UVM-SystemC: Migrating complex
verification environments

Stephan Gerth, Fraunhofer IIS/EAS
Akhila Madhukumar, Intel India Pvt. Ltd

~ Fraunhofer (intel®>

SYSTEMS INITIATIVE

Agenda

* Preface: UVM-SystemC standardization update

* Main: Migrating complex verification environments
— Previous environment
— Randomaziation using SCV & CRAVE
— Results

* Q&A

2017
accellera - VT
© Accellera Systems Initiative 2 conERERcEAND B TIoN

SYSTEMS INITIATIVE

PART 0: UVM-SYSTEMC STANDARDIZATION
UPDATE

accellera - V]
© Accellera Systems Initiative X s e A
SYSTEMS INITIATIVE

Updates since DVCon Europe 2016

* Register API: Basic backdoor implemented (no DPI)
e SystemC 2.3.2 compatibility

— Header includes
— Pkg-config
— Immediate notification mechanism

UVM 1.2 Reporting API
e Stability review

accellera - V]
© Accellera Systems Initiative 4 e e e
SYSTEMS INITIATIVE

Current status

e Effort currently shared within small group
— More input from interested parties welcome and needed
— Man power needs to be increased for faster development

* Preview release
— Final packaging & testing
— shortly after DVCon Europe 2017

2017
accellera - VT
© Accellera Systems Initiative 5 . CONEReRCEAND BHeTIoN

SYSTEMS INITIATIVE

Plans for 2018

* Improve APl compatibility to IEEE 1800.2-2017
* Complete Register API (frontdoor/backdoor)

e Simplify CRAVE integration

 Smart Pointer implementation

— Main branch: make API more clear about ownerships
— Separate branch: implement shared pointers in API

 Add more examples
— Ubus
— Codec

e User Guide

accellera o DV
© Accellera Systems Initiative 6 . CONFERENCE ANDEXHIBITION

SYSTEMS INITIATIVE

PART 1: PREVIOUSLY USED VERIFICATION
ENVIRONMENT

accellera - V]
© Accellera Systems Initiative 72 s -2 A
SYSTEMS INITIATIVE

Overview

* Previous verification environment
e Limitations and issues

* Migration details
— Layers
— Driver & Monitors
— Transactions

2017
accellera o VT
© Accellera Systems Initiative 8 . conmERERcEAND BHeTIoN

SYSTEMS INITIATIVE

Conventional SystemC Testbench

e Custom test functions & test engine st \
— test functions (test ports) created to mimic
bus transaction drivers; one per transaction 7| _
type TEST SCENARIOS 2
— Individual functions for each test scenarios v 0
e Distinct methods for writes and reads matestpon | AR | AR @,
D
— Number of methods depends on types of
valid write/read as per the protocol being
implemented viz. single, burst, posted or AXiport | [AHB port [f AHB port
non-posted
* Self-checking and parametrized tests
. . O
* Additional task created for running b G -
multiple tests in parallel from different —
interfaces
— Vector classes used to keep track of test S1oE BAND [Resronse
functions being launched from each interface SIGNALS HANDLING

2017
accellera - V]
© Accellera Systems Initiative 9 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Limitations and potential reasons for UVM-SystemC

e Limitations of Non-UVM-SC testbench
— Higher learning curve for new user as TB has no standardized architecture
— Minimal reuse of tests/components across projects
— Configurability of testbench is limited
— Inadequate constrained randomization
— Narrow scope of IP to SoC reuse (SoC usually has UVM-SV based framework)

* Reasons for UVYM-SC adoption:
— Re-usability
— Configurability
— Constrained randomization
— Standardization across languages
— Easier adoption for UVM-SV users

2017

accellera - Vi
© Accellera Systems Initiative i . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

Migrating to UVM-SystemC framework

 UVM-SystemC adheres to the
UVM-SystemVerilog standard
layered architecture

— Migration of previous components
to their respective layers required

Tests &
Sequences

Transaction Layer

Sequencer

Component Layer

Driver

Signal Layer

2017
accellera - V]
© Accellera Systems Initiative "7 cONIERERCEAND BHeTIon

SYSTEMS INITIATIVE

UVM-SystemC Phasing

" UVM common phases
3 e Post-run phases

le Pre-run phases 5| e Runtime phases A €

(T | | Jl_‘l“m l“_“ll”_“lul

end_of_simulation*

hefnre end of _ elabc-ratlcn
UVM runtime phases A
end_of_elaboration g G}

Legend
{D = SystemC process(es)

w =top-down execution

start_of_simulation
configure main shutdown

pre-reset | post-reset
A =bottom-up execution

reset % =SystemC-only callback

« UVM phases are mapped to the System-C phases
« Completion of a runtime phase happens as soon as there are no objections (anymore) to proceed to

the next phase.
« All UVM components have the phases associated with them

2017
accellera o VT
© Accellera Systems Initiative 12 SONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

Build flow of UVM-SystemC(1/2)

* GCC used for compiling UVM-SystemC framework with SystemC DUT

* VCS used for compiling UVM-SystemC framework with RTL DUT

* run_test(“<test name>”);

* Simulator looks for a component registered with the name <test_name>
* Executes the build phase (from top-down) of all the uvm components
* Elaborates the hierarchy and understands the component connections

* Executes the run_phases of all the components (in parallel)

* Enters post_run phases and finished once all objections are dropped

accellera - p
© Accellera Systems Initiative 13 . CONFERENCEAND EXHIBITION

IIIIIIIIIIIIIIIII

Build flow of UVM-SystemC(2/2)

Starting SC tests ...

