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PART 0: UVM-SYSTEMC STANDARDIZATION
UPDATE
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Updates since DVCon Europe 2016
• Register API: Basic backdoor implemented (no DPI)
• SystemC 2.3.2 compatibility

– Header includes
– Pkg-config
– Immediate notification mechanism

• UVM 1.2 Reporting API
• Stability review
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Current status
• Effort currently shared within small group

– More input from interested parties welcome and needed
– Man power needs to be increased for faster development

• Preview release
– Final packaging & testing
– shortly after DVCon Europe 2017
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Plans for 2018
• Improve API compatibility to IEEE 1800.2-2017
• Complete Register API (frontdoor/backdoor)
• Simplify CRAVE integration
• Smart Pointer implementation

– Main branch: make API more clear about ownerships
– Separate branch: implement shared pointers in API

• Add more examples
– Ubus
– Codec

• User Guide
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PART 1: PREVIOUSLY USED VERIFICATION
ENVIRONMENT
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Overview
• Previous verification environment
• Limitations and issues
• Migration details

– Layers
– Driver & Monitors
– Transactions
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Conventional SystemC Testbench
• Custom test functions & test engine

– test functions (test ports) created to mimic 
bus transaction drivers; one per transaction 
type

– Individual functions for each test scenarios
• Distinct methods for writes and reads

– Number of methods depends on types of 
valid write/read as per the protocol being 
implemented viz. single, burst, posted or 
non-posted

• Self-checking and parametrized tests
• Additional task created for running 

multiple tests in parallel from different 
interfaces
– Vector classes used to keep track of test 

functions being launched from each interface
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SIDE BAND 
SIGNALS

AHB test 
port

DUT
AHB test 

port

RESPONSE 
HANDLING 

AXI port

AXI test port

Test engine

Test 
functions

TEST SCENARIOS

IP Core

Test 
functions

© Accellera Systems Initiative 9



Limitations and potential reasons for UVM-SystemC
• Limitations of Non-UVM-SC testbench

– Higher learning curve for new user as TB has no standardized architecture
– Minimal reuse of tests/components across projects
– Configurability of testbench is limited
– Inadequate constrained randomization
– Narrow scope of IP to SoC reuse (SoC usually has UVM-SV based framework)

• Reasons for UVM-SC adoption: 
– Re-usability
– Configurability
– Constrained randomization
– Standardization across languages
– Easier adoption for UVM-SV users
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Migrating to UVM-SystemC framework

• UVM-SystemC adheres to the 
UVM-SystemVerilog standard 
layered architecture
– Migration of previous components 

to their respective layers required
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UVM-SystemC Phasing
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• UVM phases are mapped to the System-C phases
• Completion of a runtime phase happens as soon as there are no objections (anymore) to proceed to 

the next phase.
• All UVM components have the phases associated with them



Build flow of UVM-SystemC(1/2)
• GCC used for compiling UVM-SystemC framework with SystemC DUT
• VCS used for compiling UVM-SystemC framework with RTL DUT
• run_test(“<test_name>”);
• Simulator looks for a component registered with the name <test_name>
• Executes the build_phase (from top-down) of all the uvm components
• Elaborates the hierarchy and understands the component connections
• Executes the run_phases of all the components (in parallel)
• Enters post_run phases and finished once all objections are dropped
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Build flow of UVM-SystemC(2/2)
Starting SC tests ... 
0 s: build_phase top_test
0 s: constructor top_env
0 s: build_phase top_test.top_env
0 s: constructor agent
0 s: build_phase top_test.top_env.agent
0 s: constructor ahb_sequencer_inst
0 s: constructor ahb_driver_inst
0 s: build_phase top_test.top_env.agent.ahb_monitor_inst
0 s: connect_phase top_test.top_env.agent
0 s: connect_phase top_test.top_env
in ahb_reset_proc begin
0 s: UVM test with ahb_wr_rd_seq started top_test
in ahb_reset_proc end
100 ns: UVM test with ahb_wr_rd_seq started top_test
………..
1732630 ns: UVM test with ahb_wr_rd_seq finished top_test

