdata);

}

bool has_valid_extensions() { return true; }
};

Create constraints class using smart_ptr of sequence item
class type

class ahb_trans_constraints : virtual public scv_constraint_base {
public:
scv_smart_ptr<ahb_transaction> req;
SCV_CONSTRAINT_CTOR(ahb_trans_constraints) {
SCV_CONSTRAINT((req->haddr() * 0x3) == 0x0);
SCV_CONSTRAINT(
(req->hburst() >= ahbConfig::HBURST_SINGLE) &&
(req->hburst() <= ahbConfig::HBURST_INCR16)

);
SCV_CONSTRAINT(
(req->hsize() >= ahbConfig::HSIZE_BYTE) &&
(req->hsize() <= ahbConfig::HSIZE_WORD)

);

// For wrapping bursts, start address from an address
// other that 0x00 offset
SCV_CONSTRAINT(
if_then(req->hburst() == ahbConfig::HBURST_WRAP4,
((req->haddr() * 0x7) != 0x0));

);
}

© Accellera Systems Initiative 37

Hierarchical Sequences using Random Sequence
Items (SCV)(1/2)

class ahb_wr_rd_sequence : public
uvm::uvm_sequence<ahb_transaction>
{

public:
UVM_OBJECT_UTILS(ahb_wr_rd_sequence);

UVM_DECLARE_P_SEQUENCER(ahb_sequencer<ahb_transaction>);
ahb_if* ahb_vif_seq;
ahb_wr_rd_sequence(const std::string&
name = "ahb_wr_rd_sequence") :

uvm::uvm_sequence<ahb_transaction> (name){}
uint8_t xactType;
unsigned addrValue;
unsigned dataValue;
void body()
{

UVM_INFO(this->get_name(), "Starting sequence",
uvm::UVM_INFO);

ahb_trans_constraints constr_req("constr_req");
scv_smart_ptr<ahb_transaction>

rand_smart_ptr_ahb_pkt;
ahb_basic_sequence* ahb_seq;
ahb_seq = new ahb_basic_sequence("ahb_seq");

constr_req.next();
rand_smart_ptr_ahb_pkt.write(constr_req.req.read());

ahb_seq->xactType = rand_smart_ptr_ahb_pkt ->hwrite;
ahb_seq->hburstValue =

rand_smart_ptr_ahb_pkt ->hburst;
ahb_seq->addrValue = rand_smart_ptr_ahb_pkt ->haddr;
ahb_seq->dataValue = 0xabababab;

ahb_seq->start(m_sequencer);

constr_req.next();
rand_smart_ptr_ahb_pkt.write(constr_req.req.read());

ahb_seq->xactType = rand_smart_ptr_ahb_pkt ->hwrite;
ahb_seq->hburstValue =

rand_smart_ptr_ahb_pkt ->hburst;
ahb_seq->addrValue = rand_smart_ptr_ahb_pkt ->haddr;

ahb_seq->start(m_sequencer);

UVM_INFO(this->get_name(),
"Finishing sequence", uvm::UVM_INFO);

© Accellera Systems Initiative 38

Hierarchical Sequences using Random Sequence
Items (SCV)(2/2)

class ahb_basic_sequence : public
uvm::uvm_sequence<ahb_transaction>
{

public:
UVM_OBJECT_UTILS(ahb_basic_sequence);
uint8_t xactType;
unsigned addrValue,dataValue;
unsigned hburstValue, hsizeValue;
ahb_basic_sequence(const std::string&
name = "ahb_basic_sequence") :

uvm::uvm_sequence<ahb_transaction> (name) {}
void body()
{

UVM_INFO(this->get_name(), "Starting
sequence ahb_basic_sequence", uvm::UVM_INFO)

ahb_transaction* req_pkt;
ahb_transaction* rsp;
req_pkt = new ahb_transaction();
rsp = new ahb_transaction();
single_wr_rd(addrValue,xactType,dataValue,

req_pkt, rsp);
}

void single_wr_rd(unsigned addrValue,
unsigned xactType,
unsigned dataValue,
ahb_transaction* req_pkt,
ahb_transaction* rsp)

{
UVM_INFO(this->get_name(), "Initiating

non-burst accesses", uvm::UVM_INFO);

req_pkt->haddr = addrValue;
req_pkt->hsel = 1;
req_pkt->hready = 1;
req_pkt->htrans = ahbConfig::HTRANS_NONSEQ;
req_pkt->hsize = hsizeValue;
req_pkt->hwrite = xactType;
req_pkt->hwdata[0] =