0 s: build _phase top_test

0 s: constructor top_env

0 s: build _phase top_test.top_env

0 s: constructor agent

0 s: build _phase top_test.top_env.agent

0 s: constructor ahb_sequencer_inst

0 s: constructor ahb_driver_inst

0 s: build phase top_test.top_env.agent.ahb_monitor_inst
0 s: connect_phase top_test.top_env.agent

0 s: connect_phase top_test.top_env

in ahb_reset_proc begin

0 s: UVM test with ahb_wr_rd_seq started top_test

in ahb_reset_proc end

100 ns: UVM test with ahb_wr_rd_seq started top_test

1732630 ns: UVM test with ahb_wr_rd_seq finished top_test

accellera © Accellera Systems Initiative

SYSTEMS INITIATIVE

--- UVM Report Summary ---
** Report counts by severity

UVM_ERROR : O
UVM_FATAL : O

UVM_ INFO : O
UVM_WARNING : O
** Report counts by id
[RNTST] 1
[agent] 1
[ahb_driver_inst] 1705
[ahb_monitor_inst] 19
[ahb_seq] 2609
[pp_dynamic_cfg seq] 8

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

Transaction Layer

* Create interface and transaction
classes as needed by the protocol

e Connect DUT to the interface

e Pass this interface to other
components throughout the
testbench hierarchy

SYSTEMS INITIATIVE

© Accellera Systems Initiative

int sc_main(int, char*[]) {

15

ahb_clk_reset_gen* clk_rst_gen
= new ahb_clk_reset_gen("clk_rst_gen");

ahb_if* dut_if in = new ahb_if("dut_if in");
dut_if in->hclk(clk_rst_gen->ahb_clk);
dut_if in->hresetn(clk_rst_gen->reset val);

dut ahb_dut("ahb_dut");

ahb_dut.hclk(clk rst_gen->ahb_clk);
ahb_dut.hresetn(clk _rst gen->reset val);
ahb_dut.haddr(dut_if_in->haddr);

uvm: :uvm_config db<ahb_if*>::
set(o, "*", "vif", dut_if in);
uvm: :uvm_config db<sc_event*>::
set(@, "*", "reset _done", clk rst _gen->reset_done);
run_test("ahb_wr_rd test");
return 0;

2017

DESIGN AND VERIFICATION™

DV O

NNNNNNNNNNNNNNNNNNNNNNN

Component Layer

e All components in this layer, are —— i REQUEST "“"‘i‘d""“’
mapped to a transaction type sat Jen) s len o ast bang
— The transaction class constitutes on the | GEADSBRARIEE)
packet type which is being transmitted finish,item(.< . ceq_tem_portput_resposel)
RESPONSE

across components

* Driver-Sequencer to follow a standard
handshaking interface as per UVM
standard

* Driver is the key component where all
protocol intelligence has to be .
implemented

* Monitor can implement protocol ‘ f
checks, data integrity checks etc. Signal Layer

— Taps the DUT signal directly

Packet

Component Layer

2017
accellera - VN
© Accellera Systems Initiative 1 conrERsRcEAND SemON

SYSTEMS INITIATIVE

AHB Driver Component(1/6)

* Driveris derived from uvm_component base class

— uvm_components are created statically during the simulation, unlike
uvm_objects

— Module registered to factory by using “UVM_COMPONENT _PARAM_UTILS”

* Enables component overrides using factory

— build phase() “creates” the component and gets the virtual interface handle
* Virtual interface is the mode of communication between the DUT and the UVM_COMPONENTSs
* Interface contains variables which are to be passed across the components.

* These contain all of the transaction object variables and some additional sideband signals, if
any (based on the protocol of the driver)

2017
accellera - N E TN
© Accellera Systems Initiative 17 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

AHB Driver Component(2/6)

)

class ahb _driver: public
uvm: :uvm_driver<ahb_transaction> {

public:
UVM_COMPONENT_PARAM_UTILS(ahb_driver);
ahb_if* ahb_vif;
sc_event* reset _event driver;
sc_semaphore ahb pipeline lock;

ahb_driver(
uvm: :uvm_component_name name
= "ahb_driver*
) :uvm: :uvm_driver<ahb_transaction>(name),
ahb_pipeline_lock(1)
{

}

accellel'a © Accellera Systems Initiative 18

SYSTEMS INITIATIVE

Transaction Layer

Tests &
Sequences

Component Layer

Signal Layer

Sequencer

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

void build_phase(uvm::uvm_phase& phase) {
UVM_INFO(this->get name(), "build phase entered",UVM_LOW);

uvm_driver<ahb_transaction>::build _phase(phase);
reset_event_driver = new sc_event("reset_event_driver");

if (luvm_config _db<ahb_if*>::
get(this, "*", "vif", ahb_vif))
{
UVM_FATAL(this>get_name(),

"AHB Virtual Interface missing");

}

if (luvm_config db<sc_event*>::
get(this, "*", "reset done", reset_event _driver))

{
UVM_FATAL (this->get_name(), “Reset event missing");

}

© Accellera Systems Initiative 19

AHB Driver Component(3/6)

Transaction Layer

Tests &
Sequences

Component Layer

Signal Layer

Sequencer

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

AHB Driver Component(4/6)

e Run_phase()
— This is the phase where simulation time advances

— This phase is supposed to handle the pre-reset and post-reset behavior of the
driver

— The variables in the virtual interface are assigned values based on various modes
of operation of the driver (as per the protocol)

— All the DUT interface signals which are to be driven by the testbench, should be
assigned in this phase

— Driver receives the transaction object from the sequencer

* The communication (between driver and sequencer/sequence) is as per a UVM standard
protocol

2017

accellera - Vi
© Accellera Systems Initiative 20 . CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Driver-Sequence Interactions

* Driver waits for a transaction item in the run_phase() by calling get_next_item() method of the driver
analysis port.