--- UVM Report Summary ---
** Report counts by severity
UVM_ERROR     :   0
UVM_FATAL     :   0
UVM_INFO      :   0
UVM_WARNING   :   0
** Report counts by id
[RNTST]                 1
[agent]                 1
[ahb_driver_inst]      1705
[ahb_monitor_inst]     19
[ahb_seq]              2609
[pp_dynamic_cfg_seq]    8
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Transaction Layer
• Create interface and transaction 

classes as needed by the protocol
• Connect DUT to the interface
• Pass this interface to other 

components throughout the 
testbench hierarchy

int sc_main(int, char*[]) {
ahb_clk_reset_gen* clk_rst_gen

= new ahb_clk_reset_gen("clk_rst_gen");

ahb_if* dut_if_in = new ahb_if("dut_if_in");
dut_if_in->hclk(clk_rst_gen->ahb_clk);
dut_if_in->hresetn(clk_rst_gen->reset_val);

dut ahb_dut("ahb_dut");
ahb_dut.hclk(clk_rst_gen->ahb_clk);
ahb_dut.hresetn(clk_rst_gen->reset_val);
ahb_dut.haddr(dut_if_in->haddr);
...

uvm::uvm_config_db<ahb_if*>::
set(0, "*", "vif", dut_if_in);

uvm::uvm_config_db<sc_event*>::
set(0, "*", "reset_done", clk_rst_gen->reset_done);

run_test("ahb_wr_rd_test");
return 0;

}
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Component Layer

Driver Monitor

Signal Layer DUT

Component Layer
• All components in this layer, are 

mapped to a transaction type
– The transaction class constitutes on the 

packet type which is being transmitted 
across components

• Driver-Sequencer to follow a standard 
handshaking interface as per UVM 
standard

• Driver is the key component where all 
protocol intelligence has to be 
implemented

• Monitor can implement protocol 
checks, data integrity checks etc.
– Taps the DUT signal directly
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AHB Driver Component(1/6)
• Driver is derived from uvm_component base class

– uvm_components are created statically during the simulation, unlike 
uvm_objects

– Module registered to factory by using “UVM_COMPONENT_PARAM_UTILS”
• Enables component overrides using factory

– build_phase() “creates” the component and gets the virtual interface handle
• Virtual interface is the mode of communication between the DUT and the UVM_COMPONENTs
• Interface contains variables which are to be passed across the components. 
• These contain all of the transaction object variables and some additional sideband signals, if 

any (based on the protocol of the driver)
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Driver Component(2/6)
class ahb_driver: public

uvm::uvm_driver<ahb_transaction> {

public:
UVM_COMPONENT_PARAM_UTILS(ahb_driver);
ahb_if* ahb_vif;
sc_event* reset_event_driver;
sc_semaphore ahb_pipeline_lock;

ahb_driver(
uvm::uvm_component_name name

= "ahb_driver“
):uvm::uvm_driver<ahb_transaction>(name),

ahb_pipeline_lock(1)
{

...
}
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AHB Driver Component(3/6)
void build_phase(uvm::uvm_phase& phase) {

UVM_INFO(this->get_name(),"build_phase entered",UVM_LOW);

uvm_driver<ahb_transaction>::build_phase(phase);
reset_event_driver = new sc_event("reset_event_driver");

if (!uvm_config_db<ahb_if*>::
get(this, "*", "vif", ahb_vif))

{
UVM_FATAL(this>get_name(),
"AHB Virtual Interface missing");

}

if (!uvm_config_db<sc_event*>::
get(this, "*", "reset_done", reset_event_driver))

{
UVM_FATAL(this->get_name(), “Reset event missing");

}

}
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AHB Driver Component(4/6)
• Run_phase()

– This is the phase where simulation time advances 
– This phase is supposed to handle the pre-reset and post-reset behavior of the 

driver
– The variables in the virtual interface are assigned values based on various modes 

of operation of the driver (as per the protocol)
– All the DUT interface signals which are to be driven by the testbench, should be 

assigned in this phase
– Driver receives the transaction object from the sequencer

• The communication (between driver and sequencer/sequence) is as per a UVM standard 
protocol 
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Driver-Sequence Interactions

• Driver waits for a transaction item in the run_phase() by calling get_next_item() method of the driver 
analysis port.