(sc_uint<32>)dataValue;

this->start_item(req_pkt);
this->finish_item(req_pkt);
this->get_response(rsp);

}

© Accellera Systems Initiative 39

Random Sequences Using CRAVE
• Transaction class need to be derived from uvm_randomized_sequence_item()
• Variables to be randomized are declared as crv_variables
• Constraints can be specified by using crv_constraint method
• base sequence using the transaction item, should call the randomize() method to

get random values for the crv_variables
• values should be assigned to the transaction packets fields, as per requirement and

sent to the DUT
• UVM_DO* macros can be called to specify which transaction object has to be sent to

the driver and with what random values

© Accellera Systems Initiative 40

Sequence Item Using CRAVE
class ahb_transaction : public uvm_randomized_sequence_item {
public:
UVM_OBJECT_UTILS(ahb_transaction);

// define some rand variables
crv_variable< sc_uint< ahbConfig::AhbAddrWidth > > haddr;
crv_variable< sc_uint< ahbConfig::AhbSize > > hsize;
crv_variable< sc_uint< ahbConfig::AhbDataWidth> > hwdata[BURSTLENGTH];
crv_variable< unsigned > hburst;

// Add some constraints
crv_constraint valid_hburst_range {HBURST_SINGLE <= hburst() <= HBURST_INCR16};
crv_constraint valid_hsize_range {HSIZE_BYTE <= hburst() <= HSIZE_WORD};
crv_constraint valid_addr_range {haddr() * 0x3 == 0x0};
crv_constraint addr_for_wrap_burst {if_then(hburst() == HBURST_WRAP4, (haddr() * 0x7) != 0x0)};

// Constructor
ahb_transaction(crv_object_name name = "ahb_transaction") : uvm_randomized_sequence_item(name) {
...

};
};

© Accellera Systems Initiative 41

Hierarchical Sequences using Random Sequence
Item (CRAVE)

#include "ahb_basic_sequence.h"
class ahb_wr_rd_sequence : public uvm_randomized_sequence<ahb_transaction>
{

public:

UVM_OBJECT_UTILS(ahb_wr_rd_sequence);
ahb_wr_rd_sequence(crave::crv_object_name name = "ahb_wr_rd_sequence") :

uvm_randomized_sequence<ahb_transaction> (name)
{

cout << "Entered constructor of ahb_wr_rd_sequence " << endl;
}

void body()
{

UVM_INFO(this->get_name(), "Starting sequence", uvm::UVM_INFO);
ahb_basic_sequence* ahb_seq;
ahb_seq = new ahb_basic_sequence("ahb_seq");
ahb_seq->hburstValue = ahbConfig::HBURST_SINGLE;
ahb_seq->start(m_sequencer);
UVM_INFO(this->get_name(), "Finishing sequence", uvm::UVM_INFO);

}

};

© Accellera Systems Initiative 42

Base sequence with crv_variable
class ahb_basic_sequence : public
uvm_randomized_sequence<ahb_transaction>
{

public:
UVM_OBJECT_UTILS(ahb_basic_sequence);
crv_variable<uint8_t > xactType;
crv_variable<unsigned > addrValue;
crv_variable<unsigned > dataValue;
ahb_basic_sequence(crave::crv_object_name
name= "ahb_basic_sequence") :
uvm_randomized_sequence<ahb_transaction> (name)
{}

virtual ~ahb_basic_sequence() {
};

void body()
{

UVM_INFO(this->get_name(), "Starting sequence
ahb_basic_sequence", uvm::UVM_INFO);

ahb_transaction* req_pkt;
ahb_transaction* rsp;
req_pkt = new ahb_transaction();
rsp = new ahb_transaction();
single_wr_rd(addrValue,xactType,dataValue, req_pkt,

rsp);
}

}

void single_wr_rd(unsigned addrValue,
unsigned xactType,
unsigned dataValue,
ahb_transaction* req_pkt,
ahb_transaction* rsp)

{
UVM_INFO(this->get_name(), "Initiating non-burst

accesses", uvm::UVM_INFO);
this->randomize();
req_pkt->haddr = addrValue;
req_pkt->hsel = 1;
req_pkt->hready = 1;
req_pkt->htrans = ahbConfig::HTRANS_NONSEQ;
req_pkt->hsize = hsizeValue;
req_pkt->hwrite = xactType;
UVM_DO_WITH(req_pkt, req_pkt->haddr() == addrValue);
UVM_INFO(this->get_name(), "Exiting non-burst

accesses", uvm::UVM_INFO);
}

© Accellera Systems Initiative 43

SCV Sequence Randomization Sample
• SCV constraints written to configure

the IP parameter randomly
• The IP is designed to find a path

between point ‘A’ and ‘B’ without
colliding to any obstacles on its
path. Start, target and the obstacle
map is an input to the IP.