* Once the sequence is started (from the uvm test), the start_item() method will be called and a transaction
item reference will be passed

e Driver receives this and assigns relevant values to the sequence item

« TItem _done() method call in driver indicates the transaction is updated and ready to be sent back to the
sequence

» Driver can choose to call put_response() method and send a response packet with updated response fields
(like status, data etc.)

* Sequence finished the item processing once the response is received and calls finish_item()

Sequence i REQUEST Packet g [Driver
start_item() '.. seq_item_port.get_next_item()

e Assign transaction to interface

according to the protocol
e seq_item_port. item_done()

finish_item() .: .o seq_tem_port.put_respose()
RESPONSE

PaCket DESIGN AND VER%’QJT?ON"
accellera - V]
© Accellera Systems Initiative 21 SONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

AHB Driver Component(5/6)

void run_phase(uvm::uvm_phase& phase) {
UVM_INFO(this->get_name(),
"run_phase entered",UVM_LOW);

Tests &
Sequences

Transaction Layer

if (ahb_vif->hresetn == 0) wait(*reset_event _driver);
Sequencer
while(true) {
SC_FORK
sc_spawn(sc_bind(
&ahb_driver::send_transaction,this),"drivel”),
sc_spawn(sc_bind(
&ahb_driver::send_transaction,this),"drive2")
SC_JOIN Signal Layer

Component Layer

Monitor

}
UVM_INFO(this->get_name(),
"run_phase finished", UVM_LOW);

}
2017

accellera o DVLCOIN
© Accellera Systems Initiative 22 CONFERENGE AND EXHIBITION

SYSTEMS INITIATIVE

AHB Driver Component(6/6)

void send_transaction() {
ahb_transaction req, rsp;
ahb_pipeline lock.wait(); Transaction Layer
UVM_INFO(this->get_name(),
"send_transaction: next item",UVM_LOW);

Tests &
Sequences

this->seq_item_port->get_next_item(req);
ahb_vif->htrans = req.htrans; Sequencer
ahb_vif->haddr
ahb_vif->hsize

req.haddr;
req.hsize; Component Layer

Monitor

wait(AHB_CLK);

while (ahb_vif->hready != 1) wait(AHB_CLK);
rsp.set_id_info(req); Signal Layer
this->seq_item_port->item_done();
this->seq_item_port->put_response(rsp);
ahb_pipeline_lock.post();

}
” —~ DESIGN AND VER%QJTZON"
accellera . VTN
e © Accellera Systems Initiative 23 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

AHB Monitor Component(1/3)

* Monitor is derived from uvm _monitor/uvm component base class
e Consist of an analysis port
* build phase() “creates” the component and gets the virtual interface handle

* run_phase()

— Monitor receives the transaction items through the virtual interface and creates an
internal packet from it

— If a broadcast packet is needed, monitor can write this packet to an analysis port and
any other components can receive this by connecting to this port

— Protocol checks and assertions are implemented to validate the transaction item values
— Fatal/Error/Warning messages can be flagged based on the protocol failure severity

2017
accellera - Vi
© Accellera Systems Initiative 24 .. CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

AHB Monitor Component(2/3)

class ahb_monitor : public uvm::uvm_monitor {
public:
uvm: :uvm_analysis_port<ahb_transaction>
item_collected_port;
ahb_if* vif;
ahb_monitor(

Tests &
Sequences

Transaction Layer

uvm: :uvm_component_name name = "ahb_monitor"):
uvm_monitor(name), Sequencer
item_collected _port("item_collected_port"),
vif(Q) Component Layer
{ ...}
UVM_COMPONENT_UTILS(ahb_monitor); Driver

void build_phase(uvm::uvm_phase& phase) {
uvm: :uvm_monitor::build phase(phase);
if (luvm::uvm_config_db<ahb_if*>:: Signal Layer
get(this, "*", "vif", vif)) {
UVM_FATAL (name(),
"Virtual interface not defined!");

}
}

2017
accellera o DVLCOIN
© Accellera Systems Initiative 25 CONFERENGE AND EXHIBITION
SYSTEMS INITIATIVE

AHB Monitor Component(3/3)

void run_phase(uvm::uvm_phase& phase) {

ahb_transaction pkt;

Tests &
Sequences

Transaction Layer

while (true) { // monitor forever

std::ostringstream str;

wait(vif->hresetn.posedge event()); .

equencer

1f (vif->helk ==0) Component Layer
sc_core: :wait(vif->hclk.posedge event());

pkt.htrans

pkt.haddr

vif->htrans;
vif->haddr;

item_collected_port.write(pkt);

Signal Layer

// Checks on the packet items
AddressByteAlligned(pkt.haddr);
SlaveErrorResponse(pkt);

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

:.::{jjébcell@a

—— © Accellera Systems Initiative 26
SYSTEMS INITIATIVE

AHB Agent (1/3)

class ahb_agent : public uvm::uvm_agent {
public:
ahb_driver* ahb_driver_inst;
ahb_monitor* ahb_monitor_inst;
ahb_sequencer<ahb_transaction>* ahb_sequencer_inst;
uvm: :uvm_analysis_port<ahb_transaction>
agent_item_collected_port;

ahb_agent(uvm: :uvm_component_name name = "ahb_agent"):
uvm_agent(name), ahb_sequencer_inst(0),
ahb_driver_inst(@) , ahb_monitor_inst(9),
agent_item_collected_port("agent_item_collected port")

std::cout << sc_core::sc_time_stamp()
<< ": constructor << name << std::endl;

accelle{:ﬁ © Accellera Systems Initiative

SYSTEMS INITIATIVE

Transaction Layer

Tests &
Sequences

Component Layer

~.