• Once the sequence is started (from the uvm test), the start_item() method will be called and a transaction 
item reference will be passed

• Driver receives this and assigns relevant values to the sequence item
• Item_done() method call in driver indicates the transaction is updated and ready to be sent back to the 

sequence
• Driver can choose to call put_response() method and send a response packet with updated response fields 

(like status, data etc.)
• Sequence finished the item processing once the response is received and calls finish_item()
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Driver Component(5/6)
void run_phase(uvm::uvm_phase& phase) {

UVM_INFO(this->get_name(),
"run_phase entered",UVM_LOW);

if (ahb_vif->hresetn == 0) wait(*reset_event_driver);

while(true) {
SC_FORK
sc_spawn(sc_bind(

&ahb_driver::send_transaction,this),"drive1"),
sc_spawn(sc_bind(

&ahb_driver::send_transaction,this),"drive2")
SC_JOIN

}
UVM_INFO(this->get_name(),

"run_phase finished", UVM_LOW);
}
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Driver Component(6/6)
void send_transaction() {
ahb_transaction req, rsp;
ahb_pipeline_lock.wait();
UVM_INFO(this->get_name(),

"send_transaction: next item",UVM_LOW);
this->seq_item_port->get_next_item(req);
ahb_vif->htrans = req.htrans;
ahb_vif->haddr = req.haddr;
ahb_vif->hsize = req.hsize;

...

wait(AHB_CLK);
while (ahb_vif->hready != 1) wait(AHB_CLK);
rsp.set_id_info(req);
this->seq_item_port->item_done();
this->seq_item_port->put_response(rsp);
ahb_pipeline_lock.post();

}
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AHB Monitor Component(1/3)
• Monitor is derived from uvm_monitor/uvm_component base class
• Consist of an analysis port
• build_phase() “creates” the component and gets the virtual interface handle

• run_phase()
– Monitor receives the transaction items through the virtual interface and creates an 

internal packet from it
– If a  broadcast packet is needed, monitor can write this packet to an analysis port and 

any other components can receive this by connecting to this port
– Protocol checks and assertions are implemented to validate the transaction item values
– Fatal/Error/Warning messages can be flagged based on the protocol failure severity
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Monitor Component(2/3)
class ahb_monitor : public uvm::uvm_monitor {
public:
uvm::uvm_analysis_port<ahb_transaction>
item_collected_port;

ahb_if* vif;
ahb_monitor(
uvm::uvm_component_name name = "ahb_monitor"):
uvm_monitor(name),
item_collected_port("item_collected_port"),
vif(0)

{ ... }

UVM_COMPONENT_UTILS(ahb_monitor);

void build_phase(uvm::uvm_phase& phase) {
uvm::uvm_monitor::build_phase(phase);
if (!uvm::uvm_config_db<ahb_if*>::
get(this, "*", "vif", vif)) {
UVM_FATAL(name(),
"Virtual interface not defined!");

}
}
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Monitor Component(3/3)
void run_phase( uvm::uvm_phase& phase ) {

ahb_transaction pkt;

while (true) { // monitor forever
std::ostringstream str;
wait( vif->hresetn.posedge_event());

if (vif->hclk == 0)
sc_core::wait(vif->hclk.posedge_event());

pkt.htrans = vif->htrans;
pkt.haddr = vif->haddr;
...
item_collected_port.write(pkt);

// Checks on the packet items
AddressByteAlligned(pkt.haddr);
SlaveErrorResponse(pkt);

}
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AHB Agent (1/3)
class ahb_agent : public uvm::uvm_agent {

public:
ahb_driver* ahb_driver_inst;
ahb_monitor* ahb_monitor_inst;
ahb_sequencer<ahb_transaction>* ahb_sequencer_inst;
uvm::uvm_analysis_port<ahb_transaction>

agent_item_collected_port;

ahb_agent(uvm::uvm_component_name name = "ahb_agent"):
uvm_agent(name), ahb_sequencer_inst(0),
ahb_driver_inst(0) , ahb_monitor_inst(0),
agent_item_collected_port("agent_item_collected_port")

{
std::cout << sc_core::sc_time_stamp()