• Test ends when an Interrupt is
asserted by the IP; interrupt status
of 1 => Valid output ready, interrupt
status of 2 => No valid output(path)
possible

© Accellera Systems Initiative 44

• SCV library does not have
scv_extensions added for fixed point
data types yet.

• Hence, constrained randomization
attained using rand() method.

• Sample plots show the capability of
randomization to generate distinct
scenarios.

Code Snippet for Randomizing Fixed Point
Variables(1/2)

sc_fixed<32,8> SP_X, SP_Y, SP_PHI;
sc_fixed<32,8> TP_X, TP_Y, TP_PHI;
sc_fixed<32,8> omap_X, omap_Y;
sc_fixed<32,8> rand_SP_PHI;
sc_fixed<32,8> rand_TP_PHI;

sc_fixed<32,8> eucDistObsSP;
sc_fixed<32,8> eucDistObsTP;
sc_fixed<32,8> eucDistSPTP;
omap_count = (rand()%161) + 20; // obs points between 20

and 180

SP_X = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0)) + (-
9.0);

SP_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0)) + (-
9.0);

// Value between -1.5708 to 1.5708 i.e -90 to 90
rand_SP_PHI = -1.5708 + (sc_fixed<32,8>)(1.5708 * (rand()

/ (RAND_MAX + (-1.5708))));
rand_TP_PHI = -1.5708 + (sc_fixed<32,8>)(1.5708 * (rand()

/ (RAND_MAX + (-1.5708))));

while(1)
{

TP_X = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0)) +
(-9.0);

TP_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0)) +
(-9.0);

eucDistSPTP = sqrt((TP_X-SP_X)*(TP_X-SP_X) + (TP_Y-
SP_Y)*(TP_Y-SP_Y));

if((eucDistSPTP > 0.4) && (eucDistSPTP < 3))
{

cout << "EP is " << TP_X << endl;
ahb_seq->addrValue = TARGETPOSEX;
wr_data.range(31,24) = TP_X.range(31,24);
wr_data.range(23,0) = TP_X.range(23,0);
ahb_seq->dataValue = wr_data;
ahb_seq->start(m_sequencer);

break;
}

}

© Accellera Systems Initiative 45

Code Snippet for Randomizing Fixed Point
Variables(2/2)

// Keep finding obst points for the required omap count.
Ignore points which are close to SP/TP
while(1)
{

omap_X = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0)) + (-
9.0);

omap_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0)) + (-
9.0);

// Calculate euc dist of obt point from SP and TP
eucDistObsSP = sqrt((SP_X-omap_X)*(SP_X-omap_X) + (SP_Y-

omap_Y)*(SP_Y-omap_Y));
eucDistObsTP = sqrt((TP_X-omap_X)*(TP_X-omap_X) + (TP_Y-

omap_Y)*(TP_Y-omap_Y));

if((eucDistObsSP > 0.3)
&& (eucDistObsSP < (1.25*eucDistSPTP))
&& (eucDistObsTP > 0.3)
&& (eucDistObsTP < (1.25*eucDistSPTP))) {
act_omap_count++;
omap_cfg << omap_X << " " << omap_Y;

}

• Sample SCV for fixed point
variables(not supported yet):

SCV_EXTENSIONS(PathPoints)
{

public:
scv_extensions<

sc_fixed<32,8,SC_DEFAULT_Q_MODE_,
SC_DEFAULT_O_MODE_,SC_DEFAULT_N_BITS_>>
targetPoseXY;

SCV_EXTENSIONS_CTOR(PathPoints)
{

SCV_FIELD(targetPoseXY);
}
bool has_valid_extensions() {return

true;}
}

© Accellera Systems Initiative 46

Sample IP outputs (1/2)

© Accellera Systems Initiative 47

Sample IP outputs (2/2)

© Accellera Systems Initiative 48

PART 3: MIGRATION RESULTS & CONCLUSION

© Accellera Systems Initiative 49

Overview
• Benefits
• Tooling
• Conclusion

© Accellera Systems Initiative 50

Potential benefits of UVM-SystemC methodology
• Less design time for testbench components

– Base library provides analysis ports and callbacks
• Low learning curve for new users to the IP