\

Sequencer

Driver

Signal Layer

27

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

AHB Agent (2/3)

void build_phase(uvm: :uvm_phase& phase) {

std::cout << sc_core::sc_time_stamp() <<
name() << std::endl;

if (get_is_active() == uvm::UVM_ACTIVE) {
UVM_INFO(this->get name(), " is ACTIVE", UVM_LOW);

: build_phase

ahb_sequencer_inst = ahb_sequencer<ahb_transaction>::
type_id::create("ahb_sequencer_inst",this);

ahb_driver_inst = ahb_driver::
type_id::create("ahb_driver_inst",this);

ahb_monitor_inst =
ahb_monitor::type id::create("ahb_monitor_inst",this);
} else {
ahb_monitor_inst = ahb_monitor::type_id::
create("ahb_monitor_inst",this);

UVM_INFO(this->get_name(), " is PASSIVE", UVM_LOW);
}

accelle{:ﬁ © Accellera Systems Initiative

SYSTEMS INITIATIVE

<<

Transaction Layer

Tests &
Sequences

Component Layer

~.

\

Sequencer

Driver

Signal Layer

28

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

AHB Agent (3/3)

void connect_phase(uvm::uvm_phase& phase) {
std::cout << sc_core::sc_time_stamp()

<< ": connect_phase " << name() << std::endl;

Tests &
Sequences

Transaction Layer

if (get _is active()==uvm::UVM_ACTIVE) {
ahb_driver _inst->seq_item port.connect /
Sequencer

(ahb_sequencer_inst->seq_item_export);

} Component Layer
ahb_monitor_inst->item collected port.connect \\\\» Driver
(agent_item_collected_port); ‘\\\\\~§--_;

} Signal Layer

accelle{:ﬁ © Accellera Systems Initiative 29

SYSTEMS INITIATIVE

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

AHB Basic Env

class ahb_basic_env : public uvm::uvm_env {
public:
UVM_COMPONENT_UTILS(ahb_basic_env);
ahb_agent* agent;
ahb_basic_env(Transaction Layer
uvm: :uvm_component_name name=
"ahb_basic_env®): uvm::uvm_env(name), agent(0) {
std::cout << sc_core::sc_time_stamp()
<< ": constructor " << name << std::endl;

}

Tests &
Sequences

Sequencer

void build phase(uvm::uvm_phase& phase) { Component Layer

std::cout << sc_core::sc_time_stamp()
<< ": build_phase " << name() << std::endl; Driver
agent = ahb_agent::type id::create("agent", this);

uvm: :uvm_config db<int>::
set(this, "agent", "is_active", uvm::UVM_ACTIVE);

Signal Layer

}
}s5
L — 2017
/ ~~ DESIGN AND VERIFICATION™
(accellera - DVCCIN
~ . © Accellera Systems Initiative 30 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

Transaction Layer (UVM Tests) (1/3)

« UVM _TESTs are responsible for building the top level environment and initiating the
start of the required sequence

 UVM runs tasks on objections and all the components wishing to perform a task are
expected to raise an objection

 build phase() “creates” the component
* run_phase()
— Objection is raised and dropped in this phase

— Sequence handle is created and sequence is started by calling the start ()
method

— The sequencer on which the sequence should be run is also specified
— Multiple sequences can be started at the same time on different sequencers

accellera - Vi
© Accellera Systems Initiative 3 . CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Transaction Layer (UVM Tests) (2/3)

class ahb_wr_rd test : public uvm::uvm_test {
public:
ahb_wr_rd_sequence* ahb_wr_rd_seq;
ahb_basic_env* top_env;

UVM_COMPONENT_UTILS(ahb_wr_rd test);
ahb_wr_rd_test(uvm::uvm_component_name
name = "ahb_wr_rd test"):

uvm: :uvm_test(name), top _env(0) {}

virtual void build_phase(uvm::uvm_phase& phase){
std::cout << sc_core::sc_time_stamp()
<< ": build phase " << name() << std::endl;
uvm_test::build_phase(phase);
top _env = ahb _basic _env::type id::
create("top_env",this);}

accellel'a © Accellera Systems Initiative

SYSTEMS INITIATIVE

32

Tests &
Sequences

Transaction Layer

Sequencer

Component Layer

Driver

Signal Layer

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

Transaction Layer (UVM Tests) (3/3)

virtual void run_phase(uvm::uvm phase& phase) {
std::cout << sc_core::sc_time_stamp()
<< ": UVM test with ahb_wr_rd seq started "
<< name() << std::endl;

phase.raise_objection(this);

ahb_wr_rd_seq =

new ahb_wr_rd_sequence("ahb_wr_rd_seq");
ahb_wr_rd seg->start(top_env->
agent->ahb_sequencer_inst);

phase.drop_objection(this);

std::cout << sc_core::sc_time_stamp()

<< "UVM test with ahb_wr_rd seq finished"
<< name() << std::endl;

}

accellel'a © Accellera Systems Initiative

SYSTEMS INITIATIVE

33

Tests &

Transaction Layer
Sequences

Sequencer

Component Layer

Driver

Signal Layer

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

PART 2: RANDOMIZATION USING SCV & CRAVE

accellera - V]
© Accellera Systems Initiative 34 e e
SYSTEMS INITIATIVE

Overview

* Sequence randomization
— SCV
— CRAVE

e Sequence randomization sample

2017
accellera - V]
© Accellera Systems Initiative 3% . conEReRcEAND SR TON

SYSTEMS INITIATIVE

Random Sequences Using SCV (1/2)

e While using SCV for randomizing the sequence item, scv_extensions are to be
created

 SCV_EXTENSION consist of the transaction fields to be randomized

* SCV_CONSTRAINTS can be added for all of the scv_extension variables as per
the required constrained randomization