<< ": constructor " << name << std::endl;
}

…
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Agent (2/3)
void build_phase(uvm::uvm_phase& phase) {

std::cout << sc_core::sc_time_stamp() << ": build_phase " <<
name() << std::endl;

if (get_is_active() == uvm::UVM_ACTIVE) {
UVM_INFO(this->get_name(), " is ACTIVE", UVM_LOW);

ahb_sequencer_inst = ahb_sequencer<ahb_transaction>::
type_id::create("ahb_sequencer_inst",this);

ahb_driver_inst = ahb_driver::
type_id::create("ahb_driver_inst",this);

ahb_monitor_inst =
ahb_monitor::type_id::create("ahb_monitor_inst",this);

} else {
ahb_monitor_inst = ahb_monitor::type_id::

create("ahb_monitor_inst",this);

UVM_INFO(this->get_name(), " is PASSIVE", UVM_LOW);
}
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Agent (3/3)
void connect_phase(uvm::uvm_phase& phase) {
std::cout << sc_core::sc_time_stamp()
<< ": connect_phase " << name() << std::endl;

if (get_is_active()==uvm::UVM_ACTIVE) {
ahb_driver_inst->seq_item_port.connect
(ahb_sequencer_inst->seq_item_export);

}

ahb_monitor_inst->item_collected_port.connect
(agent_item_collected_port);

}
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

AHB Basic Env
class ahb_basic_env : public uvm::uvm_env {
public:
UVM_COMPONENT_UTILS(ahb_basic_env);
ahb_agent* agent;
ahb_basic_env(
uvm::uvm_component_name name=
"ahb_basic_env“): uvm::uvm_env(name), agent(0) {
std::cout << sc_core::sc_time_stamp()
<< ": constructor " << name << std::endl;

}

void build_phase(uvm::uvm_phase& phase) {
std::cout << sc_core::sc_time_stamp()
<< ": build_phase " << name() << std::endl;
agent = ahb_agent::type_id::create("agent", this);

uvm::uvm_config_db<int>::
set(this, "agent", "is_active", uvm::UVM_ACTIVE);

}

};
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Transaction Layer (UVM Tests) (1/3)
• UVM_TESTs are responsible for building the top level environment and initiating the 

start of the required sequence 
• UVM runs tasks on objections and all the components wishing to perform a task are 

expected to raise an objection
• build_phase() “creates” the component 
• run_phase()

– Objection is raised and dropped in this phase
– Sequence handle is created and sequence is started by calling the start()

method 
– The sequencer on which the sequence should be run is also specified
– Multiple sequences can be started at the same time on different sequencers
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Transaction Layer Tests & 
Sequences

Component Layer

Sequencer

Driver Monitor

Signal Layer DUT

Transaction Layer (UVM Tests) (2/3)
class ahb_wr_rd_test : public uvm::uvm_test {

public:
ahb_wr_rd_sequence* ahb_wr_rd_seq;
ahb_basic_env* top_env;

UVM_COMPONENT_UTILS(ahb_wr_rd_test);
ahb_wr_rd_test( uvm::uvm_component_name
name = "ahb_wr_rd_test"):
uvm::uvm_test( name ), top_env(0) {}

virtual void build_phase(uvm::uvm_phase& phase){      
std::cout << sc_core::sc_time_stamp()
<< ": build_phase " << name() << std::endl;
uvm_test::build_phase(phase);
top_env = ahb_basic_env::type_id::

create("top_env",this);}

© Accellera Systems Initiative 32



Transaction Layer (UVM Tests) (3/3)
virtual void run_phase(uvm::uvm_phase& phase) {

std::cout << sc_core::sc_time_stamp() 
<< ": UVM test with ahb_wr_rd_seq started " 
<< name() << std::endl;

phase.raise_objection(this);

ahb_wr_rd_seq = 
new  ahb_wr_rd_sequence("ahb_wr_rd_seq");
ahb_wr_rd_seq->start(top_env->
agent->ahb_sequencer_inst);

phase.drop_objection(this);
std::cout << sc_core::sc_time_stamp() 
<< "UVM test with ahb_wr_rd_seq finished" 
<< name() << std::endl;