– Testbench framework well known in verification circles
• Less time in test coding for IP validation at SoC level using UVM-SV

– Language specific updates between SC and SV via simple script
• Reduced coding time for testbench components for IP at SoC level

– Re-use of custom bus functional model written at IP level
• Reduced man power required

– Same owner can work on IP and SoC validation

© Accellera Systems Initiative 51

Sample Conversion Capabilities of the UVM-SC to
UVM-SV script

• Changing class extension syntax
– class ahb_transaction : public uvm_randomized_sequence_item to

class ahb_transaction extends public uvm_randomized_sequence_item

• Updating the component phase arguments
– void run_phase(uvm::uvm_phase& phase) to function void run_phase(uvm::uvm_phase phase)

• Modifying the constructor calls
– ahb_driver(uvm::uvm_component_name name = "ahb_driver"):
uvm::uvm_driver<ahb_transaction>(name),ahb_pipeline_lock(1)
{ ... } to
function new (string name = "ahb_driver"):
super.new(name);
endfunction

• Replacing loop constructor brackets with begin-end
– if(!uvm_config_db<ahb_if*>::get(this, "*", "vif", ahb_vif)) { … } to

if(!uvm_config_db<ahb_if*>::get(this, "*", "vif", ahb_vif)) begin … end

© Accellera Systems Initiative 52

Summary
• What went well

– Availability of all uvm component base classes enabled fast bring up of the UVM-
SystemC framework (reporting, objection handling etc.)

– Visibility of source code helped in component development

• What could be improved
– SCV randomization limitations with fixed point data types
– Multiple vendor simulator support for UVM-SystemC compile/elab
– More examples of complete validation framework will be useful for beginners

(maybe put up our example for reference)

© Accellera Systems Initiative 53

Conclusion
• UVM-SystemC based validation framework enables development of

configurable, re-usable and structured components
• standard implementation technique enables resilient testbench across

multiple users
• methodology should be adopted across companies and EDA vendors to

make validation truly language agnostic and enhance the UVM-SystemC
VIP portfolio

© Accellera Systems Initiative 54

References
• UVM-SystemC

– http://www.accellera.org/images/downloads/drafts-review/

• CRAVE
– http://www.systemc-verification.org/crave/

© Accellera Systems Initiative 55

Questions

© Accellera Systems Initiative 56

	UVM-SystemC: Migrating complex verification environments
	Agenda
	Part 0: UVM-SystemC standardization update
	Updates since DVCon Europe 2016
	Current status
	Plans for 2018
	Part 1: Previously used verification environment
	Overview
	Conventional SystemC Testbench
	Limitations and potential reasons for UVM-SystemC
	Migrating to UVM-SystemC framework
	UVM-SystemC Phasing
	Build flow of UVM-SystemC(1/2)
	Build flow of UVM-SystemC(2/2)
	Transaction Layer
	Component Layer
	AHB Driver Component(1/6)
	AHB Driver Component(2/6)
	AHB Driver Component(3/6)
	AHB Driver Component(4/6)
	Driver-Sequence Interactions
	AHB Driver Component(5/6)
	AHB Driver Component(6/6)
	AHB Monitor Component(1/3)
	AHB Monitor Component(2/3)
	AHB Monitor Component(3/3)
	AHB Agent (1/3)
	AHB Agent (2/3)
	AHB Agent (3/3)
	AHB Basic Env
	Transaction Layer (UVM Tests) (1/3)
	Transaction Layer (UVM Tests) (2/3)
	Transaction Layer (UVM Tests) (3/3)
	Part 2: Randomization using SCV & CRAVE
	Overview
	Random Sequences Using SCV (1/2)
	Random Sequences Using SCV (2/2)
	Hierarchical Sequences using Random Sequence Items (SCV)(1/2)
	Hierarchical Sequences using Random Sequence Items (SCV)(2/2)
	Random Sequences Using CRAVE
	Sequence Item Using CRAVE
	Hierarchical Sequences using Random Sequence Item (CRAVE)
	Base sequence with crv_variable
	SCV Sequence Randomization Sample
	Code Snippet for Randomizing Fixed Point Variables(1/2)
	Code Snippet for Randomizing Fixed Point Variables(2/2)
	Sample IP outputs (1/2)
	Sample IP outputs (2/2)
	Part 3: Migration Results & Conclusion
	Overview
	Potential benefits of UVM-SystemC methodology
	Sample Conversion Capabilities of the UVM-SC to UVM-SV script
	Summary
	Conclusion
	References
	Questions