* Inasequence, the scv_constraint object is created and next () method is
called to get a set of random values

* These are assigned to the scv_smart_ptr for the transaction class
e Multiple random values can be received by calling next () method each time

2017
accellera - V]
© Accellera Systems Initiative 3% . CONFERENCE ANDEXHIBITION

SYSTEMS INITIATIVE

Random Sequences Using SCV (2/2)

Create scv_extensions for the sequence item class i.e. for
the transaction type

SCV_EXTENSIONS (ahb_transaction) {
public:
scv_extensions<sc_uint<ahbConfig: :AhbAddrWidth>> haddr;
scv_extensions<sc_uint<ahbConfig: :AhbDataWidth>[BURSTLENGTH]>

Create constraints class using smart_ptr of sequence item
class type

class ahb_trans_constraints : virtual public scv_constraint_base {

public:
scv_smart_ptr<ahb_transaction> req;
SCV_CONSTRAINT_CTOR(ahb_trans_constraints) {

hwdata;
scv_extensions< sc_uint<ahbConfig::AhbBurstSize>> hburst; SCV_CONSTRAINT((req->haddr() * 0x3) == 0x0);
scv_extensions< sc_uint<ahbConfig: :AhbSize>> hsize; SCV_CONSTRAINT(

SCV_EXTENSIONS_CTOR(ahb_transaction) {
SCV_FIELD(haddr);
SCV_FIELD(hburst);
SCV_FIELD(hsize);
SCV_FIELD(hwdata);

}

bool has valid extensions() { return true; }

}s

(reg->hburst() >= ahbConfig::HBURST SINGLE) &&
(reg->hburst() <= ahbConfig: :HBURST_INCR16)
)5
SCV_CONSTRAINT(
(reg->hsize() >= ahbConfig::HSIZE BYTE) &&
(reg->hsize() <= ahbConfig::HSIZE WORD)
)5

// For wrapping bursts, start address from an address
// other that 0x00 offset
SCV_CONSTRAINT (
if_then(req->hburst() == ahbConfig::HBURST_WRAP4,
((reg->haddr() * 0x7) != 0x0));

)5

Z

17

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 37

SYSTEMS INITIATIVE

Hierarchical Sequences using Random Sequence
Items (SCV)(1/2)

class ahb_wr_rd_sequence : public constr_req.next();
uvm: :uvm_sequence<ahb_transaction> rand_smart_ptr_ahb_pkt.write(constr_req.req.read());
{
public: ahb_seqg->xactType = rand_smart_ptr ahb_pkt ->hwrite;
UVM_OBJECT UTILS(ahb_wr_rd_sequence); ahb_seq->hburstvalue =
rand_smart_ptr_ahb_pkt ->hburst;
UVM_DECLARE_P_SEQUENCER(ahb_sequencer<ahb_transaction>); ahb_seqg->addrValue = rand_smart_ptr_ahb_pkt ->haddr;
ahb_if* ahb_vif seq; ahb_seq->dataValue = ©@xabababab;

ahb_wr_rd_sequence(const std::string&

" " ahb_seqg->start(m_sequencer);
name = "ahb wr rd sequence") : —=€4 (m_sequ);

constr_req.next();

uvm: :uvm_sequence<ahb_transaction> (name){} rand_smart_ptr_ahb_pkt.write(constr_req.req.read());

uint8 t xactType;

unsigned addrvalue; ahb_seq->xactType = rand_smart_ptr _ahb_pkt ->hwrite;

unsigned datavValue; ahb_seq->hburstVvalue =

void body/() rand_smart_ptr_ahb_pkt ->hburst;

{ ahb_seq->addrValue = rand_smart_ptr_ahb_pkt ->haddr;
UVM_INFO(this->get name(), "Starting sequence”,

uvm: :UVM_INFO) ; ahb_seq->start(m_sequencer);

ahb_trans_constraints constr_req("constr_req");

I:::>'scv_smar‘t_ptr‘<ahb_tr'ansaction> UVM_INFO(this->get_name(),

rand_smart_ptr_ahb_pkt; "Finishing sequence", uvm::UVM_INFO);

ahb_basic_sequence* ahb_seq;
ahb_seq = new ahb_basic_sequence("ahb seq");

2017
accellera - N E TN
© Accellera Systems Initiative 38 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Hierarchical Sequences using Random Sequence
Items (SCV)(2/2)

class ahb_basic_sequence : public
uvm: :uvm_sequence<ahb_transaction>

{
public:
UVM_OBJECT_UTILS(ahb_basic_sequence);
uint8_t xactType;
unsigned addrValue,dataValue;
unsigned hburstValue, hsizeValue;
ahb_basic_sequence(const std::string&
name = "ahb basic sequence") :
uvm: :uvm_sequence<ahb_transaction> (name) {}
void body()

{
UVM_INFO(this->get _name(), "Starting
sequence ahb_basic_sequence", uvm::UVM_INFO)
ahb_transaction* req_pkt;
ahb_transaction* rsp;
req_pkt = new ahb_transaction();
rsp = new ahb_transaction();

single_wr_rd(addrValue,xactType,dataValue,
reqg_pkt, rsp);

void single_wr_rd(unsigned addrValue,
unsigned xactType,
unsigned dataValue,
ahb_transaction* req_pkt,
ahb_transaction* rsp)
{
UVM_INFO(this->get_name(), "Initiating
non-burst accesses", uvm::UVM_INFO);

req_pkt->haddr = addrValue;

req_pkt->hsel = 1;

req_pkt->hready = 1;

req_pkt->htrans = ahbConfig: :HTRANS_NONSEQ;

req_pkt->hsize = hsizeValue;

req_pkt->hwrite = xactType;

req_pkt->hwdata[@] =
(sc_uint<32>)dataValue;

this->start_item(req_pkt);
this->finish_item(req_pkt);
this->get_response(rsp);