}
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PART 2: RANDOMIZATION USING SCV & CRAVE
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Overview
• Sequence randomization

– SCV
– CRAVE

• Sequence randomization sample 
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Random Sequences Using SCV (1/2)
• While using SCV for randomizing the sequence item, scv_extensions are to be 

created
• SCV_EXTENSION consist of the transaction fields to be randomized
• SCV_CONSTRAINTS can be added for all of the scv_extension variables as per 

the required constrained randomization
• In a sequence, the scv_constraint object is created and next() method is 

called to get a set of random values
• These are assigned to the scv_smart_ptr for the transaction class
• Multiple random values can be received by calling next() method each time
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Random Sequences Using SCV (2/2)
Create scv_extensions for the sequence item class i.e. for 
the transaction type

SCV_EXTENSIONS(ahb_transaction) {
public:
scv_extensions<sc_uint<ahbConfig::AhbAddrWidth>> haddr;
scv_extensions<sc_uint<ahbConfig::AhbDataWidth>[BURSTLENGTH]> 

hwdata;                                                                    
scv_extensions< sc_uint<ahbConfig::AhbBurstSize>> hburst;
scv_extensions< sc_uint<ahbConfig::AhbSize>> hsize;

SCV_EXTENSIONS_CTOR(ahb_transaction) {
SCV_FIELD(haddr);
SCV_FIELD(hburst);
SCV_FIELD(hsize);
SCV_FIELD(hwdata);

}

bool has_valid_extensions() { return true; }
};

Create constraints class using smart_ptr of sequence item 
class type

class ahb_trans_constraints : virtual public scv_constraint_base {
public:
scv_smart_ptr<ahb_transaction> req;
SCV_CONSTRAINT_CTOR(ahb_trans_constraints) {
SCV_CONSTRAINT((req->haddr() * 0x3) == 0x0);
SCV_CONSTRAINT(
(req->hburst() >= ahbConfig::HBURST_SINGLE) &&
(req->hburst() <= ahbConfig::HBURST_INCR16)

);
SCV_CONSTRAINT(
(req->hsize() >= ahbConfig::HSIZE_BYTE) &&
(req->hsize() <= ahbConfig::HSIZE_WORD)

);

// For wrapping bursts, start address from an address
// other that 0x00 offset
SCV_CONSTRAINT(
if_then(req->hburst() == ahbConfig::HBURST_WRAP4,
((req->haddr() * 0x7) != 0x0) );

);
}
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Hierarchical Sequences using Random Sequence 
Items (SCV)(1/2)

class ahb_wr_rd_sequence : public
uvm::uvm_sequence<ahb_transaction>
{

public:
UVM_OBJECT_UTILS(ahb_wr_rd_sequence);

UVM_DECLARE_P_SEQUENCER(ahb_sequencer<ahb_transaction>);
ahb_if* ahb_vif_seq;
ahb_wr_rd_sequence( const std::string& 
name = "ahb_wr_rd_sequence") : 

uvm::uvm_sequence<ahb_transaction> ( name ){}
uint8_t xactType;
unsigned addrValue; 
unsigned dataValue; 
void body() 
{

UVM_INFO(this->get_name(), "Starting sequence", 
uvm::UVM_INFO);

ahb_trans_constraints constr_req("constr_req");
scv_smart_ptr<ahb_transaction>

rand_smart_ptr_ahb_pkt;
ahb_basic_sequence* ahb_seq;
ahb_seq = new ahb_basic_sequence("ahb_seq");

constr_req.next();
rand_smart_ptr_ahb_pkt.write(constr_req.req.read());

ahb_seq->xactType = rand_smart_ptr_ahb_pkt ->hwrite;
ahb_seq->hburstValue = 

rand_smart_ptr_ahb_pkt ->hburst;
ahb_seq->addrValue = rand_smart_ptr_ahb_pkt ->haddr;
ahb_seq->dataValue = 0xabababab;

ahb_seq->start(m_sequencer);

constr_req.next();
rand_smart_ptr_ahb_pkt.write(constr_req.req.read());

ahb_seq->xactType = rand_smart_ptr_ahb_pkt ->hwrite;
ahb_seq->hburstValue = 

rand_smart_ptr_ahb_pkt ->hburst;
ahb_seq->addrValue = rand_smart_ptr_ahb_pkt ->haddr;

ahb_seq->start(m_sequencer);

UVM_INFO(this->get_name(), 
"Finishing sequence", uvm::UVM_INFO);
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Hierarchical Sequences using Random Sequence 
Items (SCV)(2/2)

class ahb_basic_sequence : public
uvm::uvm_sequence<ahb_transaction>
{

public:
UVM_OBJECT_UTILS(ahb_basic_sequence);
uint8_t xactType;
unsigned addrValue,dataValue;
unsigned hburstValue, hsizeValue;
ahb_basic_sequence( const std::string& 
name = "ahb_basic_sequence") :        

uvm::uvm_sequence<ahb_transaction> ( name ) {}
void body() 
{

UVM_INFO(this->get_name(), "Starting 
sequence ahb_basic_sequence", uvm::UVM_INFO)

ahb_transaction* req_pkt;
ahb_transaction* rsp;
req_pkt = new ahb_transaction();
rsp = new ahb_transaction();
single_wr_rd(addrValue,xactType,dataValue, 

req_pkt, rsp);
}

void single_wr_rd(unsigned addrValue, 
unsigned xactType, 
unsigned dataValue, 
ahb_transaction* req_pkt, 
ahb_transaction* rsp)

{
UVM_INFO(this->get_name(), "Initiating 

non-burst accesses", uvm::UVM_INFO);

req_pkt->haddr = addrValue;
req_pkt->hsel = 1;
req_pkt->hready = 1;
req_pkt->htrans = ahbConfig::HTRANS_NONSEQ;
req_pkt->hsize = hsizeValue;
req_pkt->hwrite = xactType;
req_pkt->hwdata[0] = 

(sc_uint<32>)dataValue;

this->start_item(req_pkt);
this->finish_item(req_pkt);
this->get_response(rsp);

}
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Random Sequences Using CRAVE
• Transaction class need to be derived from uvm_randomized_sequence_item()
• Variables to be randomized are declared as crv_variables
• Constraints can be specified by using crv_constraint method
• base sequence using the transaction item, should call the randomize() method to 

get random values for the crv_variables
• values should be assigned to the transaction packets fields, as per requirement and 

sent to the DUT
• UVM_DO* macros can be called to specify which transaction object has to be sent to 

the driver and with what random values
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Sequence Item Using CRAVE
class ahb_transaction : public uvm_randomized_sequence_item {
public:
UVM_OBJECT_UTILS(ahb_transaction);

// define some rand variables
crv_variable< sc_uint< ahbConfig::AhbAddrWidth > > haddr;
crv_variable< sc_uint< ahbConfig::AhbSize > > hsize;
crv_variable< sc_uint< ahbConfig::AhbDataWidth> > hwdata[BURSTLENGTH];
crv_variable< unsigned >     hburst;

// Add some constraints
crv_constraint valid_hburst_range {HBURST_SINGLE <= hburst() <= HBURST_INCR16};
crv_constraint valid_hsize_range {HSIZE_BYTE <= hburst() <= HSIZE_WORD};
crv_constraint valid_addr_range {haddr() * 0x3 == 0x0};
crv_constraint addr_for_wrap_burst {if_then(hburst() == HBURST_WRAP4, (haddr() * 0x7) != 0x0)};

// Constructor
ahb_transaction(crv_object_name name = "ahb_transaction") : uvm_randomized_sequence_item(name) {
...

};
};
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Hierarchical Sequences using Random Sequence 
Item (CRAVE)

#include "ahb_basic_sequence.h"
class ahb_wr_rd_sequence : public uvm_randomized_sequence<ahb_transaction>
{

public:

UVM_OBJECT_UTILS(ahb_wr_rd_sequence);
ahb_wr_rd_sequence( crave::crv_object_name name = "ahb_wr_rd_sequence") : 

uvm_randomized_sequence<ahb_transaction> ( name )
{

cout << "Entered constructor of ahb_wr_rd_sequence " << endl;
}

void body() 
{

UVM_INFO(this->get_name(), "Starting sequence", uvm::UVM_INFO);
ahb_basic_sequence* ahb_seq;
ahb_seq = new ahb_basic_sequence("ahb_seq");
ahb_seq->hburstValue = ahbConfig::HBURST_SINGLE;
ahb_seq->start(m_sequencer);
UVM_INFO(this->get_name(), "Finishing sequence", uvm::UVM_INFO);