} }
DESIGN AND VER%’QJT?ON"
accellera - V]
© Accellera Systems Initiative 39 SONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

Random Sequences Using CRAVE

* Transaction class need to be derived from uvm_randomized sequence_item()
* Variables to be randomized are declared as crv_variables
e Constraints can be specified by using crv_constraint method

* base sequence using the transaction item, should call the randomize() method to
get random values for the crv_variables

* values should be assigned to the transaction packets fields, as per requirement and
sent to the DUT

 UVM_DO* macros can be called to specify which transaction object has to be sent to
the driver and with what random values

2017
accellera - Vi
© Accellera Systems Initiative 40 . CONFERENCEANDEXHISITION

SYSTEMS INITIATIVE

Sequence Iltem Using CRAVE

class ahb_transaction : public uvm_randomized_sequence_item {
public:
UVM_OBJECT_UTILS(ahb_transaction);

// define some rand variables
crv_variable< sc_uint< ahbConfig::AhbAddrWidth > > haddr;

crv_variable< sc_uint< ahbConfig::AhbSize > > hsize;
crv_variable< sc_uint< ahbConfig::AhbDataWidth> > hwdata[BURSTLENGTH];
crv_variable< unsigned > hburst;

// Add some constraints

crv_constraint valid hburst _range {HBURST_SINGLE <= hburst() <= HBURST_INCR16};

crv_constraint valid hsize range {HSIZE BYTE <= hburst() <= HSIZE WORD};

crv_constraint valid_addr_range {haddr() * 6x3 == 0x0};

crv_constraint addr_for_wrap_burst {if then(hburst() == HBURST_WRAP4, (haddr() * ©x7) != 0x0)};

// Constructor

ahb_transaction(crv_object name name = "ahb_transaction") : uvm_randomized sequence_item(name) {
}s
}s
DESIGN AND VE%QJTZON"
accellera o VST
© Accellera Systems Initiative 41 e S T

SYSTEMS INITIATIVE

Hierarchical Sequences using Random Sequence
ltem (CRAVE)

class ahb_wr_rd_sequence : public uvm_randomized_sequence<ahb_transaction>

{
public:
UVM_OBJECT_UTILS(ahb_wr_rd_sequence);
ahb_wr_rd_sequence(crave::crv_object_name name = "ahb_wr_rd_sequence") :
uvm_randomized_sequence<ahb_transaction> (name)
{
cout << "Entered constructor of ahb_wr_rd_sequence " << endl;
}
void body()
{
UVM_INFO(this->get_name(), "Starting sequence", uvm::UVM_INFO);
ahb_basic_sequence* ahb_seq;
ahb_seq = new ahb_basic_sequence("ahb_seq");
ahb_seq->hburstValue = ahbConfig: :HBURST_SINGLE;
ahb_seqg->start(m_sequencer);
UVM_INFO(this->get_name(), "Finishing sequence", uvm::UVM_INFO);
}
¥
DESIGN AND VE%QJT?ON"
accellera o DV
© Accellera Systems Initiative 42 Alaig e AL

SYSTEMS INITIATIVE

Base sequence with crv_variable

class ahb_basic_sequence : public
uvm_randomized_sequence<ahb_transaction>

{
public:
UVM_OBJECT _UTILS(ahb_basic_sequence);
crv_variable<uint8_t > xactType;
crv_variable<unsigned > addrValue;
crv_variable<unsigned > dataValue;
ahb_basic_sequence(crave::crv_object_name
name= "ahb_basic_sequence™) :
uvm_randomized_sequence<ahb_transaction> (name)

1}

virtual ~ahb_basic_sequence() {

}s
void body()

{
UVM_INFO(this->get_name(), "Starting sequence
ahb_basic_sequence", uvm::UVM_INFO);

ahb_transaction* req_pkt;

ahb_transaction* rsp;

req_pkt = new ahb_transaction();

rsp = new ahb_transaction();
single_wr_rd(addrValue,xactType,dataValue, req_pkt,

void single_wr_rd(unsigned addrValue,
unsigned xactType,
unsigned dataValue,
ahb_transaction* req_pkt,
ahb_transaction* rsp)

UVM_INFO(this->get_name(), "Initiating non-burst
accesses", uvm::UVM_INFO);

this->randomize();

req_pkt->haddr = addrValue;

req_pkt->hsel = 1;

req_pkt->hready = 1;

req_pkt->htrans = ahbConfig: :HTRANS_NONSEQ;
req_pkt->hsize = hsizeValue;

req_pkt->hwrite = xactType;

UVM_DO_WITH(req_pkt, req_pkt->haddr() == addrvValue);

UVM_INFO(this->get_name(), "Exiting non-burst
accesses", uvm::UVM_INFO);

43

CONFERENCE AND EXHIBITION

rsp); }
} }
oo 2017
accellera Y]

© Accellera Systems Initiative
SYSTEMS INITIATIVE

SCV Sequence Randomization Sample

e SCV constraints written to configure ¢ SCV library does not have

the IP parameter randomly scv_extensions added for fixed point
* The IP is designed to find a path data types yet.
between point ‘A" and ‘B’ without * Hence, constrained randomization
colliding to any obstacles on its attained using rand() method.
path._ Start, target and the obstacle « Sample plots show the capability of
map is an input to the IP. randomization to generate distinct
* Test ends when an Interrupt is scenarios.

asserted by the IP; interrupt status
of 1 => Valid output ready, interrupt
status of 2 => No valid output(path)
possible