}

};
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Base sequence with crv_variable
class ahb_basic_sequence : public
uvm_randomized_sequence<ahb_transaction>
{

public:
UVM_OBJECT_UTILS(ahb_basic_sequence);
crv_variable<uint8_t  >  xactType;
crv_variable<unsigned >  addrValue; 
crv_variable<unsigned >  dataValue; 
ahb_basic_sequence( crave::crv_object_name
name= "ahb_basic_sequence") : 
uvm_randomized_sequence<ahb_transaction> ( name )
{}

virtual ~ahb_basic_sequence() {
};

void body() 
{

UVM_INFO(this->get_name(), "Starting sequence 
ahb_basic_sequence", uvm::UVM_INFO);

ahb_transaction* req_pkt;
ahb_transaction* rsp;
req_pkt = new ahb_transaction();
rsp = new ahb_transaction();
single_wr_rd(addrValue,xactType,dataValue, req_pkt, 

rsp);
}

}      

void single_wr_rd(unsigned addrValue, 
unsigned xactType,
unsigned dataValue,
ahb_transaction* req_pkt,
ahb_transaction* rsp)

{
UVM_INFO(this->get_name(), "Initiating non-burst 

accesses", uvm::UVM_INFO);
this->randomize();
req_pkt->haddr = addrValue;
req_pkt->hsel = 1;
req_pkt->hready = 1;
req_pkt->htrans = ahbConfig::HTRANS_NONSEQ;
req_pkt->hsize = hsizeValue;
req_pkt->hwrite = xactType;
UVM_DO_WITH(req_pkt, req_pkt->haddr() == addrValue);
UVM_INFO(this->get_name(), "Exiting non-burst 

accesses", uvm::UVM_INFO);
}
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SCV Sequence Randomization Sample
• SCV constraints written to configure 

the IP parameter randomly
• The IP is designed to find a path 

between point ‘A’ and ‘B’ without 
colliding to any obstacles on its 
path. Start, target and the obstacle 
map is an input to the IP.

• Test ends when an Interrupt is 
asserted by the IP; interrupt status 
of 1 => Valid output ready, interrupt 
status of 2 => No valid output(path) 
possible
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• SCV library does not have 
scv_extensions added for fixed point 
data types yet.

• Hence, constrained randomization 
attained using rand() method.

• Sample plots show the capability of 
randomization to generate distinct 
scenarios.



Code Snippet for Randomizing Fixed Point 
Variables(1/2)

sc_fixed<32,8> SP_X, SP_Y, SP_PHI;
sc_fixed<32,8> TP_X, TP_Y, TP_PHI;
sc_fixed<32,8> omap_X, omap_Y;
sc_fixed<32,8> rand_SP_PHI;
sc_fixed<32,8> rand_TP_PHI;

sc_fixed<32,8> eucDistObsSP;
sc_fixed<32,8> eucDistObsTP;
sc_fixed<32,8> eucDistSPTP;
omap_count = (rand()%161) + 20; // obs points between 20 

and 180

SP_X = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0) ) + (-
9.0);

SP_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0) ) + (-
9.0);

// Value between -1.5708 to 1.5708 i.e -90 to 90
rand_SP_PHI = -1.5708 + (sc_fixed<32,8>)(1.5708 * (rand() 

/ (RAND_MAX + (-1.5708))));
rand_TP_PHI = -1.5708 + (sc_fixed<32,8>)(1.5708 * (rand() 

/ (RAND_MAX + (-1.5708))));

while(1)
{

TP_X = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0) ) + 
(-9.0);