DESIGN AND VER%’QJTIZDN"
accellera - p
© Accellera Systems Initiative 4 . CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Code Snippet for Randomizing Fixed Point
Variables(1/2)

sc_fixed<32,8> SP_X, SP_Y, SP_PHI;

sc_fixed<32,8> TP_X, TP_Y, TP_PHI; while(1)
sc_fixed<32,8> omap X, omap VY; {
sc_fixed<32,8> rand _SP_PHI; TP_X = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.9)) +
sc_fixed<32,8> rand_TP_PHI; (-9.9);
TP_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.9)) +
sc_fixed<32,8> eucDistObsSP; (-9.0);
s — _ * - -
sc_fixed<32,8> eucDistObsTP; eucDistSPTP = sqrt((TP_X-SP_X)*(TP_X-SP_X) + (TP_Y
. . SP_Y)*(TP_Y-SP_Y));
sc_fixed<32,8> eucDistSPTP; .] .
. . if((eucDistSPTP > 0.4) && (eucDistSPTP < 3))
omap_count = (rand()%161) + 20; // obs points between 20
and 180 {
cout << "EP is " << TP_X << endl;
SP_ X = (sc_fixed<32,8>)(rand() / (RAND MAX / 18.8)) + (- ahb_seq->addrValue = TARGETPOSEX;
9.0); wr_data.range(31,24) = TP_X.range(31,24);
SP_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0)) + (- wr_data.range(23,0) = TP_X.range(23,0);
9.9); ahb_seqg->dataValue = wr_data;
// Value between -1.5708 to 1.5708 i.e -90 to 90 ahb_seq->start(m_sequencer);
rand SP_PHI = -1.5708 + (sc_fixed<32,8>)(1.5708 * (rand() break;
/ (RAND_MAX + (-1.5708)))); }
rand_TP_PHI = -1.5708 + (sc_fixed<32,8>)(1.5708 * (rand()
/ (RAND _MAX + (-1.5708)))); }
DESIGN AND VERQIFQJTZON"
DV I

45

SYSTEMS INITIATIVE

© Accellera Systems Initiative

CONFERENCE AND EXHIBITION

Code Snippet for Randomizing Fixed Point
Variables(2/2)

// Keep finding obst points for the required omap count.
Ignore points which are close to SP/TP

while(1)
{

omap_X = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.0)) + (-
9.9);

omap_Y = (sc_fixed<32,8>)(rand() / (RAND_MAX / 18.9)) + (-
9.9);

// Calculate euc dist of obt point from SP and TP

eucDistObsSP = sqrt((SP_X-omap_X)*(SP_X-omap_X) + (SP_Y-
omap_Y)*(SP_Y-omap_Y));

eucDistObsTP = sqrt((TP_X-omap_X)*(TP_X-omap_X) + (TP_Y-
omap_Y)*(TP_Y-omap_Y));

if((eucDistObsSP > 0.3)
&8& (eucDistObsSP < (1.25*eucDistSPTP))
&& (eucDistObsTP > 0.3)
&& (eucDistObsTP < (1.25*eucDistSPTP))) {
act_omap_count++;
omap_cfg << omap_X << " "

}

SYSTEMS INITIATIVE

<< omap_Y;

© Accellera Systems Initiative

46

e Sample SCV for fixed point
variables(not supported yet):

SCV_EXTENSIONS(PathPoints)

{
public:

scv_extensions<
sc_fixed<32,8,SC DEFAULT_Q MODE_,

SC _DEFAULT_O MODE_,SC DEFAULT_N_BITS >>
targetPosexXyY,;

SCV_EXTENSIONS CTOR(PathPoints)
{

}

bool has valid extensions() {return

SCV_FIELD(targetPoseXY);

true;}

}

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

Sample IP outputs (1/2)

e T T T T T T T -2 T T T T T T T T T
: : H Start Pose : Start Pose
: : * : Target Pose : : ‘ Target Pose
: : Obstacles ‘] : Obstacles
H REF Hodel Path —— ; : ; REF Hodel Path ——
: - * INP Hodel Path —m— ‘ : INP Hodel Path —m—
i : - i ;
i + *
i H - * * : . * 2.5 [u
8.5 [L : - — »
H H - H -
-
: : N ™
i i " i » -
H ! - : -
H H - : ok N
»* H :
: A |
- : . - - -
8 P : n -
: . - H
H H -
. : : . = *
: i : 3.5 . . n
H i * »* = =
H i
; : = " -
7.5 i i : i
H : l " -
H H -
i » - -4 .
- H
L L -
H H = -
: - x
» . W L]
7 H - H * = o 1
H H » H H 4.5 = * 7
» H » »* :
' X *
i]
H - - -
6.5 I i I L i I i -5 1 1 ! I 1 I I i i
“a.5 0 0.5 1 1.5 2 2.5 3 3.5 -a.5 a a5 1 1.5 2 2.5 3 3.5 4 4.5

oo 217
accellera =V]

© Accellera Systems Initiative 47 e e S ST os
SYSTEMS INITIATIVE

Sample IP outputs (2/2)

art Pose 2 T T T T T T T T
REF Hodel Path —il— : : REF Hodel Path ——f—
TnP Hodel Path —m— i InP Hodel Path ——
1 .- - i
6.5 T i
: -) * ®u - -
i - "
- - - = = *
-] ' * - !.II * " T » "o » = * = - %) i
8- * " '-: L] ™ " <™ n - ™
i :’ * * * . » N L - : ik) B
L] % - » . l. -
* H = " + !-
7.5 |- - Rk S e S R . T r RN : . '7
" » » - = -3 |- -
= H L »
» L »
* i » » - - * =
m = * - . i : :
* * - » 3 *
* * * *
" - »
.n' - * * * x :§ - -)
B.5 - .- - - ™ = - ’;u » - — - 1
= * - *
* 3 *- ‘ % - = " * .
L L] Ll .
» = e e -6 -5.5
6 1 I I I
-3 -2.5 -2 -1.5 -1 -8.5
_ 2017
~ DESIGN AND VERIFICATION™
accellera P CONF¥CEAND EXHIBITION
© Accellera Systems Initiative 48

SYSTEMS INITIATIVE

PART 3: MIGRATION RESULTS & CONCLUSION

accellera - V]
© Accellera Systems Initiative 49 e EEERCE e D R
SYSTEMS INITIATIVE

Overview

e Benefits
* Tooling
e Conclusion

/"’;;:_7. —_\ DESIGN AND VER2IFI(QJTI70N"'
(accellera . N5
N © Accellera Systems Initiative 50 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Potential benefits of UVM-SystemC methodology

* Less design time for testbench components
— Base library provides analysis ports and callbacks

* Low learning curve for new users to the IP
— Testbench framework well known in verification circles

e Less time in test coding for IP validation at SoC level using UVM-SV
— Language specific updates between SC and SV via simple script

 Reduced coding time for testbench components for IP at SoC level
— Re-use of custom bus functional model written at IP level

 Reduced man power required
— Same owner can work on IP and SoC validation

accellera - p
© Accellera Systems Initiative 5 . CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Sample Conversion Capabilities of the UVM-SC to
UVM-SV script

Changing class extension syntax

— class ahb_transaction : public uvm_randomized_sequence_item to
class ahb_transaction extends public uvm_randomized sequence_item

Updating the component phase arguments

— void run_phase(uvm: :uvm_phase& phase) to function void run_phase(uvm::uvm_phase phase)

Modifying the constructor calls

— ahb_driver(uvm::uvm_component_name name = "ahb_driver"):
uvm: :uvm_driver<ahb_transaction>(name),ahb_pipeline_lock(1)
{ ... } to
function new (string name = "ahb_driver"):
super.new(name);
endfunction

* Replacing loop constructor brackets with begin-end
— if(luvm_config_db<ahb_if*>::get(this, "*", "vif", ahb_vif)) { .. } to
if('uvm_config_db<ahb_if*>::get(this, "*", "vif", ahb_vif)) begin .. end

2017
accellera - N E TN
© Accellera Systems Initiative 52 . CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Summary

e What went well

— Availability of all uvym component base classes enabled fast bring up of the UVM-
SystemC framework (reporting, objection handling etc.)

— Visibility of source code helped in component development

 What could be improved
— SCV randomization limitations with fixed point data types
— Multiple vendor simulator support for UVM-SystemC compile/elab

— More examples of complete validation framework will be useful for beginners
(maybe put up our example for reference)

2017

accellera - Vi
© Accellera Systems Initiative 53 . CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Conclusion

 UVM-SystemC based validation framework enables development of
configurable, re-usable and structured components

e standard implementation technique enables resilient testbench across
multiple users

* methodology should be adopted across companies and EDA vendors to
make validation truly language agnhostic and enhance the UVM-SystemC

VIP portfolio

accellera - Vi
© Accellera Systems Initiative 54 . CONFERENCE AND EXHIBITION

IIIIIIIIIIIIIIIII

References

* UVM-SystemC
— http://www.accellera.org/images/downloads/drafts-review/

* CRAVE

— http://www.systemc-verification.org/crave/

2017
accellera o VT
© Accellera Systems Initiative 5. conEReRcEAND SR ToN

SYSTEMS INITIATIVE

Questions

accellera (2017

SYSTEMS INITIATIVE ELUROPE

	UVM-SystemC: Migrating complex verification environments
	Agenda
	Part 0: UVM-SystemC standardization update
	Updates since DVCon Europe 2016
	Current status
	Plans for 2018
	Part 1: Previously used verification environment
	Overview
	Conventional SystemC Testbench
	Limitations and potential reasons for UVM-SystemC
	Migrating to UVM-SystemC framework
	UVM-SystemC Phasing
	Build flow of UVM-SystemC(1/2)
	Build flow of UVM-SystemC(2/2)
	Transaction Layer
	Component Layer
	AHB Driver Component(1/6)
	AHB Driver Component(2/6)
	AHB Driver Component(3/6)
	AHB Driver Component(4/6)
	Driver-Sequence Interactions
	AHB Driver Component(5/6)
	AHB Driver Component(6/6)
	AHB Monitor Component(1/3)
	AHB Monitor Component(2/3)
	AHB Monitor Component(3/3)
	AHB Agent (1/3)
	AHB Agent (2/3)
	AHB Agent (3/3)
	AHB Basic Env
	Transaction Layer (UVM Tests) (1/3)
	Transaction Layer (UVM Tests) (2/3)
	Transaction Layer (UVM Tests) (3/3)
	Part 2: Randomization using SCV & CRAVE
	Overview
	Random Sequences Using SCV (1/2)
	Random Sequences Using SCV (2/2)
	Hierarchical Sequences using Random Sequence Items (SCV)(1/2)
	Hierarchical Sequences using Random Sequence Items (SCV)(2/2)
	Random Sequences Using CRAVE
	Sequence Item Using CRAVE
	Hierarchical Sequences using Random Sequence Item (CRAVE)
	Base sequence with crv_variable
	SCV Sequence Randomization Sample
	Code Snippet for Randomizing Fixed Point Variables(1/2)
	Code Snippet for Randomizing Fixed Point Variables(2/2)
	Sample IP outputs (1/2)
	Sample IP outputs (2/2)
	Part 3: Migration Results & Conclusion
	Overview
	Potential benefits of UVM-SystemC methodology
	Sample Conversion Capabilities of the UVM-SC to UVM-SV script
	Summary
	Conclusion
	References
	Questions