TP_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0) ) + 
(-9.0);

eucDistSPTP = sqrt((TP_X-SP_X)*(TP_X-SP_X) + (TP_Y-
SP_Y)*(TP_Y-SP_Y));

if( (eucDistSPTP > 0.4) && (eucDistSPTP < 3) )
{

cout << "EP is " << TP_X << endl;
ahb_seq->addrValue = TARGETPOSEX;
wr_data.range(31,24) = TP_X.range(31,24);
wr_data.range(23,0) =  TP_X.range(23,0);
ahb_seq->dataValue = wr_data;
ahb_seq->start(m_sequencer);

break;
}

}
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Code Snippet for Randomizing Fixed Point 
Variables(2/2)

// Keep finding obst points for the required omap count.         
Ignore points which are close to SP/TP
while(1)
{

omap_X = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0) ) + (-
9.0);

omap_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0) ) + (-
9.0);

// Calculate euc dist of obt point from SP and TP
eucDistObsSP = sqrt((SP_X-omap_X)*(SP_X-omap_X) + (SP_Y-

omap_Y)*(SP_Y-omap_Y));
eucDistObsTP = sqrt((TP_X-omap_X)*(TP_X-omap_X) + (TP_Y-

omap_Y)*(TP_Y-omap_Y));

if( (eucDistObsSP > 0.3) 
&& (eucDistObsSP < (1.25*eucDistSPTP) )
&& (eucDistObsTP > 0.3)
&& (eucDistObsTP < (1.25*eucDistSPTP) )) {
act_omap_count++;
omap_cfg << omap_X << " " << omap_Y;

}

• Sample SCV for fixed point 
variables(not supported yet):

SCV_EXTENSIONS(PathPoints) 
{

public:
scv_extensions< 

sc_fixed<32,8,SC_DEFAULT_Q_MODE_,
SC_DEFAULT_O_MODE_,SC_DEFAULT_N_BITS_>>                    
targetPoseXY;

SCV_EXTENSIONS_CTOR(PathPoints)
{

SCV_FIELD(targetPoseXY);
}
bool has_valid_extensions() {return 

true;} 
}
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Sample IP outputs (1/2)
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Sample IP outputs (2/2)
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PART 3: MIGRATION RESULTS & CONCLUSION
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Overview
• Benefits
• Tooling
• Conclusion
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Potential benefits of UVM-SystemC methodology
• Less design time for testbench components

– Base library provides analysis ports and callbacks
• Low learning curve for new users to the IP

– Testbench framework well known in verification circles
• Less time in test coding for IP validation at SoC level using UVM-SV

– Language specific updates between SC and SV via simple script 
• Reduced coding time for testbench components for IP at SoC level

– Re-use of custom bus functional model written at IP level 
• Reduced man power required

– Same owner can work on IP and SoC validation
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Sample Conversion Capabilities of the UVM-SC to 
UVM-SV script

• Changing class extension syntax
– class ahb_transaction : public uvm_randomized_sequence_item to

class ahb_transaction extends public uvm_randomized_sequence_item

• Updating the component phase arguments
– void run_phase(uvm::uvm_phase& phase) to function void run_phase(uvm::uvm_phase phase)

• Modifying the constructor calls
– ahb_driver( uvm::uvm_component_name name = "ahb_driver"):
uvm::uvm_driver<ahb_transaction>( name ),ahb_pipeline_lock(1)
{ ... } to
function new (string name = "ahb_driver"):
super.new(name);
endfunction

• Replacing loop constructor brackets with begin-end
– if(!uvm_config_db<ahb_if*>::get(this, "*", "vif", ahb_vif)) { … } to

if(!uvm_config_db<ahb_if*>::get(this, "*", "vif", ahb_vif)) begin … end
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Summary
• What went well

– Availability of all uvm component base classes enabled fast bring up of the UVM-
SystemC framework (reporting, objection handling etc.)

– Visibility of source code helped in component development

• What could be improved
– SCV randomization limitations with fixed point data types
– Multiple vendor simulator support for UVM-SystemC compile/elab
– More examples of complete validation framework will be useful for beginners 

(maybe put up our example for reference)
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Conclusion
• UVM-SystemC based validation framework enables development of 

configurable, re-usable and structured components
• standard implementation technique enables resilient testbench across 

multiple users
• methodology should be adopted across companies and EDA vendors to 

make validation truly language agnostic and enhance the UVM-SystemC 
VIP portfolio
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• UVM-SystemC
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– http://www.systemc-verification.org/crave/
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Questions
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